李開(kāi)云 陳功香 傅小蘭
(1濟(jì)南大學(xué)教育與心理科學(xué)學(xué)院,濟(jì)南 250022)
(2中國(guó)科學(xué)院心理研究所,北京 100101)
(3中國(guó)科學(xué)院大學(xué),北京 100049)
自閉癥譜系障礙(Autism spectrum disorder)是一種高發(fā)性的發(fā)展性神經(jīng)發(fā)育障礙,其核心癥狀表現(xiàn)為社會(huì)交往與交流障礙、興趣狹窄、行為刻板以及認(rèn)知功能障礙等特征(American Psychiatric Association,2013)。隨著對(duì)自閉癥研究的不斷深入,近些年心理學(xué)、神經(jīng)科學(xué)的諸多研究者開(kāi)始關(guān)注自閉癥者的視運(yùn)動(dòng)知覺(jué)(Visual motion perception)。視運(yùn)動(dòng)知覺(jué)是人腦對(duì)外界物體的運(yùn)動(dòng)特性的知覺(jué),是一項(xiàng)重要的信息加工能力,既與我們的日常生活和工作有密切關(guān)系,也對(duì)生命體的社會(huì)行為、適應(yīng)性行為及進(jìn)化發(fā)展具有重要意義(Abreu,Soares,de Schonen,&Happé,2016;Grossberg,2012;Hadad,Schwartz,Maurer,&Lewis,2015)。
目前研究發(fā)現(xiàn),自閉癥譜系障礙者檢測(cè)運(yùn)動(dòng)刺激的能力異于健康人,存在視覺(jué)運(yùn)動(dòng)知覺(jué)功能異?,F(xiàn)象,如協(xié)同性運(yùn)動(dòng)任務(wù)中協(xié)同性閾限顯著提高(Milne et al.,2002;Spencer et al.,2000a),二階運(yùn)動(dòng)和生物運(yùn)動(dòng)刺激辨別困難(Blake,Turner,Smoski,Pozdol,&Stone,2003;Freitag et al.,2008),對(duì)迅速變化的視覺(jué)事件加工存在困難(Greffou et al.,2012)。針對(duì)自閉癥者視運(yùn)動(dòng)知覺(jué)異常的現(xiàn)象,以往研究者提出了7種可能的解釋?zhuān)罕硞?cè)/M細(xì)胞通路特定假設(shè)(Dorsal/magnocellular pathway-specific hypothesis)、復(fù)雜性假設(shè)(Complexity-specific hypothesis)、神經(jīng)噪聲假設(shè)(Neural noise accounts)、經(jīng)驗(yàn)缺失假設(shè)(Flatter-prior hypothesis)、時(shí)空加工異常假設(shè)(Temporo-spatial processing disorders hypothesis)、極端男性腦理論(Extreme male brain theory)和社會(huì)腦假設(shè)(Social brain hypothesis)。但到目前為止,自閉癥者運(yùn)動(dòng)知覺(jué)功能異常尚缺乏一個(gè)統(tǒng)一準(zhǔn)確的、可驗(yàn)證的解釋,產(chǎn)生的具體原因還需要進(jìn)一步的探討。對(duì)自閉癥譜系障礙者如何加工處理視覺(jué)運(yùn)動(dòng)信息的梳理和總結(jié),不僅能夠進(jìn)一步加深我們對(duì)自閉癥者個(gè)體感知和解釋周?chē)澜绲睦斫?也將有助于我們進(jìn)一步豐富和拓展針對(duì)于自閉癥者的視覺(jué)康復(fù)技術(shù)及從業(yè)技能的訓(xùn)練。
目前自閉癥譜系障礙者視運(yùn)動(dòng)知覺(jué)的諸多研究比較一致的發(fā)現(xiàn):在運(yùn)動(dòng)信息比較復(fù)雜的任務(wù)中,特別是涉及運(yùn)動(dòng)信息整合(協(xié)同性運(yùn)動(dòng)、生物運(yùn)動(dòng))及運(yùn)動(dòng)控制的任務(wù)中,自閉癥者的運(yùn)動(dòng)知覺(jué)顯著差于健康控制組。但最近的幾項(xiàng)研究也發(fā)現(xiàn)自閉癥者運(yùn)動(dòng)信息的加工處理能力正常,甚至好于健康控制組被試(Chen et al.,2012;Foss-Feig,Cascio,Schauder,&Tadin,2012;Manning,Dakin,Tibber,Charman,&Pellicano,2014;Manning,Charman,&Pellicano,2015)。這種不一致的結(jié)果可能源自于不同研究者所選自閉癥群體的差異,如相比于低功能自閉癥患者和兒童自閉癥患者,高功能自閉癥患者和成年自閉癥患者可能發(fā)育了腦補(bǔ)償機(jī)制,從而在某些視運(yùn)動(dòng)知覺(jué)任務(wù)中沒(méi)有表現(xiàn)出明顯的外顯行為異常,但其視運(yùn)動(dòng)腦區(qū)活動(dòng)模式確實(shí)不同于健康個(gè)體;其次,不同研究者采用的運(yùn)動(dòng)刺激屬性和任務(wù)類(lèi)型不同,如協(xié)同性運(yùn)動(dòng)任務(wù)中,不同研究采用的協(xié)同運(yùn)動(dòng)一致性比例(100%或50%)和運(yùn)動(dòng)時(shí)間是不同的,而自閉癥患者因患病程度的不同可能會(huì)在某一特定協(xié)同運(yùn)動(dòng)一致性比例或運(yùn)動(dòng)時(shí)間的任務(wù)中表現(xiàn)出差異。但目前缺乏統(tǒng)合性的實(shí)驗(yàn)研究去探究?jī)烧咧g的規(guī)律關(guān)系。
當(dāng)個(gè)體在環(huán)境中運(yùn)動(dòng)時(shí),外界環(huán)境投射到視網(wǎng)膜上的圖像也相應(yīng)移動(dòng),這種由觀察者自身運(yùn)動(dòng)引起的視網(wǎng)膜圖像變化為光流(optical flow)(Gibson,1950)。光流信息加工是生物體判斷自身運(yùn)動(dòng)(self-motion)及識(shí)別環(huán)境變化所必須依賴(lài)的基本過(guò)程之一,是大腦視運(yùn)動(dòng)覺(jué)感知的一個(gè)重要方面。探討光流信息加工實(shí)驗(yàn)中,刺激是一個(gè)隨機(jī)點(diǎn)構(gòu)成的區(qū)域場(chǎng),通過(guò)計(jì)算機(jī)模擬或者讓被試坐在運(yùn)動(dòng)座椅上來(lái)模擬自身運(yùn)動(dòng)。模擬情形主要有垂直平面、地平面和三維的點(diǎn)云,要求被試根據(jù)所觀察到的視覺(jué)刺激,匯報(bào)自己在向左還是向右運(yùn)動(dòng)(綜述見(jiàn)張弢,李勝光,2011)。在無(wú)眼動(dòng)和頭動(dòng)參考的情況下,這些刺激足以引起健康個(gè)體很好的感知自身運(yùn)動(dòng)方向,自身運(yùn)動(dòng)方向判斷平均閾值可精確到 1~2度視角(Warren,Morris,&Kalish,1988)。
但自閉癥患者的表現(xiàn)卻并非如此。Gepner等(Gepner,Mestre,Masson,&de Schonen,1995;Gepner&Mestre,2002)首次發(fā)現(xiàn),相比于健康控制組,自閉癥兒童環(huán)境運(yùn)動(dòng)視知覺(jué)的姿勢(shì)反應(yīng)極為薄弱(postural hypo-reactivity),特別是在快速運(yùn)動(dòng)情境里。ERPs研究發(fā)現(xiàn),光流刺激誘發(fā)(圖1A)的自閉癥者的位于頭后部電極點(diǎn)的 N170潛伏期顯著長(zhǎng)于健康控制組,溯源定位該成分在視覺(jué)運(yùn)動(dòng)加工腦區(qū)(V5/MT),進(jìn)一步證明自閉癥者加工處理光流刺激能力受損(Yamasaki,Fujita,Kamio,&Tobimatsu,2011;Yamasaki et al.,2011)。對(duì)光流刺激的姿態(tài)響應(yīng)可能還需要視運(yùn)動(dòng)腦區(qū)的參與也需要?jiǎng)幼髯藨B(tài)的控制,但目前尚不能確定究竟是自閉癥者視覺(jué)運(yùn)動(dòng)功能異常還是動(dòng)作姿勢(shì)控制能力(motor control)異常或者兩者共同導(dǎo)致的身體姿態(tài)反應(yīng)異?,F(xiàn)象,如Molloy,Dietrich和Bhattacharya (2003)提出即使沒(méi)有運(yùn)動(dòng)信息,自閉癥者身體姿態(tài)的穩(wěn)定性也異于健康控制組被試。未來(lái)研究需排除動(dòng)作需求的干擾來(lái)進(jìn)一步考察自閉癥者視覺(jué)運(yùn)動(dòng)腦區(qū)在光流刺激知覺(jué)加工異常中的作用。
圖1 檢測(cè)自閉癥患者視運(yùn)動(dòng)知覺(jué)的運(yùn)動(dòng)刺激
物理運(yùn)動(dòng)刺激包括一階運(yùn)動(dòng)(first-order motion)和二階運(yùn)動(dòng)(second-order motion)。一階運(yùn)動(dòng)是基于亮度定義(luminance-defined)的物體(運(yùn)動(dòng)物體的亮度和背景不同)在位置上的變化。二階運(yùn)動(dòng)基于圖像的對(duì)比度、質(zhì)地、閃爍等非亮度的二階屬性定義的。Bertone,Mottron,Jelenic和Faubert (2003)發(fā)現(xiàn)在平移、放射狀和旋轉(zhuǎn)式的三類(lèi)一階運(yùn)動(dòng)(變化亮度)(見(jiàn)圖 1B)方向識(shí)別任務(wù)上自閉癥者表現(xiàn)正常,但平移、放射狀和旋轉(zhuǎn)式三類(lèi)二階運(yùn)動(dòng)(變化紋理)(見(jiàn)圖 1C)加工存在缺陷,自閉癥者需要更高地紋理對(duì)比度才能識(shí)別出二階運(yùn)動(dòng)方向。
協(xié)同性運(yùn)動(dòng)(coherent motion)指運(yùn)動(dòng)的點(diǎn)或客體之間是相互獨(dú)立的,沒(méi)有相同的運(yùn)動(dòng)規(guī)律(見(jiàn)圖 2A),但其中一定比例的點(diǎn)的運(yùn)動(dòng)存在格式塔原則中的“共同命運(yùn)”關(guān)系,有著相同的運(yùn)動(dòng)方向(Newsome &Paré,1988)。當(dāng)這種存在“共同命運(yùn)”的點(diǎn)占所有點(diǎn)的比例達(dá)到一定值,被試就會(huì)覺(jué)察到所有散點(diǎn)朝著某一個(gè)特定的方向運(yùn)動(dòng)?!肮餐\(yùn)”關(guān)系的點(diǎn)占全部散點(diǎn)的比例被稱(chēng)為協(xié)同性或協(xié)同性水平,如 100個(gè)散點(diǎn)中,所有點(diǎn)的運(yùn)動(dòng)方向都是完全隨機(jī)定義的,則協(xié)同性水平為 0;其中50個(gè)點(diǎn)的運(yùn)動(dòng)方向都是朝某一方向,則協(xié)同性水平為 50%。通常要求被試按鍵判斷點(diǎn)刺激的運(yùn)動(dòng)方向(向左還是向右)來(lái)測(cè)試被試對(duì)協(xié)同性水平的感受力。感受力高的被試,協(xié)同性閾限低,即當(dāng)“共同命運(yùn)”的點(diǎn)較少時(shí)也能判斷出運(yùn)動(dòng)方向;閾限較高的被試,則只能覺(jué)察出協(xié)同性水平很高的刺激(胡奐,2013)。
