吳 娟 邱綺虹 楊驥鋒 梁 敏
慢性牙周炎是口腔科常見疾病之一,牙槽骨破壞是其重要病理特征,最終導(dǎo)致牙松動(dòng)、脫落。局部菌斑微生物是牙周炎的始動(dòng)因子,而全身性因素如糖尿病、代謝綜合征等系統(tǒng)疾病可促進(jìn)牙周炎發(fā)展[1,2]。近年來研究表明,代謝綜合征可加重牙周炎癥狀,增加失牙風(fēng)險(xiǎn)[3-6]。代謝綜合征以腹型肥胖、高血壓及糖脂代謝紊亂為特征,糖脂代謝紊亂常誘發(fā)高血糖高血脂[7]。Gong等發(fā)現(xiàn)高糖高脂通過抑制成骨分化相關(guān)基因的表達(dá),削弱成骨細(xì)胞分化能力[8,9],并增強(qiáng)破骨細(xì)胞骨吸收水平[10]。健康牙周狀況下,成骨細(xì)胞介導(dǎo)的骨形成和破骨細(xì)胞介導(dǎo)的骨吸收處于平衡狀態(tài),維持牙槽骨的正常形態(tài)與功能。在實(shí)驗(yàn)性牙周炎動(dòng)物模型中,成骨細(xì)胞凋亡增多導(dǎo)致新骨形成減少,影響牙槽骨的修復(fù)重建,加重牙槽骨缺失及牙周炎病情[11]。高糖高脂條件下,胰島β細(xì)胞、心肌細(xì)胞及血管內(nèi)皮細(xì)胞增殖活性下降,凋亡增加[12-15],但鮮有文獻(xiàn)報(bào)道,高糖高脂是否影響成骨細(xì)胞增殖及凋亡。我們前期實(shí)驗(yàn)發(fā)現(xiàn),高糖高脂引起成骨細(xì)胞正常形態(tài)的改變,在此基礎(chǔ)上進(jìn)一步研究高糖高脂對(duì)成骨細(xì)胞增殖及凋亡的影響,為探討代謝綜合征促進(jìn)牙周炎癥加重的可能原因提供新思路。
1.1 實(shí)驗(yàn)材料 棕櫚酸(PA)粉末(MPBiomedicals,美國(guó)),D-葡萄糖(Sigma,美國(guó)),小鼠顱頂前骨細(xì)胞亞克隆14(MC3T3-E1 Subclone 14,中國(guó)科學(xué)院細(xì)胞庫(kù)提供),胎牛血清(Gibco,美國(guó)),青霉素鏈霉素雙抗(Gibco,美國(guó)),α-MEM培養(yǎng)基(含D-glucose5.6mM,Gibco,美國(guó)),CCK-8(Dojindo,日本),Annexin V-FITC/PI雙染試劑盒(Biosciences,美國(guó)),RIPA裂解液、BCA蛋白定量試劑盒、小鼠β-actin一抗及氧化物酶標(biāo)記山羊抗小鼠IgG二抗(上海碧云天),小鼠cleaved caspase-3、caspase-3一抗(Cell Signaling Technology,美國(guó))。
1.2 高糖高脂溶液的配置 根據(jù)文獻(xiàn)報(bào)道,研究者通常采用11mM-30mM糖濃度及或0.4mM棕櫚酸處理肝細(xì)胞、巨噬細(xì)胞、肝癌細(xì)胞等,構(gòu)建代謝綜合征高糖高脂細(xì)胞模型[16-19]。稱量棕櫚酸(PA)粉末及NaOH共同溶于雙蒸水,使NaOH終濃度為0.01M,棕櫚酸終濃度為20.0mM,混勻后于70℃水浴30min得到PA/NaOH溶液。配置30%BSA溶液(w/v,溶于PBS),按照BSA溶液和PA/NaOH溶液的體積比為33∶40混合得到PA/BSA的穩(wěn)定儲(chǔ)備液,存放于-20℃[20]。使用時(shí),每2ml完全培養(yǎng)基加入5.2mg的D-glucose及73uL的PA/BSA儲(chǔ)存液,0.22μm濾器除菌,最終得到D-glucose 20.0mM,PA 0.4mM,BSA 0.5%的高糖高脂溶液。
1.3 細(xì)胞培養(yǎng) 成骨細(xì)胞MC3T3-E1在含有10%胎牛血清、1%青霉素鏈霉素雙抗的α-MEM培養(yǎng)基中于5%CO2、37℃條件下培養(yǎng),待細(xì)胞生長(zhǎng)至80%-90%融合后傳代進(jìn)行實(shí)驗(yàn)。細(xì)胞培養(yǎng)分為兩組:實(shí)驗(yàn)組使用含D-glucose 20.0mM,PA 0.4mM,BSA 0.5%的高糖高脂溶液,對(duì)照組使用含0.5%BSA的完全培養(yǎng)基(含D-glucose5.6mM)。
1.4 細(xì)胞形態(tài)觀察 實(shí)驗(yàn)組(D-glucose 20.0mM,PA 0.4mM,BSA 0.5%)及對(duì)照組(D-glucose 5.6mM,BSA 0.5%)細(xì)胞培養(yǎng)24h、36h、48h后,分別在倒置相差顯微鏡(Axiovert 40,美國(guó))下觀察細(xì)胞形態(tài)學(xué)變化。
