李瑤 潘福鑫 王雷 吳瓊 曹滌非 宋睿 黃國(guó)慶 薛佳瑩 孫堯
摘要 闡述了WRKY轉(zhuǎn)錄因子的結(jié)構(gòu)及分類,綜述了近年來WRKY轉(zhuǎn)錄因子在植物脅迫應(yīng)答中的功能的研究進(jìn)展,并分析了目前WRKY轉(zhuǎn)錄因子研究存在的問題和今后的發(fā)展方向,為WRKY轉(zhuǎn)錄因子的研究提供參考。
關(guān)鍵詞 WRKY轉(zhuǎn)錄因子;脅迫應(yīng)答;功能
中圖分類號(hào) S188 文獻(xiàn)標(biāo)識(shí)碼
A 文章編號(hào) 0517-6611(2018)14-0024-03
Function of WRKY Transcription Factors in Plant Stress Response
LI Yao1,PAN Fuxin2,WANG Lei1 et al
(1.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150000; 2.Teaching and Experimental Equipment Guidance Center of Heilongjiang,Harbin,Heilongjiang 150000)
Abstract We expounded the structure and classification of WRKY transcription factor,summarized WRKY transcription factor in recent years in the research of plant stress response function,and analyzed the existing problems in the research of transcription factor WRKY and the future direction of development,so as to provide reference for the study of transcription factor WRKY.
Key words WRKY transcription factor;Stress response;Function
植物在進(jìn)化過程中形成了一系列機(jī)制來適應(yīng)和抵御各種逆境脅迫。植物受到脅迫時(shí),胞外信號(hào)通過信號(hào)轉(zhuǎn)導(dǎo)進(jìn)入胞內(nèi),激活轉(zhuǎn)錄因子與下游靶基因結(jié)合,在轉(zhuǎn)錄水平上促進(jìn)基因表達(dá),從而響應(yīng)植物的應(yīng)答反應(yīng)[1]。WRKY轉(zhuǎn)錄因子是高等植物中特有的一種鋅指型轉(zhuǎn)錄因子,參與植物的脅迫反應(yīng)、葉片衰老和發(fā)育等各種生理過程。目前,研究者已先后在擬南芥[2] (Arabidopsis thalilana)、水稻[3] (Oryza sativa)、楊樹[4] (Populus trichocarpa)、番茄[5] 等植物中發(fā)現(xiàn)了WRKY轉(zhuǎn)錄因子。筆者綜述了WRKY轉(zhuǎn)錄因子對(duì)脅迫應(yīng)答等方面的調(diào)控研究進(jìn)展,以期為WRKY轉(zhuǎn)錄因子的研究奠定基礎(chǔ)。
1 WRKY轉(zhuǎn)錄因子的結(jié)構(gòu)與分類
轉(zhuǎn)錄因子結(jié)構(gòu)包含不同的區(qū)域:DNA結(jié)合域、轉(zhuǎn)錄激活域以及連接區(qū)。WRKY轉(zhuǎn)錄因子擁有由高度保守的60個(gè)氨基酸構(gòu)成的WRKY結(jié)構(gòu)域,該結(jié)構(gòu)域N端含有高度保守的WRKYGQK氨基酸序列,C端則有1個(gè)鋅指結(jié)構(gòu)[6]。
根據(jù)不同的WRKY結(jié)構(gòu)域數(shù)量及鋅指結(jié)構(gòu)的特點(diǎn),WRKY轉(zhuǎn)錄因子家族一般被分為3類。第1類通常含有2個(gè)WRKY結(jié)構(gòu)域和1個(gè)C2H2鋅指結(jié)構(gòu),如WRKY蛋白ABF1、SPF1等。第2類和第3類WRKY蛋白只包含有1個(gè)WRKY結(jié)構(gòu)域,不同的是,第2類WRKY蛋白的鋅指結(jié)構(gòu)為C2H2,第3類的鋅指結(jié)構(gòu)為C2HC。據(jù)報(bào)道,目前發(fā)現(xiàn)的WRKY蛋白大多屬于第2類[7]。
2 WRKY轉(zhuǎn)錄因子在脅迫應(yīng)答中的功能