圖2 協(xié)同性運(yùn)動(dòng)刺激和生物運(yùn)動(dòng)刺激(圖片來(lái)自Milne et al.,2005)。
研究發(fā)現(xiàn),相比于健康控制組,自閉癥者的協(xié)同性閾限更高,即只能辨別出協(xié)同性水平較高的點(diǎn)刺激運(yùn)動(dòng)方向(Annaz et al.,2010;Koldewyn,Whitney,&Rivera,2011;Milne et al.,2002;Pellicano,Gibson,Maybery,Durkin,&Badcock,2005;Spencer et al.,2000b)。如 Spencer等(2000a)、Milne等(2002)和 Pellicano等(2005)發(fā)現(xiàn)健康控制組被試能夠辨別的協(xié)同性水平是約15%~17%的運(yùn)動(dòng)點(diǎn)方向,而自閉癥兒童則需要協(xié)同性水平達(dá)到約 25%時(shí)才能辨別出運(yùn)動(dòng)點(diǎn)方向,相比于健康控制組兒童的協(xié)同性閾限平均高出了約 45%。此外,健康控制組的協(xié)同性閾限隨著年齡的增長(zhǎng)而逐漸降低,在10~11歲時(shí)達(dá)到成人水平;但盡管自閉癥者兒童的協(xié)同性閾限也隨著年齡的增長(zhǎng)有降低趨勢(shì),但均顯著高于其同年齡控制組,11歲時(shí)沒(méi)有達(dá)到成人水平(Spencer et al.,2000a)。自閉癥者的協(xié)同性閾限高低也與自閉癥嚴(yán)重程度成正相關(guān),即自閉癥程度越高,協(xié)同性閾限越高(Grinter et al.,2009)。需要注意的是,目前也有幾項(xiàng)行為研究并沒(méi)有發(fā)現(xiàn)自閉癥者在協(xié)同性運(yùn)動(dòng)任務(wù)中行為表現(xiàn)異常(Jones et al.,2011;Koldewyn et al.,2011;Price,Shiffrar,&Kerns,2012)。經(jīng)過(guò)分析發(fā)現(xiàn),研究結(jié)果存在分歧的原因主要表現(xiàn)在兩個(gè)方面:一方面,源自于一些研究者在選擇自閉癥個(gè)體以及相對(duì)應(yīng)的控制組時(shí)沒(méi)有在無(wú)關(guān)變量(特別是智力和年齡)上進(jìn)行很好的匹配控制。如 Takarae,Luna,Minshew和Sweeney (2008)發(fā)現(xiàn),只有那些言語(yǔ)能力發(fā)展滯后的自閉癥患者協(xié)同性閾限顯著高于健康控制組,在此研究中自閉癥患者與健康控制組的年齡上是沒(méi)有完全匹配的。另一方面,源自于不同研究者采用的協(xié)同性運(yùn)動(dòng)刺激屬性(刺激呈現(xiàn)時(shí)間、視野位置、運(yùn)動(dòng)速度等)是不同(Manning,Charman,&Pellicano,2013;Manning,Tibber,Charman,Dakin,&Pellicano,2015;Ronconi et al.,2012),如Robertson,Martin,Baker和 Baron-Cohen (2012)發(fā)現(xiàn)在刺激呈現(xiàn)較短時(shí)間如200 ms時(shí),自閉癥者協(xié)同性閾限顯著高于健康控制組,而刺激呈現(xiàn)較長(zhǎng)時(shí)間如400 ms、600 ms或1500 ms時(shí),自閉癥與健康控制組的表現(xiàn)相當(dāng)??赡茏蚤]癥患者的患病程度與刺激類(lèi)型和刺激呈現(xiàn)時(shí)間是相關(guān)的,如自閉癥程度嚴(yán)重者在刺激呈現(xiàn)較長(zhǎng)時(shí)間時(shí)也存在缺陷,但自閉癥程度較輕者卻沒(méi)有表現(xiàn)出這種缺陷,以往研究并沒(méi)有對(duì)患病程度進(jìn)行相應(yīng)的嚴(yán)格控制。自閉癥患病程度、刺激特征(呈現(xiàn)時(shí)間、類(lèi)型等)對(duì)自閉癥患者協(xié)同性運(yùn)動(dòng)知覺(jué)能力的貢獻(xiàn)程度需要進(jìn)一步的分析。盡管一些自閉癥患者對(duì)協(xié)同性運(yùn)動(dòng)刺激的外在行為反應(yīng)上與控制組相比不存在差異,但fMRI和EEG的研究表明,在神經(jīng)激活模式上存在異常(Brieber et al.,2010;Greimel et al.,2013;Robertson et al.,2014;Takarae,Luna,Minshew,&Sweeney,2014)。目前,神經(jīng)科學(xué)的研究已經(jīng)比較明確的發(fā)現(xiàn)自閉癥患者加工協(xié)同性運(yùn)動(dòng)刺激時(shí)在神經(jīng)活動(dòng)上存在異常,未來(lái)研究需要進(jìn)一步探討協(xié)同性運(yùn)動(dòng)加工的外在行為反應(yīng)與神經(jīng)生理反應(yīng)上的對(duì)應(yīng)關(guān)系。
人類(lèi)知覺(jué)生物運(yùn)動(dòng)的能力是天生的、穩(wěn)定的。研究發(fā)現(xiàn),健康個(gè)體能夠快速準(zhǔn)確加工光點(diǎn)軌跡演示人類(lèi)運(yùn)動(dòng)的動(dòng)畫(huà)(見(jiàn)圖 2B),能從中看出步行者的情緒狀態(tài)、性別、身份、年齡及社會(huì)支配地位等,3~6個(gè)月大的嬰兒已經(jīng)表現(xiàn)出對(duì)生物運(yùn)動(dòng)的優(yōu)先注意(綜述見(jiàn)蔣毅,王莉,2011;王增建等,2014)。以往多數(shù)研究也采用生物運(yùn)動(dòng)光點(diǎn)序列作為實(shí)驗(yàn)刺激材料探究了自閉癥患者的生物運(yùn)動(dòng)知覺(jué)能力。以往研究比較一致的發(fā)現(xiàn),自閉癥患者從生物運(yùn)動(dòng) PLDs提取加工高水平信息如情緒信息或意圖信息時(shí)的能力受損,表現(xiàn)較差(Nackaerts et al.,2012;Swettenham et al.,2013;Wright,Kelley,&Poulin-Dubois,2014),生物運(yùn)動(dòng)刺激的適應(yīng)效應(yīng)也顯著弱于健康控制組(van Boxtel,Dapretto,&Lu,2016)。
但自閉癥患者加工生物運(yùn)動(dòng)較低水平信息的能力是否受損,仍存在爭(zhēng)議。這些研究要求被試從不包含情緒信息的中性生物運(yùn)動(dòng) PLDs中做一些簡(jiǎn)單的動(dòng)作識(shí)別(如噪音信號(hào)中辨別是否包含某一動(dòng)作)或動(dòng)作分類(lèi)任務(wù)(如是走還是跑)。一些研究者發(fā)現(xiàn)自閉癥患者的生物運(yùn)動(dòng)知覺(jué)受損(Annaz,Campbell,Coleman,Milne,&Swettenham,2012;Falck-Ytter,Rehnberg,&B?lte,2013;Klin,Lin,Gorrindo,Ramsay,&Jones,2009;Wang,Chien,Hu,Chen,&Chen,2015),如自閉癥患者加工生物運(yùn)動(dòng)的缺陷在生命早期就已出現(xiàn),患有自閉癥的2歲幼兒及 3~7歲兒童沒(méi)有像正??刂平M一樣表現(xiàn)出對(duì)生物運(yùn)動(dòng)的知覺(jué)偏好。正常兒童的生物運(yùn)動(dòng)識(shí)別能力敏感性隨著年齡增長(zhǎng)而增長(zhǎng),但同齡自閉癥患者的發(fā)展遲緩(Annaz et al.,2010)。也有一些研究提出自閉癥患者的生物運(yùn)動(dòng)知覺(jué)本身是完好的(Jones et al.,2011;Murphy,Brady,Fitzgerald,&Troje,2009;Rutherford &Troje,2011;Saygin,Cook,&Blakemore,2010;Wright,Kelley,&Poulin-Dubois,2016),如Saygin等(2010)發(fā)現(xiàn)測(cè)量生物運(yùn)動(dòng)心理生理閾限(psychophysical thresholds)時(shí),自閉癥患者與健康人表現(xiàn)一樣好;成年自閉癥患者對(duì)生物運(yùn)動(dòng)的敏感性及判斷生物運(yùn)動(dòng)方向的行為反應(yīng)能力與健康被試不存在顯著差異。我們分析發(fā)現(xiàn),探究自閉癥患者生物運(yùn)動(dòng)較低水平信息知覺(jué)能力研究結(jié)果不一致的原因表現(xiàn)在三個(gè)方面:首先,不同研究中自閉癥患者的年齡(幼兒或成人)、智商和患病程度不同(Kaiser &Pelphrey,2012;Murphy et al.,2009),如自閉癥成年患者在動(dòng)作辨別或識(shí)別任務(wù)上并沒(méi)有出現(xiàn)受損現(xiàn)象,只出現(xiàn)在兒童時(shí)期,這可能是由于自閉癥患者隨著年齡的增長(zhǎng)發(fā)展出了補(bǔ)償機(jī)制;自閉癥患者中智商較高者的識(shí)別生物運(yùn)動(dòng)的能力高于智商較低者;高功能自閉癥患者可能發(fā)展出了補(bǔ)償機(jī)制,從而表現(xiàn)出了與健康成人一樣好的表現(xiàn),而低功能自閉癥者則存在識(shí)別缺陷。其次,不同研究選擇的生物運(yùn)動(dòng)材料存在差異,生物運(yùn)動(dòng)知覺(jué)并非單一現(xiàn)象,而是一種基于整體結(jié)構(gòu)和基于局部運(yùn)動(dòng)加工的多水平現(xiàn)象。一些研究采用的任務(wù)考察的是自閉癥患者生物運(yùn)動(dòng)知覺(jué)的整體結(jié)構(gòu)知覺(jué)水平,而另一些研究采用的任務(wù)則是考察自閉癥患者生物運(yùn)動(dòng)知覺(jué)的局部結(jié)構(gòu)知覺(jué)水平。此外,不同研究呈現(xiàn)PLDs的時(shí)間長(zhǎng)度不同,呈現(xiàn)生物運(yùn)動(dòng)任務(wù)時(shí)間更長(zhǎng)時(shí)自閉癥患者的識(shí)別更好(Simmons et al.,2009)。第三,生物運(yùn)動(dòng)知覺(jué)較強(qiáng)的依賴(lài)于空間屬性(給定的動(dòng)作類(lèi)型)和時(shí)間屬性(最近見(jiàn)過(guò)的動(dòng)作類(lèi)型),而以往要求自閉癥患者識(shí)別或辨別動(dòng)作的研究卻忽略了這兩類(lèi)信息的差別。盡管一些行為實(shí)驗(yàn)研究沒(méi)有發(fā)現(xiàn)自閉癥患者出現(xiàn)生物運(yùn)動(dòng)知覺(jué)能力受損,但腦成像研究發(fā)現(xiàn)自閉癥患者運(yùn)動(dòng)知覺(jué)加工腦區(qū)內(nèi)側(cè)顳葉(MT/V5)的激活水平顯著低于控制組(Herrington et al.,2007);成年自閉癥患者使用替代性的腦網(wǎng)絡(luò)即運(yùn)動(dòng)敏感區(qū)域和運(yùn)動(dòng)選擇區(qū)域來(lái)整合形狀和運(yùn)動(dòng)信息,而健康成年人使用單一的顳?頂連接網(wǎng)絡(luò)(Freitag et al.,2008;Mckay et al.,2012)。因此,自閉癥患者的生物運(yùn)動(dòng)知覺(jué)能力可能確實(shí)不同于健康個(gè)體,只是源自于一些補(bǔ)償機(jī)制的發(fā)展使得外顯行為沒(méi)有表現(xiàn)出缺陷。
