張海濱 田雪文
摘要:DNA甲基化是基因表觀遺傳的關(guān)鍵修飾,調(diào)控基因表達(dá),在肥胖和II型糖尿病發(fā)生機(jī)制中起關(guān)鍵作用。針對(duì)DNA甲基化檢測(cè)最經(jīng)濟(jì)高效的技術(shù)是RRBS技術(shù)。研究表明急性和慢性運(yùn)動(dòng)與DNA甲基化模式和基因表達(dá)的變化有關(guān)。介紹了DNA甲基化及其RRBS技術(shù),總結(jié)目前關(guān)于運(yùn)動(dòng)與DNA甲基化的相關(guān)研究,以期深入了解運(yùn)動(dòng)誘導(dǎo)DNA甲基化的分子機(jī)制,并為未來(lái)研究提供方向。
關(guān)鍵詞:運(yùn)動(dòng);DNA甲基化;RRBS技術(shù)
中圖分類號(hào):G804.7文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1009-9840(2018)03-0062-04
Research progress on exercise and DNA methylation
ZHANG Hai-bin1,Tian Xue-wen2
(1. Qufu Normal University, Qufu 273100, Shandong, China; 2. Shandong Institute of Sport Science, Jinan 250102, Shandong, China)
Abstract:DNA methylation is a key modification of gene epigenetics and regulates gene expression. It plays a key role in the pathogenesis of obesity and type 2 diabetes. The most cost-effective technique for detecting DNA methylation is RRBS technology. Studies have shown that acute and chronic exercise is associated with changes in DNA methylation patterns and gene expression. This article briefly introduced DNA methylation and its RRBS technology, summed up the current research on exercise and DNA methylation, in order to understand the molecular mechanisms of exercise-induced DNA methylation, and provide direction for future research.
Key words:exercise; DNA methylation; RRBS technology
收稿日期:2018-03-20
基金項(xiàng)目:山東省社會(huì)規(guī)劃辦課題 (16CTYJ22), 山東省重點(diǎn)研發(fā)計(jì)劃 (2017GSF18115)。
作者簡(jiǎn)介:張海濱(1991-),男,碩士,研究方向運(yùn)動(dòng)人體科學(xué)。
通訊作者:田雪文(1978-),女,博士,副研究員,研究方向運(yùn)動(dòng)人體科學(xué)。運(yùn)動(dòng)可訓(xùn)練性已被證實(shí)具有強(qiáng)大遺傳特質(zhì)[1-2]。運(yùn)動(dòng)可訓(xùn)練性不僅取決于遺傳基因編碼,還取決于表觀遺傳信號(hào)的修飾[3]。DNA甲基化是調(diào)節(jié)基因表達(dá)的關(guān)鍵表觀遺傳修飾之一[4]。有研究表明,運(yùn)動(dòng)訓(xùn)練能夠引起肌肉功能關(guān)鍵基因甲基化狀態(tài)的改變,從而形成良好的表達(dá)模式以提高可訓(xùn)練性[3, 5-7]。運(yùn)動(dòng)和DNA甲基化的研究正處在迅速發(fā)展階段,本綜述總結(jié)了目前運(yùn)動(dòng)影響DNA甲基化的相關(guān)研究,以期深入了解運(yùn)動(dòng)誘導(dǎo)DNA甲基化的分子機(jī)制,并為未來(lái)研究提供方向。