1.5 CCK-8檢測(cè)細(xì)胞增殖 成骨細(xì)胞以1500個(gè)/孔接種至96孔板,培養(yǎng)24h后加入完全培養(yǎng)基或高糖高脂溶液處理0、12、24、36、48h,每組設(shè)5個(gè)復(fù)孔,每孔100ul培養(yǎng)基。將培養(yǎng)基和CCK-8按照體積比9∶1混合,去除處理液后每孔加入CCK-8混合液100uL,37℃避光孵育2h,450nm波長(zhǎng)下檢測(cè)吸光度值。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
1.6 Annexin V/PI雙染流式檢測(cè)細(xì)胞凋亡 成骨細(xì)胞以2×105個(gè)/瓶接種于25cm2培養(yǎng)瓶,每瓶3ml培養(yǎng)基,培養(yǎng)36h后高糖高脂(D-glucose 20.0mM,PA 0.4mM,BSA 0.5%)處理細(xì)胞 0、24、30、36h,依據(jù)Annexin V-FITC/PI雙染試劑盒說明書,收集細(xì)胞,用1×Binding Buffer重懸調(diào)整細(xì)胞濃度至1×109/L,加入Annexin V和PI染液室溫避光孵育15 min,流式細(xì)胞儀檢測(cè),凋亡率=C4早期凋亡細(xì)胞率+C2晚期凋亡細(xì)胞率。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
1.7 Western blotting檢測(cè)cleaved caspase3和caspase-3的表達(dá) 成骨細(xì)胞以2×105個(gè)/瓶接種于25cm2培養(yǎng)瓶,每瓶3ml培養(yǎng)基,培養(yǎng)36h后高糖高脂(D-glucose 20mM,PA 0.4mM,BSA 0.5%)處理細(xì)胞 0、6、12、24、36h,RIPA 裂解液提取細(xì)胞總蛋白,BCA蛋白定量試劑盒檢測(cè)樣本蛋白濃度,按照每泳道35ug總蛋白,10%SDS-聚丙烯酰氨凝膠電泳分離蛋白,轉(zhuǎn)至聚偏氟乙烯(PVDF)膜,5%脫脂牛奶室溫封閉1h,4℃孵育小鼠 cleaved caspase-3、caspase-3(1∶1000)及小鼠β-actin一抗(1∶1000)16至18h,常溫孵育氧化物酶標(biāo)記山羊抗小鼠IgG二抗(1∶1000)1h,Image Auant Las4000mini超靈敏化學(xué)發(fā)光成像儀(GE Healthcare,瑞典)檢測(cè),Image J軟件(美國(guó)國(guó)立衛(wèi)生研究院)進(jìn)行條帶灰度值檢測(cè)與分析。目的蛋白相對(duì)表達(dá)量=目的條帶灰度值/內(nèi)參條帶灰度值,其中β-actin為內(nèi)參。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
1.8 統(tǒng)計(jì)學(xué)分析 采用統(tǒng)計(jì)學(xué)軟件SPSS19.0進(jìn)行數(shù)據(jù)分析,統(tǒng)計(jì)數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示。組間比較采用單因素方差分析(one w ay ANOVA),LSD法進(jìn)行兩兩比較,以雙側(cè)p<0.05為具有統(tǒng)計(jì)學(xué)意義。
2.1 高糖高脂引起成骨細(xì)胞形態(tài)改變 倒置相差顯微鏡下觀察,對(duì)照組成骨細(xì)胞輪廓清晰,呈梭形或多角形,細(xì)胞間呈鋪路石樣緊密連接(圖1A-圖1C)。高糖高脂培養(yǎng)24h時(shí)觀察到細(xì)胞變得稀疏,形態(tài)皺縮,胞間間隙增寬,且隨培養(yǎng)時(shí)間延長(zhǎng),該現(xiàn)象更加明顯(圖1D-圖1F),提示高糖高脂可改變成骨細(xì)胞正常形態(tài)。
2.2 高糖高脂抑制成骨細(xì)胞增殖 圖2所示,培養(yǎng)成骨細(xì)胞0、12、24、36、48h,CCK-8檢測(cè)發(fā)現(xiàn)對(duì)照組細(xì)胞呈指數(shù)式增殖,高糖高脂組24h時(shí)吸光度值(0.065±0.013)較同時(shí)刻對(duì)照組(0.237±0.048)降低,差異有統(tǒng)計(jì)學(xué)意義(F24h=24.489,P=0.001),36、48h分別降低至0.032±0.022和0.027±0.022,與同時(shí)刻對(duì)照組相比差異更顯著(F36h=124.319,p<0.001;F48h=272.440,p<0.001),提示高糖高脂呈時(shí)間依賴性抑制細(xì)胞增殖。
圖1 高糖高脂處理24、36、48h后成骨細(xì)胞的形態(tài)變化
圖2 高糖高脂處理成骨細(xì)胞0-48h后的增殖活性