運(yùn)動(dòng)知覺(jué)既依賴(lài)于對(duì)物體運(yùn)動(dòng)方向的知覺(jué),還直接依賴(lài)于對(duì)物體運(yùn)行速度的知覺(jué)。盡管研究者對(duì)自閉癥者運(yùn)動(dòng)速度知覺(jué)的研究較少,但目前有些證據(jù)表明自閉癥患者運(yùn)動(dòng)速度加工存在異常。對(duì)一些自閉癥者的自傳體回憶研究表明,自閉癥者會(huì)覺(jué)得物體“運(yùn)動(dòng)太快了” (Mikkelsen,1996)。實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)以較慢動(dòng)態(tài)速度呈現(xiàn)面部表情時(shí),自閉癥者能夠更好的識(shí)別出面部表情類(lèi)型(Gepner,Deruelle,&Grynfeltt,2001);12~15歲的自閉癥少年在應(yīng)對(duì)高振蕩頻率的虛擬現(xiàn)實(shí)中的運(yùn)動(dòng)時(shí)會(huì)改變自己常用的穩(wěn)定姿態(tài)(Greffou et al.,2012);Chen等(2012)要求 13~18歲的自閉癥少年和健康控制組報(bào)告先后呈現(xiàn)的兩個(gè)隨機(jī)運(yùn)動(dòng)的點(diǎn)模式中哪個(gè)點(diǎn)模式運(yùn)動(dòng)的更快。結(jié)果發(fā)現(xiàn),當(dāng)兩個(gè)隨機(jī)點(diǎn)運(yùn)動(dòng)模式間隔時(shí)間較短,為500 ms時(shí),兩組被試之間的辨別能力不存在差異;但當(dāng)間隔時(shí)間較長(zhǎng)為3000 ms時(shí),自閉癥少年具有更高的辨別閾限。許多自閉癥成年對(duì)迅速變化的視覺(jué)事件加工存在困難,但他們會(huì)采用一些補(bǔ)償措施以減低視覺(jué)事件的速度,比如會(huì)不停地迅速眨眼??焖僖?動(dòng)缺陷是自閉癥個(gè)體神經(jīng)心理癥狀之一,并導(dǎo)致自閉癥個(gè)體在社交互動(dòng)方面出現(xiàn)缺陷(Abreu et al.,2016)。未來(lái)還需要更多研究去探討自閉癥患者對(duì)物體和自身運(yùn)動(dòng)速度進(jìn)行知覺(jué)時(shí)的認(rèn)知加工過(guò)程和相應(yīng)的神經(jīng)生理機(jī)制。
日常行為觀察(如視頻記錄分析)和父母主觀報(bào)告發(fā)現(xiàn),日常生活中,許多自閉癥患兒喜歡反復(fù)開(kāi)關(guān)燈,對(duì)連續(xù)閃爍的燈光具有特殊興趣;喜歡重復(fù)看電視廣告,愛(ài)看天氣預(yù)報(bào),對(duì)健康兒童喜歡的電視節(jié)目不感興趣,表明患兒僅對(duì)于連續(xù)變化的電視畫(huà)面感興趣,不關(guān)心電視節(jié)目的整體內(nèi)容;強(qiáng)烈的迷戀能動(dòng)的物品,比如鐘表的指針、風(fēng)扇燈或旋轉(zhuǎn)的木棍等(Kirby,Boyd,Williams,Faldowski,&Baranek,2017)。自閉癥患者的上述行為是重復(fù)刻板行為缺陷的表現(xiàn)之一,屬于高水平的重復(fù)刻板行為缺陷或者對(duì)一致性的堅(jiān)持 (Bishop et al.,2013;Lewis &Bodfish,2015)。導(dǎo)致自閉癥患者出現(xiàn)這些行為可能是源自于逃避、注意狹窄、神經(jīng)活動(dòng)喚起、感覺(jué)增強(qiáng)或者是緩解壓力等,如對(duì)感覺(jué)刺激引起的神經(jīng)活動(dòng)喚起過(guò)度而導(dǎo)致了過(guò)度行為反應(yīng),也可能與獎(jiǎng)勵(lì)神經(jīng)中樞的激活及愉悅反應(yīng)之間存在相關(guān)性(Traynor &Hall,2015)。目前,自閉癥患者對(duì)物體重復(fù)運(yùn)動(dòng)的過(guò)度癡迷的現(xiàn)象多是通過(guò)觀察法和父母主觀報(bào)告法,這兩種方法能夠發(fā)現(xiàn)存在的現(xiàn)象,但無(wú)法深入探究導(dǎo)致自閉癥患者對(duì)重復(fù)運(yùn)動(dòng)刺激過(guò)度偏好的機(jī)制。因此,采用嚴(yán)謹(jǐn)?shù)膶?shí)驗(yàn)室研究是理清自閉癥患者視運(yùn)動(dòng)知覺(jué)障礙與外在異常行為反應(yīng)之間關(guān)系的必然途徑。
針對(duì)自閉癥運(yùn)動(dòng)知覺(jué)異常的現(xiàn)象,以往研究者從不同角度提出了七個(gè)假設(shè)進(jìn)行解釋。早期研究主要用視覺(jué)通路特定假設(shè)和復(fù)雜性或整合特定假設(shè)來(lái)解釋自閉癥患者視運(yùn)動(dòng)知覺(jué)受損現(xiàn)象,特別是該理論能夠很好的解釋自閉癥患者在二階運(yùn)動(dòng)和協(xié)同性運(yùn)動(dòng)任務(wù)中表現(xiàn)較差的現(xiàn)象,較多實(shí)驗(yàn)證據(jù)證明了這兩個(gè)假設(shè)的解釋力度。神經(jīng)噪聲觀點(diǎn)源自于近些年神經(jīng)影像學(xué)的發(fā)展,是近幾年研究者解釋自閉癥患者視運(yùn)動(dòng)知覺(jué)受損的常用理論,從局部神經(jīng)網(wǎng)絡(luò)和全局神經(jīng)網(wǎng)絡(luò)的角度,分別解釋了自閉癥患者出現(xiàn)視運(yùn)動(dòng)知覺(jué)缺陷的原因,相比于視覺(jué)通路特定假設(shè)和復(fù)雜性或整合特定假設(shè),更加全面深入。經(jīng)驗(yàn)缺失假設(shè)是源自于貝葉斯模型在自閉癥研究中的擴(kuò)展,該假設(shè)尚無(wú)法通過(guò)實(shí)驗(yàn)直接證明其解釋自閉癥患者出現(xiàn)的視運(yùn)動(dòng)知覺(jué)受損現(xiàn)象的有效性和可靠性。時(shí)空加工異常假設(shè)只能解釋自閉癥患者加工快速或高速運(yùn)動(dòng)刺激能力缺損的現(xiàn)象。背側(cè)/大細(xì)胞視覺(jué)通路功能的異常假設(shè)和時(shí)空處理異常假設(shè)不能解釋少數(shù)自閉癥者運(yùn)動(dòng)知覺(jué)正?;蛘邔?duì)運(yùn)動(dòng)信息敏感性提高的研究發(fā)現(xiàn)(Foss-Feig,Tadin,Schauder,&Cascio,2013;Jones et al.,2011)。極端男性腦理論是一個(gè)應(yīng)用比較廣泛的用來(lái)解釋自閉癥患者各類(lèi)異于健康人行為的理論,目前用極端男性腦理論去解釋自閉癥者出現(xiàn)視運(yùn)動(dòng)知覺(jué)異常尚缺少可靠的測(cè)量指標(biāo)。社會(huì)腦假說(shuō)比較適用于解釋自閉癥患者出現(xiàn)生物運(yùn)動(dòng)知覺(jué)能力受損的現(xiàn)象,對(duì)其他運(yùn)動(dòng)形式的受損現(xiàn)象解釋力度較低。到目前為止,自閉癥者運(yùn)動(dòng)知覺(jué)功能異?,F(xiàn)象(知覺(jué)能力提升或下降)尚缺乏一個(gè)統(tǒng)一準(zhǔn)確的、可驗(yàn)證的解釋。
健康個(gè)體從外界接收的視覺(jué)信息由視網(wǎng)膜輸入,經(jīng)過(guò)丘腦的皮層下視覺(jué)核團(tuán),到達(dá)視覺(jué)皮層(Merigan &Maunsell,1993;回佳菡,施立楠,張朋,何生,2016)。外側(cè)膝狀體(LGN)接受視網(wǎng)膜的輸入,將視覺(jué)信息初步加工后輸出到初級(jí)視覺(jué)皮層。外側(cè)膝狀體的細(xì)胞主要分為六層,其中靠下、靠?jī)?nèi)的兩層為大細(xì)胞(magnocellular,M)層,靠上、靠外的四層為小細(xì)胞(parvocellular,P)層。大、小細(xì)胞層是視覺(jué)系統(tǒng)并行存在的大細(xì)胞通路和小細(xì)胞通路的重要組成部分。大細(xì)胞通路主要處理低空間頻率、高時(shí)間頻率、低對(duì)比度的視覺(jué)信息,如模糊輪廓、快速運(yùn)動(dòng)的刺激;小細(xì)胞通路主要處理高空間頻率、低時(shí)間頻率、高對(duì)比度的視覺(jué)信息,如物體的細(xì)節(jié)和顏色。當(dāng)神經(jīng)纖維離開(kāi)外側(cè)膝狀體向皮層傳導(dǎo)時(shí),大小細(xì)胞通路繼續(xù)相對(duì)獨(dú)立的向高級(jí)皮層傳導(dǎo)至相對(duì)應(yīng)的優(yōu)勢(shì)皮層通路:背側(cè)通路(the dorsal pathway)和腹側(cè)通路(the ventral pathway)。背側(cè)通路沿著枕頂葉分布,從V1、V2、V3區(qū)經(jīng)內(nèi)側(cè)顳葉(middle/medial temporal,MT)及其附屬部分(如顳上皮層區(qū),MST)投射至頂葉,其功能是負(fù)責(zé)運(yùn)動(dòng)信息(方向、速度、空間位置)加工。腹側(cè)通路沿著大腦皮層的枕顳葉分布,從枕葉的初級(jí)視皮層(V1)區(qū)、次級(jí)視皮層區(qū)(V2、V3)經(jīng)高級(jí)視皮層(V4)區(qū)投射至顳下皮質(zhì)(inferior temporal cortex,IT),功能是對(duì)物體(顏色和形狀)進(jìn)行識(shí)別。目前認(rèn)為背側(cè)視覺(jué)通路多與大細(xì)胞通路相關(guān),而腹側(cè)通路則多與小細(xì)胞通路相關(guān)。