2.1 生物脅迫 目前已經(jīng)發(fā)現(xiàn)的很大一部分的WRKY轉(zhuǎn)錄因子都參與了植物對(duì)生物脅迫的反應(yīng)過程。WRKY轉(zhuǎn)錄因子能夠在植物多種免疫系統(tǒng)中發(fā)揮調(diào)控的作用,而且對(duì)病原物的響應(yīng)范圍較廣,是植物響應(yīng)生物脅迫的重要轉(zhuǎn)錄因子家族[8]。例如,擬南芥AtWEKY33對(duì)植物抗毒素的合成起調(diào)控作用,并能夠調(diào)控某些抗病基因的表達(dá)[9]。Choi 等[10]發(fā)現(xiàn),OsWRKY6基因的過量表達(dá)能夠使水稻表現(xiàn)出對(duì)病原物更強(qiáng)的抗性。研究還發(fā)現(xiàn),在OsWRKY6基因過表達(dá)的水稻株系中,水楊酸的濃度和異分支算合成酶1的轉(zhuǎn)錄水平都要高于野生型。異分支算合成酶是水楊酸生物合成過程中的主要酶,表明OsWRKY6可以調(diào)控異分支算合成酶的表達(dá)從而調(diào)節(jié)水楊酸的濃度,進(jìn)行自我調(diào)節(jié)。表1為部分抗病相關(guān)的WRKY轉(zhuǎn)錄因子。
此外,植物被昆蟲取食之后,WRKY轉(zhuǎn)錄因子的表達(dá)水平也會(huì)發(fā)生變化。Lu等[11]研究發(fā)現(xiàn)剝離螟蟲取食能夠誘導(dǎo)水稻中OsWRKY53和OsWRKY70的表達(dá),表明在植物應(yīng)答昆蟲取食的防衛(wèi)過程中可能有WRKY轉(zhuǎn)錄因子家族的某些成員的參與;Li等[12]將菊花中的CmWRKY48過量表達(dá),結(jié)果抑制了蚜蟲群體數(shù)量的正常,據(jù)此推斷CmWRKY48參與調(diào)控植物對(duì)蚜蟲的防御機(jī)制。表2為部分蟲害相關(guān)的WRKY轉(zhuǎn)錄因子。
2.2 非生物脅迫 植物在生長(zhǎng)過程中要不斷適應(yīng)外界變化的環(huán)境。在逆境脅迫下,植物的生理生化過程會(huì)發(fā)生變化,其中,WRKY轉(zhuǎn)錄因子起到了一定的調(diào)控作用。研究表明,WRKY轉(zhuǎn)錄因子參與了許多非生物逆境如干旱、高溫、低溫等的應(yīng)答反應(yīng)[6]。例如,楊樹的WRKY轉(zhuǎn)錄因子家族中,有61個(gè)轉(zhuǎn)錄因子參與植株的非生物脅迫調(diào)控[19];Okay等[20]研究表明,在干旱脅迫的條件下,小麥中的TaWRKY16、TaWRKY24、TaWRKY59和TaWRKY61表達(dá)水平會(huì)迅速上升,據(jù)此推斷這幾種WRKY轉(zhuǎn)錄因子參與了應(yīng)答干旱脅迫的過程。Ramamoorthy等[21]對(duì)水稻103個(gè)WRKY轉(zhuǎn)錄因子在非生物脅迫的表達(dá)譜進(jìn)行分析,發(fā)現(xiàn)有54個(gè)WRKY轉(zhuǎn)錄因子被誘導(dǎo)表達(dá)。同時(shí),他們還發(fā)現(xiàn)有些WRKY轉(zhuǎn)錄因子受一種脅迫因子的誘導(dǎo),而有的WRKY轉(zhuǎn)錄因子受幾種脅迫因子的誘導(dǎo),表明這些WRKY轉(zhuǎn)錄因子在響應(yīng)脅迫的過程中有一定的特異性。表3為部分非生物脅迫相關(guān)的WRKY轉(zhuǎn)錄因子。
3 展望
作為植物所特有的轉(zhuǎn)錄因子,WRKY轉(zhuǎn)錄因子與植物的生長(zhǎng)發(fā)育及抗逆性密切相關(guān),近年來,許多研究者開始利用基因組學(xué)、轉(zhuǎn)錄譜、基因工程以及生物信息學(xué)等方法進(jìn)行WRKY轉(zhuǎn)錄因子的研究。由于WRKY轉(zhuǎn)錄因子在脅迫中所表現(xiàn)的調(diào)控作用,可以通過基因工程的方法改變WRKY轉(zhuǎn)錄因子的表達(dá),進(jìn)而提高植株的抗病性、抗蟲性、耐旱性和耐寒性等。但目前仍存在一些問題,WRKY基因功能存在冗余性和轉(zhuǎn)錄因子的多功能性,為有效利用這些基因設(shè)置了一定的障礙。若想有效利用WRKY轉(zhuǎn)錄因子,就要充分了解WRKY轉(zhuǎn)錄因子的調(diào)控機(jī)制以及各轉(zhuǎn)錄因子之間的相互調(diào)控網(wǎng)絡(luò)等,對(duì)利用WRKY轉(zhuǎn)錄因子篩選抗逆植株品種以及提高植株的抗逆性做進(jìn)一步研究。
參考文獻(xiàn)
[1]
王娜,張振葆,黃鳳珠,等.WRKY轉(zhuǎn)錄因子參與植物非生物脅迫應(yīng)答的研究進(jìn)展[J].核農(nóng)學(xué)報(bào),2014,28(10):1819-1827.
[2] YU D Q,CHEN C H,CHEN Z X.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].The Plant Cell,2001,13(7):1527-1539.
[3] ABBRUSCATO P,NEPUSZ T,MIZZI L,et al.OsWRKY22,a monocot WRKY gene,plays a role in the resistance response to blast[J].Mol Plant Pathol,2012,13(8):828-841.