2.3 高糖高脂促進(jìn)成骨細(xì)胞凋亡 高糖高脂處理成骨細(xì)胞0、24、30、36h后,Annexin V/PI雙染流式檢測(cè)細(xì)胞凋亡,凋亡率=C4早期凋亡細(xì)胞率+C2晚期凋亡細(xì)胞率(圖3A)。圖3B所示,高糖高脂組24h時(shí)凋亡率(9.68%±3.33%)與對(duì)照組(1.96%±1.32%)相比差異有統(tǒng)計(jì)學(xué)意義(F=6.274,P=0.022),36h時(shí)凋亡率(12.89%±3.40%)上升至對(duì)照組6.6倍(P=0.004),提示高糖高脂呈時(shí)間依賴性促進(jìn)成骨細(xì)胞凋亡。
圖3 高糖高脂培養(yǎng)0-36h后成骨細(xì)胞凋亡情況
2.4 高糖高脂上調(diào)cleaved caspase-3蛋白水平 Western blotting結(jié)果顯示,健康成骨細(xì)胞表達(dá)caspase-3,在相對(duì)分子量為35k Da處可見清晰條帶,但極少表達(dá)活化的cleaved caspase-3;高糖高脂時(shí)間依賴性上調(diào)cleaved caspase-3蛋白水平,在17k Da處可見逐漸增強(qiáng)的條帶,caspase-3蛋白水平不變(圖4A)。圖4B所示,高糖高脂處理成骨細(xì)胞24h后,cleaved caspase-3相對(duì)表達(dá)量(0.349±0.068)較對(duì)照組(0.146±0.033)升高約2.4倍(F=9.603,P=0.016),36h時(shí)蛋白水平(0.468±0.136)約為對(duì)照組的3.2倍,差異更顯著(F=9.603,P=0.001),提示高糖高脂呈時(shí)間依賴性上調(diào)cleaved caspase-3表達(dá),與細(xì)胞凋亡相呼應(yīng)。
圖4 高糖高脂處理成骨細(xì)胞0-36h后caspase-3、cleaved caspase-3蛋白水平
大量研究表明,代謝綜合征與牙周炎相互影響。Iwasaki等發(fā)現(xiàn),代謝綜合征可增加牙周炎的發(fā)病風(fēng)險(xiǎn)[5]。高密度脂蛋白膽固醇降低、空腹血糖升高及腹部肥胖這三項(xiàng)危險(xiǎn)因素與牙周疾病密切相關(guān),牙周炎患者合并有代謝綜合征時(shí),牙周袋加深,附著喪失加重[3]。同時(shí),牙周健康狀況與代謝綜合征的發(fā)生相關(guān)。縱向觀察顯示,深牙周袋患者有更高幾率出現(xiàn)代謝綜合征臨床癥狀[21]。維持良好的口腔衛(wèi)生有助于降低罹患代謝綜合征的風(fēng)險(xiǎn)[22]。因此,探討代謝綜合征與牙周疾病關(guān)系的機(jī)制具有臨床價(jià)值。
糖脂代謝紊亂是代謝綜合征的重要臨床特征,表現(xiàn)為高糖高脂血癥[7]。高血脂最常見類型是總甘油三酯和低密度脂蛋白膽固醇水平升高,伴高密度脂蛋白膽固醇水平下降[23],其中引起細(xì)胞毒性的脂質(zhì)有甘油三酯、游離膽固醇、游離脂肪酸等。代謝綜合征患者靜脈血游離脂肪酸濃度為(0.40±0.10)mM[24],棕櫚酸屬于游離飽和脂肪酸,體外實(shí)驗(yàn)常用0.4mM棕櫚酸作為高脂培養(yǎng)條件[15,16,25]。Ying等發(fā)現(xiàn)0.4mM棕櫚酸作用心肌細(xì)胞24h后細(xì)胞增殖活性受抑制,凋亡率上升[25]。臨床上暫無(wú)文獻(xiàn)報(bào)道齦溝液中游離脂肪酸的濃度,但有學(xué)者發(fā)現(xiàn)齦溝液中可檢測(cè)到載脂蛋白B,其濃度約為靜脈血的25倍[26],載脂蛋白B是低密度脂蛋白膽固醇的主要結(jié)構(gòu)蛋白,它的測(cè)定可直接反應(yīng)低密度脂蛋白膽固醇的水平。研究表明,齦溝探診出血及指尖采血的血糖濃度在個(gè)體內(nèi)均有高度相關(guān)性,提示口腔微環(huán)境與全血血糖濃度相近[27]。體外實(shí)驗(yàn)構(gòu)建高糖細(xì)胞模型時(shí)常采用11mM-30mM糖濃度,研究高糖環(huán)境對(duì)血管內(nèi)皮細(xì)胞、胰島β細(xì)胞、成骨細(xì)胞等的作用[12,17,18,28,29]。Sidarala等發(fā)現(xiàn)20.0mM葡萄糖可激活胰島β細(xì)胞線粒體凋亡通路[28]。