早期研究者提出自閉癥者出現(xiàn)的運(yùn)動(dòng)知覺(jué)功能異常是由于背側(cè)通路加工流的障礙導(dǎo)致了外顯的運(yùn)動(dòng)知覺(jué)障礙,自閉癥者對(duì)任何運(yùn)動(dòng)刺激的知覺(jué)閾限顯著高于健康個(gè)體,即存在一般性的或普遍性的運(yùn)動(dòng)知覺(jué)功能異常(Milne et al.,2002;Spencer et al.,2000b;Spencer &O'Brien,2006;Tsermentseli,O’Brien,&Spencer,2008)。這種觀點(diǎn)是研究者基于自閉癥者在背側(cè)通路負(fù)責(zé)加工處理的任務(wù)(如協(xié)同性運(yùn)動(dòng))中表現(xiàn)異常而腹側(cè)通路負(fù)責(zé)加工處理的任務(wù)中(如形狀一致性任務(wù))表現(xiàn)正常而提出的。fMRI的研究也確實(shí)發(fā)現(xiàn)自閉癥者被動(dòng)觀看運(yùn)動(dòng)光柵或協(xié)同性運(yùn)動(dòng)刺激時(shí),運(yùn)動(dòng)腦區(qū) MT/MST(V5)的激活異常(激活增強(qiáng)但迅速減弱)(Brieber et al.,2010;Takarae et al.,2014)。但也有研究者提出自閉癥者受損的低水平M細(xì)胞通路而不是高水平的背側(cè)通路導(dǎo)致自閉癥者表現(xiàn)出運(yùn)動(dòng)知覺(jué)功能異常(e.g.,Koh,Milne,&Dobkins,2010;Zisman,2013)。如 Koh等(2010)對(duì)比了自閉癥者、自閉癥者未患病親屬及健康控制組對(duì)亮度運(yùn)動(dòng)光柵刺激(M 通路處理)和彩色運(yùn)動(dòng)光柵刺激(P通路處理)的運(yùn)動(dòng)檢測(cè)和運(yùn)動(dòng)方向辨別能力,發(fā)現(xiàn)自閉癥者和自閉癥者未患病親屬在運(yùn)動(dòng)方向辨別任務(wù)中的亮度對(duì)比敏感度(luminance contrast sensitivity)顯著低于健康控制組,表明M通路受損是自閉癥障礙的內(nèi)表型癥狀。Greenaway,Davis和Plaisted-Grant (2013)則明確發(fā)現(xiàn)自閉癥者運(yùn)動(dòng)知覺(jué)功能異常源自于自閉癥者視覺(jué)大細(xì)胞通路加工的缺陷。他們采用經(jīng)典的“steady-pedestal”模式(反映大細(xì)胞活動(dòng))和“pulsed-pedestal”模式(反映小細(xì)胞活動(dòng))任務(wù)測(cè)查了自閉癥兒童的亮度對(duì)比敏感度,發(fā)現(xiàn)在“steady-pedestal”模式任務(wù)中自閉癥兒童的亮度對(duì)比敏感度提高,而在“pulsed-pedestal”模式任務(wù)中對(duì)比度敏感度與健康控制組相當(dāng)。
Yamasaki等(2011)將背側(cè)通路和M系統(tǒng)通路對(duì)自閉癥者視運(yùn)動(dòng)知覺(jué)異?,F(xiàn)象的解釋概括為“通路特定假設(shè)” (pathway-specific hypothesis)。但值得注意的是,這種簡(jiǎn)單的大小細(xì)胞或背腹側(cè)通路的劃分可能不能夠解釋自閉癥者在各項(xiàng)運(yùn)動(dòng)知覺(jué)任務(wù)中的表現(xiàn)。許多視覺(jué)研究指出大小細(xì)胞或背腹側(cè)通路這種涇渭分明的視覺(jué)通路劃分過(guò)于簡(jiǎn)單化,背腹側(cè)通路之間存在功能上的交互或整合(Mather,Pavan,Bellacosa,Campana,&Casco,2012;Swienton &Thomas,2014)。健康人視覺(jué)研究尚存在“視覺(jué)腹側(cè)通路與背側(cè)通路功能的分離與整合”的爭(zhēng)論,因此自閉癥者檢測(cè)運(yùn)動(dòng)刺激異常是否源自于視覺(jué)通路功能的異常還需要依賴(lài)于對(duì)健康人視覺(jué)功能的精準(zhǔn)研究。
Bertone和他的團(tuán)隊(duì)發(fā)現(xiàn)自閉癥個(gè)體對(duì)信息流大和復(fù)雜的二階運(yùn)動(dòng)刺激存在加工缺陷,對(duì)簡(jiǎn)單的一階運(yùn)動(dòng)刺激加工正常。由此,提出自閉癥者運(yùn)動(dòng)知覺(jué)異常并非源自于其視覺(jué)通路異常,而是源自于自閉癥個(gè)體知覺(jué)水平上整合復(fù)雜信息機(jī)制的有效性降低,這種降低即可能是高級(jí)皮層區(qū)神經(jīng)整合處理功能的異常所導(dǎo)致的,但也可能是自閉癥者存在廣泛的知覺(jué)信息整合加工異常,與視覺(jué)通路系統(tǒng)無(wú)關(guān),提出“復(fù)雜性或整合特定”假設(shè)(Bertone et al.,2003;Bertone &Faubert,2006;Bertone,Mottron,&Faubert,2005)。一些自閉癥者在那些不需要整合局部運(yùn)動(dòng)線(xiàn)索的任務(wù)中表現(xiàn)正?;蚋?Pellicano &Gibson,2008)。P400成分反映了知覺(jué)信息整合過(guò)程,Greimel等(2013)發(fā)現(xiàn)協(xié)同性運(yùn)動(dòng)刺激誘發(fā)了健康控制組被試的P400,但沒(méi)有發(fā)現(xiàn)P400出現(xiàn)在自閉癥組被試,支持了自閉癥者運(yùn)動(dòng)刺激加工異常源自于知覺(jué)信息整合能力受損。
“復(fù)雜或整合特定”假設(shè)與自閉癥譜系障礙的弱中央統(tǒng)合理論(Weak Central Coherence account,WCC)的觀點(diǎn)較為一致。自閉癥個(gè)體相比于健康個(gè)體具有極為顯著的零碎加工風(fēng)格,其可能無(wú)法像正常個(gè)體那樣對(duì)信息加工進(jìn)行中央統(tǒng)合,主要表現(xiàn)在將復(fù)雜刺激對(duì)象知覺(jué)為一些毫不相干的部分,而不是一個(gè)有意義和連貫的總體,出現(xiàn)“弱中央統(tǒng)合” (Frith &Happé,1994)。值得注意的是,Frith和Happé也提出弱中央統(tǒng)合是一種知覺(jué)風(fēng)格而非缺陷,自閉癥群體的弱中央統(tǒng)合只是反映了一種正常的個(gè)體差異,在正常健康人群中也存在著中央統(tǒng)合的個(gè)體差異。因此,自閉癥者在復(fù)雜視運(yùn)動(dòng)加工任務(wù)中表現(xiàn)異常究竟是由于自閉癥者將局部運(yùn)動(dòng)元素整合為整體信號(hào)的能力存在缺陷還是只是自閉癥者“弱中央統(tǒng)合(weak central coherence)”的個(gè)體認(rèn)知風(fēng)格差異,還有待進(jìn)一步區(qū)別。
神經(jīng)噪聲(neural noise)通常指具有不確定起源和復(fù)雜時(shí)空結(jié)構(gòu)的神經(jīng)反應(yīng)的變化,是自發(fā)的神經(jīng)活動(dòng)的產(chǎn)物(Stein,Gossen &Jones,2005)。Simmons等(2009)提出相比于健康成長(zhǎng)者,自閉癥者具有更高的內(nèi)部神經(jīng)噪聲水平(即增強(qiáng)的神經(jīng)信號(hào)變異性)從而導(dǎo)致自閉癥者視覺(jué)信息處理和加工能力受損。神經(jīng)影像學(xué)的研究也確實(shí)發(fā)現(xiàn)自閉癥者大腦自發(fā)神經(jīng)活動(dòng)的變異也比健康控制組更大(Dinstein et al.,2012;Milne,2011;Pérez Velázquez &Galán,2013;Xiang et al.,2015),這能夠在一定程度上解釋自閉癥者在多數(shù)運(yùn)動(dòng)知覺(jué)任務(wù)中知覺(jué)閾限提高的現(xiàn)象。但最近,Greenaway等(2013)和 Davis,Plaisted-Grant (2014)卻提出自閉癥者處理視覺(jué)信息的異??赡苁窃醋杂谙陆档纳窠?jīng)噪聲水平而不是增強(qiáng)的噪聲水平。Davis和Plaisted-Grant (2014)區(qū)分了局部小規(guī)模網(wǎng)絡(luò)和整體腦網(wǎng)絡(luò)的神經(jīng)噪音,提出自閉癥者小規(guī)模網(wǎng)絡(luò)內(nèi)的神經(jīng)噪音模式是下降的,從而使得自閉癥者整體腦網(wǎng)絡(luò)的神經(jīng)噪音水平增強(qiáng)。因此,自閉癥者表現(xiàn)出的運(yùn)動(dòng)知覺(jué)閾限異常的真正原因是小規(guī)模網(wǎng)絡(luò)內(nèi)的神經(jīng)噪音水平下降。目前,尚缺乏充分的實(shí)驗(yàn)證據(jù)證明神經(jīng)噪音水平的降低或增強(qiáng)在自閉癥者異常的運(yùn)動(dòng)知覺(jué)中的作用,且還需要進(jìn)一步區(qū)分內(nèi)部神經(jīng)噪音降低或增強(qiáng)是源自于自閉癥者的過(guò)度聯(lián)結(jié)的神經(jīng)網(wǎng)絡(luò)(Minshew &Williams,2007)、異常的皮層功能柱(Casanova,Buxhoeveden,Switala,&Roy,2002)、變異的突觸活動(dòng)(Bourgeron,2009)還是興奮、抑制功能間的不平衡(Rubenstein&Merzenich,2003)。此外,需要特別注意的是,近來(lái)有研究提出相比于內(nèi)部神經(jīng)噪音,自閉癥者分離外部刺激噪聲與信號(hào)(刺激的信噪比)的能力受損會(huì)更影響其運(yùn)動(dòng)知覺(jué)表現(xiàn)(van de Cruys,van de Hallen,&Wagemans,2017;Manning et al.,2015;Manning,Dakin,Tibber,&Pellicano,2014;Zaidel,Goin-Kochel,&Angelaki,2015)。內(nèi)外部噪音水平對(duì)自閉癥者視運(yùn)動(dòng)知覺(jué)異常的作用機(jī)制還需要進(jìn)一步探討。