1DNA甲基化
DNA甲基化是調(diào)節(jié)基因表達(dá)的關(guān)鍵表觀遺傳修飾之一,能夠在維持原有基因組序列完整性的前提下改變遺傳表觀。1925年,在結(jié)核桿菌中最先檢測(cè)到胞嘧啶的甲基化。1948年,Rollin使用紙色譜法分離量化小牛胸腺DNA成分時(shí),不僅鑒定出胸腺嘧啶、腺嘌呤、胞嘧啶和鳥(niǎo)嘌呤四種核酸堿基,還發(fā)現(xiàn)了一種遷移率稍高于胞嘧啶名為“epi胞嘧啶”的微量成分[8]。而這種epi胞嘧啶就是胞嘧啶甲基化形式。DNA甲基化是指在胞嘧啶-鳥(niǎo)嘌呤(CpG)相鄰的核苷酸序列上[9],S-腺苷甲硫氨酸的甲基在甲基轉(zhuǎn)移酶(DNMT)催化下,通過(guò)共價(jià)結(jié)合轉(zhuǎn)移到胞嘧啶5'端的過(guò)程[10]。在哺乳動(dòng)物中存在三種具有活性的DNA甲基轉(zhuǎn)移酶(DNMT):DNMT1主要負(fù)責(zé)維持DNA復(fù)制過(guò)程中甲基化狀態(tài);DNMT3A和DNMT3B通常對(duì)未甲基化DNA或半甲基化DNA進(jìn)行重新甲基化[11]。哺乳動(dòng)物基因組中,大約60%~90%的CpG被甲基化[12]。其他未甲基化CpG聚集成CpG島,其約包含1%的基因組[13]。哺乳動(dòng)物基因組中CpG島位于RNA聚合酶II轉(zhuǎn)錄基因的啟動(dòng)子、第一外顯子或3'UTR區(qū)域內(nèi),與其在基因表達(dá)中的作用一致[9]。而甲基化的CpGs(mCpGs)則抑制染色質(zhì)環(huán)境,使基因表達(dá)沉默。這是因?yàn)榧谆Y(jié)合蛋白(MBPs)能夠結(jié)合至少12個(gè)對(duì)稱的mCpGs,而且MBPs含有組蛋白修飾酶,導(dǎo)致異染色質(zhì)形成和基因沉默[14]。由此,DNA甲基化程度的高低與基因的表達(dá)和沉默密切相關(guān)。DNA甲基化在印跡基因表達(dá)模式、X染色體失活、轉(zhuǎn)位因子抑制、生物發(fā)育和許多疾病機(jī)制中發(fā)揮重要作用。隨著研究的深入,我們了解到更多DNA修飾的存在。C5位胞嘧啶的甲基化通常被用來(lái)定義“DNA甲基化”,但相同的堿基也可在其他位置甲基化,例如N3-甲基胞嘧啶(3mC)[15]。但是3mC為DNA損傷的產(chǎn)物,而非真正的信息載體[16]。此外,不僅胞嘧啶可以被甲基化靶向,腺嘌呤也能夠被甲基化,例如N6-甲基腺嘌呤[17]。最重要的是,DNA甲基化是可逆的DNA修飾。最近發(fā)現(xiàn)了C5位上的新DNA修飾,它們是由DNA去甲基化途徑產(chǎn)生的,主要包括C5-羥甲基胞嘧啶(5hmC)、C5-甲?;奏ぃ?fC)和C5-羧基胞嘧啶(5caC)[18]。另外,Tel酶去甲基化的活性也驗(yàn)證了DNA甲基化可逆性[19]。
山東體育科技第40卷總第174期2018年第3期張海濱,等運(yùn)動(dòng)與DNA甲基化的研究進(jìn)展No.3 20182DNA甲基化測(cè)序的RRBS技術(shù)
鑒于DNA甲基化的生物學(xué)功能及其在疾病中的作用,研究人員開(kāi)發(fā)了許多技術(shù)來(lái)檢測(cè)和比較DNA甲基化。減容代表亞硫酸氫鹽測(cè)序(RRBS)技術(shù)由于其低成本,操作簡(jiǎn)化以及對(duì)基因組CpG位點(diǎn)高覆蓋率而被科研者廣泛應(yīng)用[20]。RRBS技術(shù)首先通過(guò)一種限制性內(nèi)切酶(如BglIII)消化基因組DNA并電泳[21],利用亞硫酸氫鹽使DNA發(fā)生變性,未甲基化的胞嘧啶被轉(zhuǎn)化為尿嘧啶,并加上相應(yīng)銜接子。亞硫酸氫鹽轉(zhuǎn)化的DNA產(chǎn)生C-poor鏈不再互補(bǔ)。然后用轉(zhuǎn)化的銜接子序列特定引物來(lái)填充第二條鏈(G-poor),并進(jìn)行PCR擴(kuò)增。最后平端PCR產(chǎn)物在質(zhì)粒載體中被克隆并測(cè)序。通過(guò)搜索簡(jiǎn)化的BglIII片段數(shù)據(jù)庫(kù),RRBS文庫(kù)產(chǎn)生的序列被投影到基因組上。BglIII片段在瓊脂糖凝膠中已經(jīng)按尺寸選擇和亞硫酸氫鹽轉(zhuǎn)化。Meissner等[21]人通過(guò)檢測(cè)去甲基轉(zhuǎn)移酶前后小鼠胚胎干細(xì)胞甲基化譜,證實(shí)了RRBS技術(shù)的可行性。