[4] KARIM A,JIANG Y,GUO L,et al.Isolation and characterization of a subgroup Iia Wrky transcription factor Ptrwrky40 from Populus trechocarpa[J].Tree Physiol,2015,35(10):1129-1139.
[5] LIU B,HONG Y B,ZHANG Y F,et al.Tomato WRKYtranscriptional factor SIDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J].Plant Sci,2014,227:145-156.
[6] 文鋒,吳小祝,廖亮,等.WRKY轉(zhuǎn)錄因子在植物抗逆生理中的研究進(jìn)展[J].廣西植物,2017,37(1):69-79.
[7] 史書婷,龔小慶,鄒養(yǎng)軍.WRKY轉(zhuǎn)錄因子與植物逆境響應(yīng)[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2017,33(7):674-680.
[8] 程遠(yuǎn),姚祝平,阮美穎,等.WRKY轉(zhuǎn)錄因子在植物逆境應(yīng)答中的功能[J].分子植物育種,2016,14(11):3214-3223.
[9] MAO G H,MENG X Z,LIU Y D,et al.Phosphorylation of a WRKY transcription factor by two pathogenresponsive MAPKs drivers phytoalexin biosynthesis in Arabidopsis[J].Plant Cell,2011,23(4):1639-1653.
[10] CHOI C,HWANG S H,F(xiàn)ANG I R,et al.Molecular characterization of Oryza Sativa WRKY6,which binds to Wboxlike element 1 of the Oryza sativa pathogensisrelated(PR) 10a promoter and confers reduced susceptibility to pathogens[J].New Phytol,2015,208(3):846-859.
[11] LU J,JU H P,ZHOU G X,et al.An EARmotifcontaining ERF transcription factor affects herbivoreinduced signaling,defense and resistance in rice[J].Plant J,2011,68(4):583-596.
[12] LI P L,SONG A P,GAO C Y,et al.The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J].Plant Physiol Biochem,2015,95:26-34.
[13] YU F F,HUAXIA Y F,LU W J,et al.GhWRKY15,a member of the WRKY transcription factor family identified from cotton(Gossypium hirsutum L.),is involved in disease resistance and plant development[J].BMC Plant Biol,2012,12:144.
[14] LIU X F,SONG Y Z,XING F Y,et al.Ghwrky25,a group Ⅰ Wrky gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J].Protoplasma,2016,253(5):1265-1281.
[15] KUSNIERCZYK A,WINGE P,JORSTAD T S,et al.Towards global understanding of plant defence against aphidstiming and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack[J].Plant Cell Environ,2008,31(8):1097-1115.
[16] HUI D,IQBAL J,LEHMANN K,et al.Molecular interactions between the specialist herbivore Manduca sexta(Lepidoptera,Sphingidae) and its natural host Nicotiana attenuate:V.Microarray analysis and further characterization of largescale changes in herbivoreinduced mRNAs[J].Plant Physiol,2003,131:1877-1893.
[17] WANG H H,HAO J J,CHEN X J,et al.Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plant[J].Plant Mol Biol,2007,65(6):799-815.
[18] ATAMIAN H S,EULGEM T,KALOSHIAN I.SlWRKY70 is required for Mi1mediated resistance to aphids and nematodes in tomato[J].Planta,2012,235(2):299-309.
[19] JIANG Y Z,DUAN Y J,YIN J,et al.Genomewide identification and characterization of the populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic streeses[J].J Exp Bot,2014,65(22):6629-6644.
[20] OKAY S,DERELLI E,UNVER T.Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress[J].Mol Genet Genom,2014,289(5):765-781.
[21] RAMAMOORTHY T,JIANG S Y,KUMAR N,et al.A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J].Plant Cell Physiol,2008,49(6):865-879.
[22] SUZUKI N,RIZHSKY L,LIANG H J,et al.Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J].Plant Physiol,2005,139:1313-1322.
[23] JIANG Y J,LIANG G,YU D Q.Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J].Mol Plant,2012,5(6):1375-1388.
[24] LI P L,SONG A P,GAO C Y,et al.Chrysanthemum WRKY gene CmWRKY 17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J].2015,34(8):1365-1378.
[25] SHI W N,HAO L L,LI J,et al.The Gossypium hirsutum WRKY gene GhWRKY391 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J].Plant Cell Rep,2014,33(3):483-498.
[26] ZHOU Q Y,TIAN A G,ZOU H F,et al.Soybean WRKYtype transcription factor genes,GmWRKY13、GmWRKY21 and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnol J,2008,6:486-503.
[27] NURUZZAMAN M,CAO H Z,XIU H,et al.Transcriptomicsbased identification of WRKY gene and characterization of a salt and Hormoneresponsive Pgwrky1 gene in panax ginseng[J].Acta Biochim Biophys Sin,2016,48(2):117-131.
[28] WANG X T,ZENG J,LI Y,et al.Expression of TaWRKY44,a wheat WRKY gene,in transgenic tobacco confers multiple abiotic stress tolerances[J].Front Plant Sci,2015,6:615.