有研究提出,相比于健康控制組,自閉癥者處理視覺(jué)信息時(shí)較少受到自上而下加工的影響,如先驗(yàn)知識(shí)(Mitchell,Mottron,Soulières,&Ropar,2010;Ropar &Mitchell,2002)。這種觀點(diǎn)最近被Pellicano和Burr (2012)納入到了一個(gè)貝葉斯框架中,成為了解釋自閉癥知覺(jué)加工的經(jīng)驗(yàn)缺失假設(shè)(the flatter-prior hypothesis)。該假設(shè)認(rèn)為,健康個(gè)體會(huì)摻雜主觀已有經(jīng)驗(yàn)來(lái)探索世界,但自閉癥個(gè)體對(duì)世界的認(rèn)識(shí)是一種不夾雜過(guò)多主觀經(jīng)驗(yàn)的純粹的知覺(jué),相比于健康人來(lái)說(shuō),自閉癥者的已有經(jīng)驗(yàn)是無(wú)偏見(jiàn)的、公正的。從神經(jīng)計(jì)算角度來(lái)看,人類(lèi)自身的計(jì)算機(jī)制會(huì)根據(jù)已有經(jīng)驗(yàn)不斷地對(duì)即將發(fā)生的事件進(jìn)行預(yù)測(cè),從而使個(gè)體順利參與到相關(guān)事件中,這對(duì)個(gè)體生存來(lái)說(shuō)至關(guān)重要。但由于自閉癥者缺乏先驗(yàn)知識(shí),他們的計(jì)算機(jī)制無(wú)法有效預(yù)測(cè)未知事件及其結(jié)果,從而導(dǎo)致對(duì)輸入的信息出現(xiàn)理解偏差?;诖?自閉癥者的運(yùn)動(dòng)知覺(jué)較少受到自上而下的先驗(yàn)知識(shí)的影響,較少出現(xiàn)運(yùn)動(dòng)知覺(jué)偏見(jiàn)。Powell,Meredith,McMillin和Freeman等(2016)發(fā)現(xiàn)自閉癥者知覺(jué)運(yùn)動(dòng)速度變化和低對(duì)比度信息的貝葉斯模型不同于健康控制組,驗(yàn)證自閉癥者經(jīng)驗(yàn)缺失假設(shè)。自閉癥者的運(yùn)動(dòng)知覺(jué)異常受其先驗(yàn)知識(shí)缺失的影響是一個(gè)新的解釋視角,但目前僅有此一項(xiàng)實(shí)驗(yàn)研究,還需要更多實(shí)驗(yàn)去探討這種解釋機(jī)制。
Gepner和他的同事發(fā)現(xiàn)自閉癥者處理來(lái)自不同時(shí)間和空間的信息能力異常,提出了“時(shí)空加工異常假設(shè)” (Gepner &Féron,2009;Gepner &Tardif,2006)。該假設(shè)預(yù)期當(dāng)信息的時(shí)空整合需求較大時(shí),自閉癥者對(duì)快速運(yùn)動(dòng)刺激的知覺(jué)加工會(huì)存在缺陷,自閉癥者出現(xiàn)“這個(gè)世界變化運(yùn)動(dòng)太快了”的感知覺(jué)。基于該假設(shè),Greffou等(2012)發(fā)現(xiàn)自閉癥者對(duì)高振蕩頻率信息的姿態(tài)穩(wěn)定性較差(Greffou et al.,2012),與以往自閉癥者的自傳體回憶報(bào)告結(jié)果吻合(Mikkelsen,1996)。但上述研究尚不具有說(shuō)服力,信息加工變快也有可能只是因?yàn)樽蚤]癥者更加關(guān)注顯著的重要信息,特別是Greffou等(2012)的研究還涉及動(dòng)作系統(tǒng)(motor system)。與時(shí)空加工異常假設(shè)相關(guān)的一個(gè)解釋是自閉癥者可能需要更長(zhǎng)的時(shí)間加工處理運(yùn)動(dòng)刺激。如,Robertson等(2012,2014)發(fā)現(xiàn)協(xié)同性運(yùn)動(dòng)刺激呈現(xiàn)時(shí)間較短如 200 ms時(shí),自閉癥成年人的協(xié)同性運(yùn)動(dòng)知覺(jué)閾限顯著高于健康控制組被試,而刺激呈現(xiàn)較長(zhǎng)時(shí)間如400 ms、1500 ms時(shí)自閉癥與健康控制組的表現(xiàn)相當(dāng)。
英國(guó)劍橋大學(xué)的 Baron-Cohen教授和他的團(tuán)隊(duì)提出了廣受關(guān)注的自閉癥者“極端男性腦理論”(Baron-Cohen,2002;Baron-Cohen,Wheelwright,Skinner,Martin,&Clubley,2001;Whitehouse et al.,2012),自閉行為包括以“系統(tǒng)化” (一個(gè)歸納的過(guò)程,是一種基于“如果?就(if-then)”的規(guī)則理解和建構(gòu)系統(tǒng)的驅(qū)力)為特征的極端男性心理特質(zhì)和以較低“共情”為特征的女性心理特質(zhì)(引自曹漱芹,曹顏顏,2015)。自閉癥者可能是其在胎兒期較高水平的睪酮激素(foetal testosterone)改變了其出生后大腦正常的生長(zhǎng)發(fā)育,使得個(gè)體在成長(zhǎng)中出現(xiàn)了異常的極端男性“系統(tǒng)化”行為反應(yīng),其中包括導(dǎo)致出現(xiàn)運(yùn)動(dòng)知覺(jué)異常。胎兒期睪酮激素水平的一個(gè)測(cè)定指標(biāo)是指長(zhǎng)比(digit ratios),指食指指長(zhǎng)(2D)和環(huán)指指長(zhǎng)(4D)的比值(2D:4D),環(huán)指指長(zhǎng)明顯長(zhǎng)于食指指長(zhǎng),表明胎兒期睪酮激素水平較高(Manning,Scutt,Wilson,&Lewis-Jones,1998)。Milne等(2006)研究發(fā)現(xiàn)自閉癥者的指長(zhǎng)比與其協(xié)同性運(yùn)動(dòng)中的協(xié)同性閾限水平和運(yùn)動(dòng)控制相關(guān),特別是較大指長(zhǎng)比的自閉癥兒童的運(yùn)動(dòng)控制能力越差。但正如Milne等提出的,并無(wú)直接證據(jù)證明睪酮激素和指長(zhǎng)比之間存在直接相關(guān)。此外,目前未有研究發(fā)現(xiàn)自閉癥患者視運(yùn)動(dòng)知覺(jué)功能上存在性別差異,僅在視空間任務(wù)上表現(xiàn)出穩(wěn)定性別差異(Auyeung et al.,2012)。因此,用極端男性腦理論去解釋自閉癥者出現(xiàn)視運(yùn)動(dòng)知覺(jué)異常的原因還需要更加可靠的測(cè)量指標(biāo)和實(shí)驗(yàn)證據(jù)。
Brothers在 1990年提出了“社會(huì)腦假說(shuō)”,指出包括人類(lèi)在內(nèi)的靈長(zhǎng)類(lèi)大腦中存在一些進(jìn)化所保留下來(lái)負(fù)責(zé)社會(huì)認(rèn)知的特殊區(qū)域,稱(chēng)為“社會(huì)腦”。社會(huì)腦包括杏仁核、顳上溝和與之毗鄰的顳頂聯(lián)結(jié)、內(nèi)側(cè)前額葉皮質(zhì)及與之毗連的前扣帶回皮質(zhì)和鏡像系統(tǒng),其基本功能是在個(gè)體社會(huì)交往過(guò)程中,承擔(dān)了解和觀察他人目的、意圖、信念和推測(cè)等的信息處理(Johnson et al.,2005;Burnett,Sebastian,Kadosh,&Sarah-Jayne,2011)。腦功能成像發(fā)現(xiàn)自閉癥患者的“社會(huì)腦”不同于健康人(Elsabbagh &Johnson,2016)。其中,顳上溝對(duì)具有交流意義的刺激表現(xiàn)出顯著的激活,其作用機(jī)制是將快速轉(zhuǎn)換的視覺(jué)信息流輸入分解成有意義的單位,然后從中抽取輸入信息的意義(Allison,Puce,&McCarthy,2000)。顳上溝在生物運(yùn)動(dòng)加工中發(fā)揮重要作用(Pavlova,2012),但自閉癥者對(duì)生物運(yùn)動(dòng)的動(dòng)態(tài)信息不敏感,腦成像結(jié)果表明自閉癥者的生物運(yùn)動(dòng)加工缺陷與顳上溝后部功能不足有關(guān)(Freitag et al.,2008)。顳上溝缺損與自閉癥患者生物運(yùn)動(dòng)知覺(jué)障礙的關(guān)聯(lián)可能表現(xiàn)在兩個(gè)層次上:其一,腦結(jié)構(gòu)的異常導(dǎo)致社會(huì)信息加工中基本認(rèn)知功能的異常,由于顳上溝的功能異常,自閉癥者難以對(duì)視覺(jué)的信息流進(jìn)行解碼并從中提取信息,導(dǎo)致視覺(jué)生物運(yùn)動(dòng)識(shí)別中的困難;其二,基本認(rèn)知功能的異常導(dǎo)致復(fù)雜社會(huì)認(rèn)知技能的形成和發(fā)展,由于自閉癥者難以基于生物運(yùn)動(dòng)覺(jué)察交流意圖,導(dǎo)致其表現(xiàn)出心理理論能力缺損,從而影響到他們對(duì)具有社會(huì)意義的生物運(yùn)動(dòng)刺激(如情緒信息)的理解和推論(Thurman,van Boxtel,Monti,Chiang,&Lu,2016;肖振華,陳曦,王立新,2010)。我們認(rèn)為,Brothers提出的“社會(huì)腦”理論為自閉癥患者生物運(yùn)動(dòng)知覺(jué)障礙提供了一個(gè)解釋角度,但該理論并不太適用于解釋自閉癥患者出現(xiàn)的高階運(yùn)動(dòng)、協(xié)同性運(yùn)動(dòng)和運(yùn)動(dòng)速度等視運(yùn)動(dòng)知覺(jué)障礙。
目前,多數(shù)研究發(fā)現(xiàn)自閉癥者對(duì)各種運(yùn)動(dòng)刺激的加工能力均差于健康控制組,但也有研究發(fā)現(xiàn)自閉癥者運(yùn)動(dòng)信息加工能力增強(qiáng)或與健康控制組保持一致(e.g,Chen et al.,2012;Foss-Feig et al.,2013)。這種不一致的結(jié)果可能源自于所選被試的個(gè)體差異,具體表現(xiàn)在不同研究在被試的自閉癥障礙程度、亞類(lèi)型分布、年齡特點(diǎn)和智齡特點(diǎn)分布存在差異(Kaiser &Shiffrar,2009)。如研究發(fā)現(xiàn)只有約 22%~40%自閉癥患者的協(xié)同性閾限顯著高于健康控制組(Milne et al.,2002;Milne et al.,2006;Pellicano &Gibson,2008);低功能自閉癥兒童對(duì)自然情境中的運(yùn)動(dòng)加工能力存在缺陷,尤其是在快速運(yùn)動(dòng)的加工方面,而高功能自閉癥可能這方面的缺陷較少或者不存在缺陷(Gepner &Mestre,2002)。此外,自閉癥發(fā)病率存在著性別差異,男孩兒童自閉癥的發(fā)病比率超過(guò)女孩(4:1),且發(fā)病時(shí)間更早,自閉癥者認(rèn)知過(guò)程障礙存在性別差異也已在世界各國(guó)的研究者中形成共識(shí)(Hiller,Young,&Weber,2014;Werling &Geschwind,2013)。對(duì)環(huán)境中運(yùn)動(dòng)刺激的加工處理異常是自閉癥個(gè)體的一種常見(jiàn)表現(xiàn),在同等水平下測(cè)量自閉癥患者的視覺(jué)運(yùn)動(dòng)知覺(jué)能力,排除個(gè)體因素的干擾至關(guān)重要。因此,未來(lái)研究應(yīng)加強(qiáng)自閉癥的檢測(cè)和亞分類(lèi),努力實(shí)現(xiàn)自閉癥者運(yùn)動(dòng)知覺(jué)缺陷特異性的實(shí)驗(yàn)性分離。