之后,科研者通過(guò)改用MspI 結(jié)合Illumina高通量測(cè)序技術(shù)和雙酶切(MspI,ApeKI)等手段優(yōu)化RRBS技術(shù)[22-24],進(jìn)一步提高了RRBS文庫(kù)建成率和檢測(cè)覆蓋率。然而分析RRBS測(cè)序數(shù)據(jù)仍是一項(xiàng)難題,需要專門的比對(duì)/繪圖程序。盡管已經(jīng)開(kāi)發(fā)了幾種特定的RRBS序列閱讀比對(duì)程序,如BSMAP/RRBSMAP[25-26]、BSSEEKER [27]、BISMARK[28],但仍然缺乏為研究人員提供高質(zhì)量和可分析數(shù)據(jù)的綜合解決方案。為了解決這一難題,Sun等[29]人開(kāi)發(fā)了SAAP-RRBS程序,該應(yīng)用程序集成了讀取質(zhì)量評(píng)估/清理、比對(duì)、甲基化數(shù)據(jù)提取、注釋、報(bào)告的可視化,并且可適用于不同BAM文件或單獨(dú)進(jìn)行注釋, 此外還可以輕松擴(kuò)展到分析全基因組亞硫酸氫鹽測(cè)序。在梅奧診所官方網(wǎng)站SAAP-RRBS已向科研工作者免費(fèi)開(kāi)放,這也將促使DNA甲基化得到更廣泛的研究。最新的報(bào)道表明,Wang等[30]人開(kāi)發(fā)的Q-RRBS能夠?yàn)閱渭?xì)胞或含有超痕量細(xì)胞樣品的DNA甲基化分析提供最佳策略。
3運(yùn)動(dòng)對(duì)DNA甲基化的影響
表觀遺傳機(jī)制涉及基因調(diào)控和不同疾病的發(fā)展。環(huán)境因素可能會(huì)改變表觀基因組,運(yùn)動(dòng)作為環(huán)境應(yīng)激因素與DNA甲基化模式和基因表達(dá)的變化有關(guān)。
3.1急性運(yùn)動(dòng)對(duì)DNA甲基化的影響
線粒體是骨骼肌的供能細(xì)胞器,因此對(duì)骨骼肌至關(guān)重要。骨骼肌線粒體功能適應(yīng)急性運(yùn)動(dòng)和耐力訓(xùn)練以及線粒體體積的增加[31]。在一項(xiàng)研究中[32],長(zhǎng)期久坐的年輕男女參與者暴露于急性運(yùn)動(dòng)中,以確定急性運(yùn)動(dòng)是否會(huì)改變骨骼肌中線粒體功能和能量消耗相關(guān)基因的DNA甲基化模式。進(jìn)行DNA甲基化檢測(cè)時(shí),調(diào)查的基因是PGC-1α、PDK4、MYOD1、MEF2A和CS。PGC-1α是骨骼肌中線粒體生物合成、脂肪酸氧化和胰島素抵抗的關(guān)鍵調(diào)節(jié)因子,并且在運(yùn)動(dòng)中被上調(diào)。PDK4是骨骼肌中與高血糖代謝相關(guān)的關(guān)鍵基因[33],在短期高強(qiáng)度和長(zhǎng)時(shí)間低強(qiáng)度運(yùn)動(dòng)后增加[34]。盡管肌肉特異性MYOD1對(duì)運(yùn)動(dòng)沒(méi)有明顯反應(yīng), mRNA表達(dá)沒(méi)有顯著變化,然而,PGC-1a和PDK4在運(yùn)動(dòng)后立即低甲基化,并在3小時(shí)后強(qiáng)烈轉(zhuǎn)錄[32]。 因此,高強(qiáng)度運(yùn)動(dòng)引起的DNA低甲基化和相應(yīng)基因轉(zhuǎn)錄時(shí)機(jī)似乎存在差異。另外一項(xiàng)研究表明,糖尿病患者骨骼肌休息時(shí)PDK4啟動(dòng)子具有較低的甲基化,PDK4 mRNA水平比非糖尿病患者高出70%,這可能是高胰島素血癥和胰島素抵抗的結(jié)果。而且,僅在健康參與者中,PDK4 mRNA表達(dá)響應(yīng)于慢性運(yùn)動(dòng)而增加,在糖尿病患者中不表達(dá)[35]。還應(yīng)該注意的是,骨骼肌中DNA以一種劑量反應(yīng)的方式進(jìn)行了低甲基化,小鼠肌肉在體外收縮45分鐘后也有類似的發(fā)現(xiàn),這兩種結(jié)果都暗示了急性運(yùn)動(dòng)通過(guò)DNA甲基化作用在表觀遺傳修飾中發(fā)揮作用[36]。
3.2慢性運(yùn)動(dòng)對(duì)DNA甲基化的影響