我們發(fā)現(xiàn)20.0mM葡萄糖及0.4mM棕櫚酸培養(yǎng)成骨細(xì)胞24h時(shí),細(xì)胞開始出現(xiàn)皺縮、脫落,胞間間隙增寬,此時(shí)細(xì)胞增殖活性較同時(shí)刻對(duì)照組降低(F24h=24.489,P=0.001),凋亡率上升至對(duì)照組的5倍(F=6.274,P=0.022),且高糖高脂對(duì)成骨細(xì)胞增殖的抑制及凋亡的促進(jìn)呈時(shí)間依賴性。高糖高脂可影響細(xì)胞多種生物學(xué)特性,如增殖、凋亡、細(xì)胞形態(tài)等。胰島β細(xì)胞在高糖高脂作用下,細(xì)胞周期抑制劑p16、p18表達(dá)增加,阻礙D-cyclins調(diào)控作用,細(xì)胞增殖能力下降[15];且高糖高脂可促進(jìn)胰島β細(xì)胞釋放ATP,ATP在胞外降解為ADP并與嘌呤能受體P2Y13結(jié)合,活化caspase-3,誘導(dǎo)細(xì)胞凋亡[30]。Caspase-3是凋亡通路中關(guān)鍵蛋白,經(jīng)上游蛋白酶剪切為cleaved caspase-3活化,可降解細(xì)胞骨架蛋白、核蛋白等,引起細(xì)胞形態(tài)學(xué)變化,還可降解MEK激酶、PKA2促進(jìn)凋亡[31]。我們實(shí)驗(yàn)結(jié)果顯示,高糖高脂處理成骨細(xì)胞24h后,cleaved caspase-3蛋白水平顯著增高,且相對(duì)表達(dá)量呈時(shí)間依賴性上調(diào),與凋亡吻合。Pacios等在大鼠實(shí)驗(yàn)性牙周炎模型中發(fā)現(xiàn),成骨細(xì)胞凋亡增加導(dǎo)致新骨形成減少,使用半胱天冬酶-3(caspase-3)抑制劑可減少成骨細(xì)胞凋亡、促進(jìn)新骨形成,說明cleaved caspase-3參與成骨細(xì)胞的凋亡過程[11]。
綜合我們實(shí)驗(yàn)結(jié)果及前人研究,顯示高糖高脂從多個(gè)方面影響骨組織的改建,表現(xiàn)為:①高糖高脂呈時(shí)間依賴性抑制成骨細(xì)胞增殖,促進(jìn)凋亡,引起細(xì)胞數(shù)量減少;②成骨細(xì)胞在高糖高脂環(huán)境中堿性磷酸酶活性下降,Runx2、COL1α的mRNA及蛋白水平下調(diào),礦化結(jié)節(jié)數(shù)量減少,成骨能力減弱[8,9];③高糖或高脂可增強(qiáng)破骨細(xì)胞骨吸收水平[10]。綜上,高糖高脂通過減少成骨細(xì)胞數(shù)量、削弱成骨分化能力、提高破骨吸收水平,打破骨形成與吸收的平衡狀態(tài),影響牙槽骨的修復(fù)重建,可能是代謝綜合征加重牙周炎癥的原因之一。探討高糖高脂環(huán)境下保護(hù)成骨細(xì)胞的有效方法,并促進(jìn)成骨分化及抑制破骨細(xì)胞骨吸收,對(duì)臨床治療牙周炎有重要意義。
[1] GJL,A L,FA S.Periodontal systemic associations:review of theevidence[J].JClin Periodontol,2013:8-19
[2] 劉玉鳳,柯 杰,趙桂芝.牙周病與糖尿病關(guān)系的研究進(jìn)展[J].中華老年口腔醫(yī)學(xué)雜志,2010,8(3):180-183
[3] Shimazaki Y,Saito T,Yonemoto K,et al.Relationship of metabolic syndrome to periodontal disease in Japanese women:the Hisayama Study[J].JDent Res,2007,86(3):271-275[4]Minagaw a K,Iw asaki M,Ogaw a H,et al.Relationship between metabolic syndrome and periodontitis in 80-year-old Japanesesubjects[J].JPeriodontal Res,2015,50(2):173-179
[5] Iw asaki M,Sato M,Minagaw a K,et al.Longitudinal Relationship Betw een Metabolic Syndrome and Periodontal Disease Among Japanese Adults Aged≥70 Years:The Niigata Study[J].Journal of Periodontology,2015,86(4):491-498
[6]Furuta M,Liu A,Shinagawa T,et al.Tooth lossand metabolic syndrome in middle-aged Japanese adults[J].J Clin Periodontol,2016,43(6):482-491
[7] Eckel R H,Grundy S M,Zimmet P Z.The metabolic syndrome[J].Lancet,2005,365(9468):1415-1428