從上述原因探析來(lái)看,研究者們從多個(gè)角度對(duì)自閉癥者表現(xiàn)出的運(yùn)動(dòng)知覺(jué)缺陷進(jìn)行了分析,但每一種解釋都存在優(yōu)點(diǎn)和局限性,這在某種程度上會(huì)為后續(xù)的研究發(fā)現(xiàn)會(huì)提供更為豐富的解釋空間。未來(lái)研究應(yīng)該注重不同解釋之間的整合和實(shí)驗(yàn)驗(yàn)證,構(gòu)建更有概括性和解釋力的模型。如自閉癥者增強(qiáng)的知覺(jué)容量假設(shè)(Increased perceptual capacity)(Remington,Swettenham,&Lavie,2012;Remington,Swettenham,Campbell,&Coleman,2009)或許能夠提供一個(gè)比較全面的解釋。該假設(shè)認(rèn)為,普通個(gè)體的知覺(jué)容量是有限的,而自閉癥個(gè)體的知覺(jué)容量卻大很多。增強(qiáng)的知覺(jué)容量可以顯著提高自閉癥個(gè)體在視覺(jué)搜索任務(wù)中的目標(biāo)搜索績(jī)效,但同樣也會(huì)因?yàn)閷?duì)分心目標(biāo)的知覺(jué)提升使得注意力分散增強(qiáng)。由此推論,提升的運(yùn)動(dòng)信息知覺(jué)容量可能會(huì)使得方向信息整合的能力提高。但協(xié)同性運(yùn)動(dòng)中隨機(jī)運(yùn)動(dòng)的點(diǎn)可以被看成是分心刺激,提升的知覺(jué)容量同樣使得自閉癥者對(duì)隨機(jī)點(diǎn)的關(guān)注更寬泛,解釋了自閉癥者在協(xié)同性運(yùn)動(dòng)中沒(méi)有受益于提升的知覺(jué)容量。此外,許多研究者發(fā)現(xiàn)自閉癥同時(shí)并存腦神經(jīng) “局部聯(lián)結(jié)過(guò)度” (local over connectivity)和“長(zhǎng)距聯(lián)結(jié)不足” (low distant connectivity) 的現(xiàn)象(綜述見(jiàn)Mohammad-Rezazadeh,Frohlich,Loo,&Jeste,2016),這種腦神經(jīng)連接異常是否能夠?yàn)樽蚤]癥者運(yùn)動(dòng)知覺(jué)異常提供一種整合的解釋仍值得進(jìn)一步探討。
目前,自閉癥個(gè)體的情緒情感、社交互動(dòng)等領(lǐng)域的測(cè)評(píng)工具和干預(yù)方法發(fā)展比較完善,但國(guó)內(nèi)外專(zhuān)門(mén)針對(duì)自閉癥個(gè)體的視運(yùn)動(dòng)刺激知覺(jué)缺陷的測(cè)評(píng)和干預(yù)的研究十分匱乏。因此,不斷開(kāi)發(fā)和完善此缺陷的測(cè)評(píng)工具和干預(yù)策略,使其更具操作性、規(guī)范性和臨床效果也是未來(lái)重要的研究方向。首先,要特別重視早期鑒別和早期干預(yù)。有些自閉癥個(gè)體在早期就出現(xiàn)明顯的運(yùn)動(dòng)加工障礙,他們會(huì)避免劇烈的物體或生理運(yùn)動(dòng),如自閉癥兒童環(huán)境運(yùn)動(dòng)視知覺(jué)的姿勢(shì)反應(yīng)極為遲鈍(Gepner et al.,1995),特別是在快速運(yùn)動(dòng)情境中(Gepner &Mestre,2002),自閉癥兒童甚至對(duì)運(yùn)動(dòng)刺激極為反感和厭惡,從而導(dǎo)致其社交互動(dòng)的中斷。但有些自閉癥個(gè)體存在較小的運(yùn)動(dòng)加工障礙,他們會(huì)不斷尋找和探索以便使自己適應(yīng)并學(xué)會(huì)處理類(lèi)似的運(yùn)動(dòng)刺激。因此,在自閉癥個(gè)體早期出現(xiàn)明顯運(yùn)動(dòng)加工障礙時(shí)的測(cè)評(píng)與干預(yù)對(duì)于自閉癥兒童的視運(yùn)動(dòng)康復(fù)以及社交康復(fù)具有重要作用。其次,要重視借助新技術(shù)豐富自閉癥人群的干預(yù)方法。如,降低物理和人為環(huán)境的運(yùn)動(dòng)速度或者調(diào)整運(yùn)動(dòng)方向(Gepner et al.,2001),邏輯上應(yīng)該是有助于兒童視運(yùn)動(dòng)知覺(jué)的康復(fù)。在此理論前提下,最近幾年快速發(fā)展的虛擬現(xiàn)實(shí)(Virtual Reality,VR)技術(shù)的使用可以促進(jìn)此方面的發(fā)展。最后,自閉癥成年人的協(xié)同性運(yùn)動(dòng)知覺(jué)與健康成年人表現(xiàn)相當(dāng),可能在成長(zhǎng)過(guò)程中發(fā)展出了補(bǔ)償機(jī)制。未來(lái)研究需要探討這種補(bǔ)償機(jī)制是什么以及其如何改善成年自閉癥者的運(yùn)動(dòng)知覺(jué),從而將補(bǔ)償機(jī)制用于自閉癥兒童的早期干預(yù)治療。
自閉癥譜系障礙者視運(yùn)動(dòng)知覺(jué)的研究是一個(gè)相對(duì)較新的領(lǐng)域,盡管?chē)?guó)內(nèi)外諸多研究者探討了自閉癥譜系障礙者如何處理簡(jiǎn)單和復(fù)雜視覺(jué)運(yùn)動(dòng)信息及產(chǎn)生的原因,但到目前為止尚有些科學(xué)問(wèn)題需要進(jìn)行探討,可歸結(jié)為以下幾個(gè)核心問(wèn)題:1)視運(yùn)動(dòng)知覺(jué)異常是自閉癥障礙產(chǎn)生的原因之一?還是自閉癥障礙導(dǎo)致的結(jié)果?2)自閉癥者的視運(yùn)動(dòng)知覺(jué)異常是否影響自閉癥者的其他認(rèn)知加工過(guò)程?即自閉癥者的視運(yùn)動(dòng)知覺(jué)障礙是否導(dǎo)致了其他認(rèn)知障礙,如工作記憶障礙。3)自閉癥者的視運(yùn)動(dòng)知覺(jué)障礙是如何影響自閉癥障礙者的社會(huì)認(rèn)知和人際互動(dòng)?4)自閉癥障礙譜系者是否也存在暗示性運(yùn)動(dòng)知覺(jué)(implied motion perception)異?,F(xiàn)象?暗示性運(yùn)動(dòng)是指?jìng)€(gè)體觀看靜止圖片時(shí)從中知覺(jué)到的運(yùn)動(dòng)(Kourtzi &Kanwisher,2000;李開(kāi)云,許利慧,禤宇明,傅小蘭,2015),對(duì)這類(lèi)“靜止但卻運(yùn)動(dòng)(But still,it moves)”刺激的加工稱(chēng)為暗示性運(yùn)動(dòng)知覺(jué),也需要背側(cè)視覺(jué)通路(如MT/V5)的參與(e.g.,Kourtzi &Kanwisher,2000;Li,Liu,Qu,&Fu,2016),且5~8個(gè)月的嬰兒對(duì)暗示性刺激表現(xiàn)出了偏好(Shirai &Imura,2014)。對(duì)自閉癥者的暗示性運(yùn)動(dòng)知覺(jué)的探討將進(jìn)一步加深我們對(duì)自閉癥譜系障礙者的視覺(jué)運(yùn)動(dòng)知覺(jué)機(jī)制的理解。
參考文獻(xiàn)
曹漱芹,曹顏顏.(2015).孤獨(dú)癥: 大腦極端男性化的表現(xiàn)形態(tài)? 心理科學(xué)進(jìn)展,23,1775–1788.
胡奐.(2013).運(yùn)動(dòng)形式對(duì)方向和形狀一致性偵測(cè)的影響(碩士學(xué)位論文).浙江理工大學(xué),杭州.
回佳菡,施立楠,張朋,何生.(2016).人腦視覺(jué)意識(shí)的神經(jīng)機(jī)制.生物化學(xué)與生物物理進(jìn)展,43,297–307.
蔣毅,王莉.(2011).生物運(yùn)動(dòng)加工特異性: 整體結(jié)構(gòu)和局部運(yùn)動(dòng)的作用.心理科學(xué)進(jìn)展,19(3),301–311.
李開(kāi)云,許利慧,禤宇明,傅小蘭.(2015).暗示性運(yùn)動(dòng)加工的認(rèn)知神經(jīng)機(jī)制.生物化學(xué)與生物物理進(jìn)展,42,519–532.
王增建,張得龍,何芳芳,梁碧珊,黃瑞旺,劉鳴.(2014).生物運(yùn)動(dòng)及其在社會(huì)認(rèn)知障礙研究中的應(yīng)用.心理科學(xué),37,1055–1059.
肖振華,陳曦,王立新.(2010).自閉癥者顳上溝發(fā)育異常與其社會(huì)交往障礙探討.中國(guó)特殊教育,(7),44?48.
張弢,李勝光.(2011).自身運(yùn)動(dòng)認(rèn)知的神經(jīng)機(jī)制.心理科學(xué)進(jìn)展,19,1405–1416.
Abreu,A.M.,Soares,J.,de Schonen,S.,&Happé,F.(2016).Motion perception and social cognition in autism: Speed selective impairments in socio-conceptual processing?Journal of Advanced Neuroscience Research,3,45–53.
Allison,T.,Puce,A.,&McCarthy,G.(2000).Social perception from visual cues: Role of the STS region.Trends in Cognitive Sciences,4,267–278.
American Psychiatric Association.(2013).Diagnostic and statistical manual of mental disorders (DSM-5)(5th ed.).Washington DC: American Psychiatric Publishing.
Annaz,D.,Campbell,R.,Coleman,M.,Milne,E.,&Swettenham,J.(2012).Young children with autism spectrum disorder do not preferentially attend to biological motion.Journal of Autism and Developmental Disorders,42,401–408.
Annaz,D.,Remington,A.,Milne,E.,Coleman,M.,Campbell,R.,Thomas,M.,&Swettenham,J.(2010).Development of motion processing in children with autism.Developmental Science,13,826–838.