慢性運(yùn)動(dòng)訓(xùn)練后全基因組甲基化改變。Ronn等[37]人通過(guò)對(duì)健康志愿者和II型糖尿病患者運(yùn)動(dòng)干預(yù)前后脂肪組織DNA甲基化的監(jiān)測(cè)分析,已經(jīng)證實(shí)了慢性運(yùn)動(dòng)與DNA甲基化之間的關(guān)系。該研究中,兩組參與者的脂肪組織DNA甲基化都發(fā)生改變,更特別是在7 663個(gè)基因中,其中三分之一顯示出改變的mRNA表達(dá)水平,包括RALBP1、HDAC4和NCOR2。使用螢光素酶測(cè)定,顯示RALBP1啟動(dòng)子的體外DNA甲基化增加抑制了轉(zhuǎn)錄活性。此外,18例肥胖和21例II型糖尿病候選基因的CpG位點(diǎn)在脂肪組織DNA甲基化中存在差異。這些基因中有6個(gè)被觀察到mRNA表達(dá)同時(shí)變化。為了了解體內(nèi)脂肪組織中差異的DNA甲基化和mRNA表達(dá)的基因是否影響脂肪細(xì)胞代謝,在3T3-L1脂肪細(xì)胞中分別沉默Hdac4和Ncor2,導(dǎo)致胰島素刺激狀態(tài)下的脂肪生成增加。這表明,運(yùn)動(dòng)誘導(dǎo)人類脂肪組織中DNA甲基化的全基因組變化,潛在影響脂肪細(xì)胞代謝。慢性運(yùn)動(dòng)訓(xùn)練后基因特定性甲基化改變。一項(xiàng)隨機(jī)對(duì)照試驗(yàn)(RCT)和一項(xiàng)臨床研究調(diào)查了慢性運(yùn)動(dòng)訓(xùn)練對(duì)候選基因甲基化狀態(tài)的影響[38-39]。 RCT檢查了p15(細(xì)胞周期蛋白依賴性激酶抑制劑2B,一種腫瘤抑制基因)和ASC(在胞質(zhì)溶膠型炎性信號(hào)通路中含有介質(zhì)的PYD和CARD結(jié)構(gòu)域)的甲基化狀態(tài),慢性中等強(qiáng)度運(yùn)動(dòng)可以增加ASC甲基化,從而抑制過(guò)量的促炎細(xì)胞因子表達(dá)。運(yùn)動(dòng)誘導(dǎo)的DNA甲基化改變可能高度依賴于個(gè)體的基因型[40]。Alibegovic等[38]通過(guò)直接測(cè)序測(cè)量了20名年輕健康男性的干預(yù)后PGC-1a中骨骼肌甲基化的變化。連續(xù)9天的臥床休息使PGC-1a啟動(dòng)子中一個(gè)CpG位點(diǎn)的甲基化水平增加了39%,這與PGC-1a mRNA水平的降低相關(guān)。然后,在臥床休息期后進(jìn)行為期4周的再訓(xùn)練干預(yù),有改變甲基化可逆性的趨勢(shì),但并不顯著。此外,PGC-1α的甲基化水平不再與其mRNA表達(dá)顯著相關(guān)。
4總結(jié)
DNA甲基化是調(diào)節(jié)基因表達(dá)的關(guān)鍵表觀遺傳修飾之一,在印跡基因表達(dá)模式、X染色體失活、轉(zhuǎn)位因子抑制、生物發(fā)育和許多疾病機(jī)制中發(fā)揮重要作用。針對(duì)DNA甲基化檢測(cè)的RRBS技術(shù)也得到廣泛應(yīng)用。已經(jīng)證實(shí),急性或慢性運(yùn)動(dòng)對(duì)不同組織中DNA甲基化有顯著影響。在運(yùn)動(dòng)后發(fā)生甲基化水平顯著改變的基因,包括與能量代謝、肌肉再生和促炎癥相關(guān)的基因。深入研究運(yùn)動(dòng)訓(xùn)練與DNA甲基化的關(guān)系,將為運(yùn)動(dòng)治療II型糖尿病及肥胖提供更加系統(tǒng)的理論支持。然而,運(yùn)動(dòng)導(dǎo)致這些DNA甲基化改變的分子途徑仍然未知,探討其分子途徑也將是今后關(guān)注的重點(diǎn)。
參考文獻(xiàn):
[1]Eynon N., Ruiz J. R., Oliveira J.,et al.Genes and elite athletes: A roadmap for future research [J]. J Physiol,2011,589(Pt13):3063-3070.
[2]Bouchard C. Genomic predictors of trainability[J].Exp Physiol,2012,97(3):347-352.
[3]Ehlert T., Simon P., Moser D. A. Epigenetics in sports [J]. Sports Med,2013,43(2):93-110.