[8] Gong K,Qu B,Liao D,et al.MiR-132 regulates osteogenic differentiation via dow nregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ-dependent manner[J].Biochemical and Biophysical Research Communications,2016,478(1):260-267
[9]Gong K,Qu B,Wang C,et al.Peroxisome Proliferator-Activated Receptor alpha Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathw ay[J].Mol Cells,2017,40(6):393-400
[10]Williams JP,Blair H C,McDonald JM,et al.Regulation of osteoclastic bone resorption by glucose[J].Biochem Biophys Res Commun,1997,235(3):646-651
[11]Pacios S,Andriankaja O,Kang J,et al.Bacterial Infection Increases Periodontal Bone Lossin Diabetic Ratsthrough Enhanced Apoptosis[J].The American Journal of Pathology,2013,183(6):1928-1935
[12]Su J,Zhou H,Tao Y,et al.HCdc14A isinvolved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose,free fatty acids and hypoxia[J].Cell Signal,2015,27(1):47-60
[13]Wang H J,Lee E Y,Han S J,et al.Dual pathw ays of p53 mediated glucolipotoxicity-induced apoptosis of rat cardiomyoblast cell:activation of p53 proapoptosis and inhibition of Nrf2-NQO1 antiapoptosis[J].Metabolism,2012,61(4):496-503
[14]Tan C,Voss U,Svensson S,et al.High glucoseand freefatty acidsinducebeta cell apoptosisvia autocrineeffectsof ADP acting on the P2Y(13)receptor[J].Purinergic Signal,2013,9(1):67-79
[15]Pascoe J,Hollern D,Stamateris R,et al.Free Fatty Acids Block Glucose-Induced-Cell Proliferation in Mice by Inducing Cell Cycle Inhibitors p16 and p18[J].Diabetes,2012,61(3):632-641
[16]Sharifnia T,Antoun J,Verriere T G C,et al.Hepatic TLR4 signaling in obese NAFLD[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2015,309(4):G270-G278
[17]Masur K,Vetter C,Hinz A,et al.Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levelsinvolved in tumour cell migration,adhesion and proliferation[J].British Journal of Cancer,2011,104(2):345-352
[18]Chen W M,Sheu W H,Tseng PC,et al.Modulation of microRNA Expression in Subjectsw ith Metabolic Syndromeand Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins[J].PLoSOne,2016,11(5):e154672