Auyeung,B.,Knickmeyer,R.,Ashwin,E.,Taylor,K.,Hackett,G.,&Baron-Cohen,S.(2012).Effects of fetal testosterone on visuospatial ability.Archives of Sexual Behavior,41,571–581.
Baron-Cohen,S.(2002).The extreme male brain theory of autism.Trends in Cognitive Sciences,6,248–254.
Baron-Cohen,S.,Wheelwright,S.,Skinner,R.,Martin,J.,&Clubley,E.(2001).The autism-spectrum quotient (AQ):Evidence from Asperger syndrome/high-functioning autism,males and females,scientists and mathematicians.Journal of Autism and Developmental Disorders,31,5–17.
Bertone,A.,&Faubert,J.(2006).Demonstrations of Decreased Sensitivity to Complex Motion Information Not Enough to Propose an Autism-Specific Neural Etiology.Journal of Autism and Developmental Disorders,36,55–64.
Bertone,A.,Mottron,L.,&Faubert,J.(2005).Dissociating pathway- versus complexity-specific accounts of motion perception impairments in autism.Cahiers de Psychologie Cognitive,23(1–2),75–83.
Bertone,A.,Mottron,L.,Jelenic,P.,&Faubert,J.(2003).Motion perception in autism: A "complex" issue.Journal of Cognitive Neuroscience,15,218–225.
Bishop,S.L.,Hus,V.,Duncan,A.,Huerta,M.,Gotham,K.,Pickles,A.,...Lord,C.(2013).Subcategories of Restricted and Repetitive Behaviors in Children with Autism Spectrum Disorders.Journal of Autism and Developmental Disorders,43,1287–1297.
Blake,R.,Turner,L.M.,Smoski,M.J.,Pozdol,S.L.,&Stone,W.L.(2003).Visual recognition of biological motion is impaired in children with autism.Psychological Science,14,151–157.
Bourgeron,T.(2009).A synaptic trek to autism.Current Opinion in Neurobiology,19(2),231–234.
Brieber,S.,Herpertz-Dahlmann,B.,Fink,G.R.,Kamp-Becker,I.,Remschmidt,H.,&Konrad,K.(2010).Coherent motion processing in autism spectrum disorder: An fMRI study.Neuropsychologia,48,1644–1651.
Brothers,L.(1990).The social brain: A project for integrating primate behavior and neurophysiology in a new domain.Concepts in Neuroscience,1,27–51.
Burnett,S.,Sebastian,C.,Kadosh,K.C.,&Sarah-Jayne,B.(2011).The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies.Neuroscience &Biobehavioral Reviews,35,1654–1664.
Casanova,M.F.,Buxhoeveden,D.P.,Switala,A.E.,&Roy,E.(2002).Minicolumnar pathology in autism.Neurology,58,428–432.
Chen,Y.,Norton,D.J.,Mcbain,R.,Gold,J.,Frazier,J.A.,&Coyle,J.T.(2012).Enhanced local processing of dynamic visual information in autism: Evidence from speed discrimination.Neuropsychologia,50,733–739.
Davis,G.,&Plaisted-Grant,K.(2014).Low endogenous neural noise in autism.Autism,19,351–362.
Dinstein,I.,Heeger,D.J.,Lorenzi,L.,Minshew,N.J.,Malach,R.,&Behrmann,M.(2012).Unreliable evoked responses in autism.Neuron,75,981–991.
Elsabbagh,M.,&Johnson,M.H.(2016).Autism and the social brain: The first-year puzzle.Biological Psychiatry,80,94–99.
Falck-Ytter,T.,Rehnberg,E.,&B?lte,S.(2013).Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism.PLoS One,8(7),e68816.
Foss-Feig,J.,Cascio,C.,Schauder,K.,&Tadin,D.(2012).A substantial and unexpected enhancement of motion perception in children with autism spectrum disorders.Journal of Vision,12,1352.
Foss-Feig,J.H.,Tadin,D.,Schauder,K.B.,&Cascio,C.J.(2013).A substantial and unexpected enhancement of motion perception in autism.The Journal of Neuroscience An Official Journal of the Society for Neuroscience,33,8243–8249.
Freitag,C.M.,Konrad,C.,H?berlen,M.,Kleser,C.,von Gontard,A.,Reith,W.,… Krick,C.(2008).Perception of biological motion in autism spectrum disorders.Neuropsychologia,46,1480–1494.
Frith,U.,&Happé,F.(1994).Autism: Beyond "theory of mind".Cognition,50(1–3),115–132.
Gepner,B.,Deruelle,C.,&Grynfeltt,S.(2001).Motion and emotion: A novel approach to the study of face processing by young autistic children.Journal of Autism and Developmental Disorders,31,37–45.
Gepner,B.,&Féron,F.(2009).Autism: A world changing too fast for a mis-wired brain? Neuroscience &Biobehavioral Reviews,33,1227–1242.
Gepner,B.,&Mestre,D.R.(2002).Brief report: Postural reactivity to fast visual motion differentiates autistic from children with asperger syndrome.Journal of Autism and Developmental Disorders,32,231–238.
Gepner,B.,Mestre,D.,Masson,G.,&de Schonen,S.(1995).Postural effects of motion vision in young autistic children.Neuroreport,6,1211–1214.
Gepner,B.,&Tardif,C.(2006).Autism,movement,time and thought e-motion mis-sight and other temporo-spatial processing disorders in autism.In M.A.Vanchevsky (Ed.),Frontiers in cognitive psychology (pp.1–30).New York:Nova Science Publishers.
Gibson,J.J.(1950).The perception of the visual world.Boston: Houghton Mifflin.
Greenaway,R.,Davis,G.,&Plaisted-Grant,K.(2013).Marked selective impairment in autism on an index of magnocellular function.Neuropsychologia,51,592–600.
Greffou,S.,Bertone,A.,Hahler,E.-M.,Hanssens,J.-M.,Mottron,L.,&Faubert,J.(2012).Postural hypo-reactivity in autism is contingent on development and visual environment:A fully immersive virtual reality study.Journal of Autism and Developmental Disorders,42,961–970.
Greimel,E.,Bartling,J.,Dunkel,J.,Brückl,M.,Deimel,W.,Remschmidt,H.,...Schulte-K?rne,G.(2013).The temporal dynamics of coherent motion processing in autism spectrum disorder: Evidence for a deficit in the dorsal pathway.Behavioural Brain Research,251(5),168–175.
Grinter,E.J.,Maybery,M.T.,van Beek,P.L.,Pellicano,E.,Badcock,J.C.,&Badcock,D.R.(2009).Global Visual Processing and Self-Rated Autistic-like Traits.Journal of Autism and Developmental Disorders,39,1278–1290.
Grossberg,S.(2012).Visual motion perception.In V.S.Ramachandran (Ed.),Encyclopedia of Human Behavior(pp.637–651).Oxford: Elsevier.
Hadad,B.,Schwartz,S.,Maurer,D.,&Lewis,T.L.(2015).Motion perception: A review of developmental changes and the role of early visual experience.Frontiers in Integrative Neuroscience,9,49.
Herrington,J.D.,Baron-Cohen,S.,Wheelwright,S.J.,Singh,K.D.,Bullmore,E.T.,Brammer,M.,&Williams,S.C.R.(2007).The role of MT+/V5 during biological motion perception in Asperger Syndrome: An fMRI study.Research in Autism Spectrum Disorders,1,14–27.
Hiller,R.M.,Young,R.L.,&Weber,N.(2014).Sex differences in autism spectrum disorder based on DSM-5 criteria:Evidence from clinician and teacher reporting.Journal of Abnormal Child Psychology,42,1381–1393.
Johnson,M.H.,Griffin,R.,Csibra,G.,Halit,H.,Farroni,T.,Haan,M.D.,...Richards,J.(2005).The emergence of the social brain network: Evidence from typical and atypical development.Development and Psychopathology,17,599–619.
Jones,C.R.G.,Swettenham,J.,Charman,T.,Marsden,A.J.S.,Tregay,J.,Baird,G.,...Happé,F.(2011).No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders.Autism Research,4,347–357.
Kaiser,M.D.,&Pelphrey,K.A.(2012).Disrupted action perception in autism: Behavioral evidence,neuroendophenotypes,and diagnostic utility.Developmental Cognitive Neuroscience,2(1),25–35.
Kaiser,M.D.,&Shiffrar,M.(2009).The visual perception of motion by observers with autism spectrum disorders: A review and synthesis.Psychonomic Bulletin &Review,16,761–777.
Kirby,A.V.,Boyd,B.A.,Williams,K.L.,Faldowski,R.A.,&Baranek,G.T.(2017).Sensory and repetitive behaviors among children with autism spectrum disorder at home.Autism,21,142–152.
Klin,A.,Lin,D.J.,Gorrindo,P.,Ramsay,G.,&Jones,W.(2009).Two-year-olds with autism orient to nonsocial contingencies rather than biological motion.Nature,459(7244),257–261.
Koh,H.C.,Milne,E,&Dobkins,K.(2010).Contrast sensitivity for motion detection and direction discrimination in adolescents with autism spectrum disorders and their siblings.Neuropsychologia,48,4046–4056.
Koldewyn,K.,Whitney,D.,&Rivera,S.M.(2011).Neural correlates of coherent and biological motion perception in autism.Developmental Science,14,1075–1088.
Kourtzi,Z.,&Kanwisher,N.(2000).Activation in human MT/MST by static images with implied motion.Journal of Cognitive Neuroscience,12,48–55.
Lewis,M.H.,&Bodfish,J.W.(2015).Repetitive behavior disorders in autism.Developmental Disabilities Research Reviews,4(2),80–89.
Li,K.Y.,Liu,Y.-J.,Qu,F.B.,&Fu,X.L.(2016).Neural activity associated with attention orienting triggered by implied action cues.Brain Research,1642,353–363.
Manning,C.,Charman,T.,&Pellicano,E.(2013).Processing slow and fast motion in children with autism spectrum conditions.Autism Research,6,531–541.
Manning,C.,Charman.,T,&Pellicano,E.(2015).Brief report: Coherent motion processing in autism: Is dot lifetime an important parameter? Journal of Autism &Developmental Disorders,45,2252–2258.
Manning,C.,Dakin,S.,Tibber,M.,Charman,T.,&Pellicano,E.(2014).Increased sampling of motion signals in children with autism.Journal of Vision,14(10),676–676.
Manning,C.,Dakin,S.C.,Tibber,M.S.,&Pellicano,E.(2014).Averaging,not internal noise,limits the development of coherent motion processing.Developmental Cognitive Neuroscience,10,44–56.
Manning,C.,Tibber,M.S.,Charman,T,Dakin,S.C.,&Pellicano,E.(2015).Enhanced integration of motion information in children with autism.The Journal of Neuroscience An Official Journal of the Society for Neuroscience,35,6979–6986.
Manning,J.T.,Scutt,D,Wilson,J,&Lewis-Jones,D.I.(1998).The ratio of 2nd to 4th digit length: A predictor of sperm numbers and concentrations of testosterone,luteinizing hormone and oestrogen.Human Reproduction,13,3000–3004.
Mather,G.,Pavan,A.,Marotti R.B.,Campana,G.,&Casco,C.(2012).Interactions between motion and form processing in the human visual system.Frontiers in Computational Neuroscience,7,65.
Mckay,L.S.,Simmons,D.R.,McAleer,P.,Marjoram,D.,Piggot,J.,&Pollick,F.E.(2012).Do distinct atypical cortical networks process biological motion information in adults with Autism Spectrum Disorders? Neuroimage,59,1524–1533.