[4]Zhang B., Zhou Y.,Lin N.,et al.Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the m&m algorithm [J]. Genome Res,2013,23(9):1522-1540.
[5]Sanchis-Gomar F., Garcia-Gimenez J. L., Perez-Quilis C.,et al.Physical exercise as an epigenetic modulator: Eustress, the "positive stress" as an effector of gene expression [J].J Strength Cond Res,2012,26(12):3469-3472.
[6]Denham J., Marques F. Z.,O'Brien B. J.,et al.Exercise: Putting action into our epigenome [J].Sports Med,2014,44(2):189-209.
[7]Pareja-Galeano H., Sanchis-Gomar F., Garcia-Gimenez J. L. Physical exercise and epigenetic modulation: Elucidating intricate mechanisms[J].Sports Med,2014,44(4):429-436.
[8]Hotchkiss R. D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography [J]. J Biol Chem, 1948,175(1):315-332.
[9]Svedruzic Z. M.,Reich N.O.The mechanism of target base attack in DNA cytosine carbon 5 methylation [J].Biochemistry,2004,43(36):11460-01473.
[10]Yu N. K., Baek S. H., Kaang B. K. DNA methylation-mediated control of learning and memory [J].Mol Brain,2011(4):5.
[11]Bird A. DNA methylation patterns and epigenetic memory [J]. Genes Dev,2002,16(1):6-21.
[12]Bird A. P. Cpg-rich islands and the function of DNA methylation [J].Nature,1986,321(6067):209-213.
[13]Hendrich B., Tweedie S. The methyl-cpg binding domain and the evolving role of DNA methylation in animals [J].Trends Genet,2003,19(5):269-277.
[14]Meehan R., Antequera F.,Lewis J.,et al.A nuclear protein that binds preferentially to methylated DNA in vitro may play a role in the inaccessibility of methylated cpgs in mammalian nuclei [J]. Philos Trans R Soc Lond B Biol Sci,1990,326(1235):199-205.
[15]Stricker S. H., Gotz M. DNA-methylation: Master or slave of neural fate decisions? [J]. Front Neurosci,2018(12):5.
[16]Sadakierska-Chudy A., Kostrzewa R. M., Filip M. A comprehensive view of the epigenetic landscape part i: DNA methylation, passive and active DNA demethylation pathways and histone variants [J]. Neurotox Res,2015,27(1):84-97.