[19]Shao D,Fry JL,Han J,et al.A Redox-resistant Sirtuin-1 Mutant Protectsagainst Hepatic Metabolic and Oxidant Stress[J].Journal of Biological Chemistry,2014,289(11):7293-7306
[20]Martinez SC,Tanabe K,Cras-Meneur C,et al.Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis[J].Diabetes,2008,57(4):846-859
[21]Morita T,Yamazaki Y,Mita A,et al.A Cohort Study on the Association Betw een Periodontal Disease and the Development of Metabolic Syndrome[J].Journal of Periodontology,2010,81(4):512-519
[22]Kobayashi Y,Niu K,Guan L,et al.Oral Health Behavior and Metabolic Syndrome and Its Components in Adults[J].Journal of Dental Research,2012,91(5):479-484
[23]李成琳,陳書蘭,于新波.牙周病與高脂血癥關(guān)系的研究進(jìn)展[J].中華老年口腔醫(yī)學(xué)雜志,2015(2):109-112
[24]Favre J,Y?ld?r?m C,Leyen T A,et al.Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells:Action of resveratrol[J].Vascular Pharmacology,2015,75:7-18
[25]Ying Y,Zhu H,Liang Z,et al.GLP1 protects cardiomyocytesfrom palmitate-induced apoptosisvia Akt/GSK3b/bcatenin pathw ay[J].Journal of Molecular Endocrinology,2015,55(3):245-262
[26]Sakiyama Y,Kato R,Inoue S,et al.Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients[J].JPeriodontal Res,2010,45(2):216-222
[27]Beikler T,Kuczek A,Petersilka G,et al.In-dental-office screening for diabetesmellitus using gingival crevicular blood[J].JClin Periodontol,2002,29(3):216-218
[28]Sidarala V,Veluthakal R,Syeda K,et al.Phagocyte-like NADPH oxidase(Nox2)promotes activation of p38MAPK in pancreaticβ-cells under glucotoxic conditions:Evidence for a requisiteroleof Ras-related C3 botulinum toxin substrate1(Rac1)[J].Biochemical Pharmacology,2015,95(4):301-310
[29]Feng Z P,Deng H C,Jiang R,et al.Involvement of AP-1 in p38MAPK signaling pathw ay in osteoblast apoptosis induced by high glucose[J].Genet Mol Res,2015,14(2):3149-3159
[30]Tan C,Voss U,Svensson S,et al.High glucoseand freefatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y13 receptor[J].Purinergic Signalling,2013,9(1):67-79
[31]Saikumar P,Dong Z,Mikhailov V,et al.Apoptosis:definition,mechanisms,and relevance to disease[J].Am J Med,1999,107(5):489-506