Merigan,W.H.,&Maunsell,J.H.R.(1993).How parallel are the primate visual pathways? Annual Review of Neuroscience,16,369–402.
Mikkelsen,E.J.(1996).Thinking in pictures: And other reports from my life with autism.Jama the Journal of the American Medical Association,275,1608.
Milne,E.(2011).Increased intra-participant variability in children with autistic spectrum disorders: Evidence from single-trial analysis of evoked EEG.Frontiers in Psychology,2,51.
Milne,E.,Swettenham,J.,&Campbell,R.(2005).Motion perception and autistic spectrum disorder: A review.Cahiers de Psychologie Cognitive,23(1–2),3–33.
Milne,E.,Swettenham,J.,Hansen,P.,Campbell,R.,Jeffries,H.,&Plaisted,K.(2002).High motion coherence thresholds in children with autism.Journal of Child Psychology and Psychiatry,43,255–263.
Milne,E.,White,S.,Campbell,R.,Swettenham,J.,Hansen,P.,&Ramus,F.(2006).Motion and form coherence detection in autistic spectrum disorder: Relationship to motor control and 2:4 digit ratio.Journal of Autism and Developmental Disorders,36,225–237.
Minshew,N.J.,&Williams,D.L.(2007).The new neurobiology of autism: Cortex,connectivity,and neuronal organization.Archives of Neurology,64,945–950.
Mitchell,P.,Mottron,L.,Soulières,I.,&Ropar,D.(2010).Susceptibility to the Shepard illusion in participants with autism: Reduced top-down influences within perception?Autism Research,3,113–119.
Mohammad-Rezazadeh,I.,Frohlich,J.,Loo,S.K.,&Jeste,S.S.(2016).Brain connectivity in autism spectrum disorder.Current Opinion in Neurology,29,137–147.
Molloy,C.A.,Dietrich,K.N.,&Bhattacharya,A.(2003).Postural Stability in Children with Autism Spectrum Disorder.Journal of Autism and Developmental Disorders,33,643–652.
Murphy,P.,Brady,N.,Fitzgerald,M.,&Troje,N.F.(2009).No evidence for impaired perception of biological motion in adults with autistic spectrum disorders.Neuropsychologica,47,3225–3235.
Nackaerts,E.,Wagemans,J.,Helsen,W.,Swinnen,S.P.,Wenderoth,N.,&Alaerts,K.(2012).Recognizing biological motion and emotions from point-light displays in autism spectrum disorders.PLoS One,7(9),e44473.
Newsome,W.T.,&Paré,E.B.(1988).A selective impairment of motion perception following lesions of the middle temporal visual area (MT).The Journal of Neuroscience An Official Journal of the Society for Neuroscience,8,2201–2211.
Pavlova,M.A.(2012).Biological motion processing as a hallmark of social cognition.Cerebral Cortex,22,981–995.
Pérez Velázquez,J.L.,&Galán,R.F.(2013).Information gain in the brain's resting state: A new perspective on autism.Frontiers in Neuroinformatics,7,37,doi: 10.3389/fninf.2013.00037
Pellicano,E.,&Burr,D.(2012).When the world becomes'too real': A Bayesian explanation of autistic perception.Trends in Cognitive Sciences,16,504–510.
Pellicano,E.,&Gibson,L.Y.(2008).Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia.Neuropsychologia,46,2593–2596.
Pellicano,E.,Gibson,L.,Maybery,M.,Durkin,K.,&Badcock,D.R.(2005).Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia,43,1044–1053.
Powell,G.,Meredith,Z.,McMillin,R.,&Freeman,T.C.A.(2016).Bayesian models of individual differences: Combining autistic traits and sensory thresholds to predict motion perception.Psychological Science,27,1562–1572.
Price,K.J.,Shiffrar,M.,&Kerns,K.A.(2012).Movement perception and movement production in Asperger's Syndrome.Research in Autism Spectrum Disorders,6,391–398.
Remington,A.,Swettenham,J.,Campbell,R.,&Coleman,M.(2009).Selective attention and perceptual load in autism spectrum disorder.Psychological Science,20,1388–1393.
Remington,A.M.,Swettenham,J.G.,&Lavie,N.(2012).Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism.Journal of Abnormal Psychology,121,544–551.
Robertson,C.E.,Martin,A.,Baker,C.I.,&Baron-Cohen,S.(2012).Atypical integration of motion signals in autism spectrum conditions.PLoS One,7(11),e48173.
Robertson,C.E.,Thomas,C.,Kravitz,D.J.,Wallace,G.L.,Baron-Cohen,S.,Martin,A.,&Baker,C.I.(2014).Editor's Choice: Global motion perception deficits in autism are reflected as early as primary visual cortex.Brain,137,2588–2599.
Ronconi,L.,Gori,S.,Ruffino,M.,Franceschini,S.,Urbani,B.,Molteni,M.,&Facoetti,A.(2012).Decreased coherent motion discrimination in autism spectrum disorder: The role of attentional zoom-out deficit.PLoS One,7(11),e49019.
Ropar,D.,&Mitchell,P.(2002).Shape constancy in autism:The role of prior knowledge and perspective cues.Journal of Child Psychology and Psychiatry,43,647–653.
Rubenstein,J.L.R.,&Merzenich,M.M.(2003).Model of autism: Increased ratio of excitation/inhibition in key neural systems.Genes,Brain and Behavior,2,255–267.
Rutherford,M.D.,&Troje,N.F.(2011).IQ predicts biological motion perception in autism spectrum disorders.Journal of Autism and Developmental Disorders,42,557–565.
Saygin,A.P.,Cook,J.,&Blakemore,S.-J.(2010).Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions.PLoS One,5(10),e13491.
Shirai,N.,&Imura,T.(2014).Implied motion perception from a still image in infancy.Experimental Brain Research,232,3079–3087.
Simmons,D.R.,Robertson,A.E.,McKay,L.S.,Toal,E.,McAleer,P.,&Pollick,F.E.(2009).Vision in autism spectrum disorders.Vision Research,49,2705–2739.
Spencer,J.,O'Brien,J.,Braddick,J.,Atkinson,O.,Wattam-Bell,J.,&Riggs,K.(2000a).Form and motion processing in autism.Perception,29,98–99.
Spencer,J.,O'Brien,J.,Riggs,K.,Braddick,O.,Atkinson,J.,&Wattam-Bell,J.(2000b).Motion processing in autism:Evidence for a dorsal stream deficiency.Neuroreport,11,2765–2767.
Spencer,J.V.,&O'Brien,J.M.D.(2006).Visual form-processing deficits in autism.Perception,35,1047–1055.
Stein,R.B.,Gossen,E.R.,&Jones,K.E.(2005).Neuronal variability: Noise or part of the signal? Nature Reviews Neuroscience,6,389–397.
Swettenham,J.,Remington,A.,Laing,K.,Fletcher,R.,Coleman,M.,&Gomez,J.-C.(2013).Perception of pointing from biological motion point-light displays in typically developing children and children with autism spectrum disorder.Journal of Autism and Developmental Disorders,43,1437–1446.
Swienton,D.J.,&Thomas,A.G.(2014).The visual pathway—functional anatomy and pathology.Seminars in Ultrasound,CT &MRI,35(5),487–503.
Takarae,Y,Luna,B,Minshew,N.J.,&Sweeney,J.A.(2008).Patterns of visual sensory and sensorimotor abnormalities in autism vary in relation to history of early language delay.Journal of the International Neuropsychological Society,14,980–989.
Takarae,Y.,Luna,B.,Minshew,N.J.,&Sweeney,J.A.(2014).Visual motion processing and visual sensorimotor control in autism.Journal of the International Neuropsychological Society,20,113–122.
Thurman,S.M.,van Boxtel,J.J.A.,Monti,M.M.,Chiang,J.N.,&Lu,H.J.(2016).Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits.NeuroImage,136,149–161.
Traynor,J.M.,&Hall,G.B.C.(2015).Structural and functional neuroimaging of restricted and repetitive behavior in autism spectrum disorder.Journal of Intellectual Disability -Diagnosis and Treatment,3,21–34.
Tsermentseli,S.,O’Brien,J.M.,&Spencer,J.V.(2008).Comparison of Form and Motion Coherence Processing in Autistic Spectrum Disorders and Dyslexia.Journal of Autism and Developmental Disorders,38,1201–1210.
van Boxtel,J.J.,Dapretto,M.,&Lu,H.J.(2016).Intact recognition,but attenuated adaptation,for biological motion in youth with autism spectrum disorder.Autism Research,9,1103–1113.
van de Cruys,S.,van de Hallen,R.,&Wagemans,J.(2017).Disentangling signal and noise in autism spectrum disorder.Brain and Cognition,112,72–83.
Wang,L.-H.,Chien,H.-L.,Hu,S.-F.,Chen,T.-Y.,&Chen,H.-S.(2015).Children with autism spectrum disorders are less proficient in action identification and lacking a preference for upright point-light biological motion displays.Research in Autism Spectrum Disorders,11,63–76.
Warren,W.H.Jr.,Morris,M.W.,&Kalish,M.(1988).Perception of translational heading from optical flow.Journal of Experimental Psychology: Human Perception and Performance,14,646–660.
Werling,D.M.,&Geschwind,D.H.(2013).Sex differences in autism spectrum disorders.Current Opinion in Neurology,26,146–153.
Whitehouse,A.J.O.,Eugen,M.,Maybery,M.T.,Dissanayake,C.,Sawyer,M.,Jones,R.M.,...Hickey,M.(2012).Perinatal testosterone exposure and autistic-like traits in the general population: A longitudinal pregnancy- cohort study.Journal of Neurodevelopmental Disorders,4,25.
Wright,K.,Kelley,E.,&Poulin-Dubois,D.(2014).Schematic and realistic biological motion identification in children with high-functioning autism spectrum disorder.Research in Autism Spectrum Disorders,8,1394–1404.
Wright,K.,Kelley,E.,&Poulin-Dubois,D.(2016).Biological motion and the animate–inanimate distinction in children with high-functioning Autism Spectrum Disorder.Research in Autism Spectrum Disorders,25,1–11.
Xiang,J.,Korostenskaja,M.,Molloy,C.,deGrauw,X.,Leiken,K.,Gilman,C.,...Murray,D.S.(2015).Multifrequency localization of aberrant brain activity in autism spectrum disorder.Brain and Development,38,82–90.
Yamasaki,T.,Fujita,T.,Kamio,Y.,&Tobimatsu,S.(2011).Motion perception in autism spectrum disorder.In A.M.Columbus (Eds.),Advances in psychology research (Vol.82,pp.197–211).New York: Nova Science Publishers.
Yamasaki,T.,Fujita,T.,Ogata,K.,Goto,Y.,Munetsuna,S.,Kamio,Y.,&Tobimatsu,S.(2011).Electrophysiological evidence for selective impairment of optic flow perception in autism spectrum disorder.Research in Autism Spectrum Disorders,5,400–407.
Zaidel,A.,Goin-Kochel,R.P.,&Angelaki,D.E.(2015).Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses.Proceedings of the National Academy of Sciences of the United States of America,112,6461–6466.
Zisman,C.N.(2013).Magnocellular impairment in autism spectrum disorders as assessed by visual evoked potentials(Unpublished master’s thesis),University of Nevada,Reno.