[17]Wu T. P., Wang T., Seetin M. G.,et al.DNA methylation on n(6)-adenine in mammalian embryonic stem cells[J].Nature,2016,532(7599):329-333.
[18]Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain [J].Science,2009,324(5929):929-930.
[19]Klose R. J., Bird A. P.Genomic DNA methylation: The mark and its mediators [J]. Trends Biochem Sci,2006,31(2):89-97.
[20]Hahn M. A., Li A. X., Wu X.,et al.Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by rrbs and tab-rrbs [J]. Methods Mol Biol, 2015(1238):273-287.
[21]Meissner A., Gnirke A., Bell G. W.,et al.Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis[J].Nucleic Acids Res,2005,33(18):5868-77.
[22]Smith Z. D., Gu H.,Bock C.,et al.High-throughput bisulfite sequencing in mammalian genomes [J].Methods,2009,48(3):226-32.
[23]Gu H.,Bock C.,Mikkelsen T. S.,et al.Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution [J]. Nat Methods,2010,7(2):133-136.
[24]Wang J., Xia Y., Li L.,et al.Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide cpg methylation profiling by reduced representation bisulfite sequencing[J].BMC Genomics,2013(14):11.
[25]Xi Y.,Li W.Bsmap: Whole genome bisulfite sequence mapping program [J].BMC Bioinformatics,2009(10):232.
[26]Xi Y., Bock C., Muller F.,et al. Rrbsmap: A fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing[J].Bioinformatics,2012,28(3):430-432.
[27]Krueger F., Andrews S. R. Bismark: A flexible aligner and methylation caller for bisulfite-seq applications[J].Bioinformatics,2011,27(11):1571-1572.
[28]Chen P. Y., Cokus S. J., Pellegrini M. Bs seeker: Precise mapping for bisulfite sequencing [J]. BMC Bioinformatics,2010(11):203.
[29]Sun Z., Baheti S., Middha S.,et al.Saap-rrbs: Streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing [J]. Bioinformatics, 2012, 28(16): 2180-2181.
[30]Wang K., Li X., Dong S.,et al.Q-rrbs: A quantitative reduced representation bisulfite sequencing method for single-cell methylome analyses [J]. Epigenetics, 2015, 10(9): 775-783.
[31]Bishop D. J., Thomas C., Moore-Morris T.,et al.Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats [J]. Am J Physiol Endocrinol Metab, 2010, 299(2): E225-233.
[32]Barres R., Yan J., Egan B.,et al.Acute exercise remodels promoter methylation in human skeletal muscle [J].Cell Metab,2012,15(3):405-411.
[33]Jeoung N. H., Harris R. A. Pyruvate dehydrogenase kinase-4 deficiency lowers blood glucose and improves glucose tolerance in diet-induced obese mice [J]. Am J Physiol Endocrinol Metab,2008,295(1):E46-54.
[34]Pilegaard H., Neufer P. D. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise[J].Proc Nutr Soc,2004,63(2):221-226.
[35]Kulkarni S. S.,Salehzadeh F., Fritz T.,et al. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus[J].Metabolism,2012,61(2):175-185.
[36]Santos L., Elliott-Sale K. J., Sale C. Exercise and bone health across the lifespan [J]. Biogerontology,2017,18(6):931-946.
[37]Ronn T.,Volkov P.,Davegardh C.,et al.A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue [J]. PLoS Genet,2013,9(6):e1003572.
[38]Alibegovic A. C., Sonne M. P., Hojbjerre L.,et al.Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men [J].Am J Physiol Endocrinol Metab,2010,299(5):E752-763.
[39]Bryan A.D.,Magnan R. E.,Hooper A. E.,et al.Physical activity and differential methylation of breast cancer genes assayed from saliva: A preliminary investigation [J]. Ann Behav Med,2013,45(1):89-98.
[40]Lott S. A., Burghardt P. R., Burghardt K. J.,et al.The influence of metabolic syndrome, physical activity and genotype on catechol-o-methyl transferase promoter-region methylation in schizophrenia [J]. Pharmacogenomics J,2013,13(3):264-271.第40卷第3期 Vol.40 No.3山 東 體 育 科 技Shandong Sports Science & Technology2018年6月June 2018