蔣清泉,陳慧士,陳青蘭
(1.廈門理工學院 經濟與管理學院,福建 廈門 361024;2.中華電信,臺灣 臺中 406)
動蕩環(huán)境下新產品的推廣面臨消費者更加挑剔與消費偏好變幻莫測、同業(yè)競爭強化等因素的嚴峻挑戰(zhàn),產生許多問題難以抉擇,導致業(yè)績起伏出現遲滯、衰退。因此,決策者必須根據環(huán)境變化,建立多階段推廣策略的監(jiān)測和反饋機制,不斷分析、預測和決策,適時靈活地調整戰(zhàn)略規(guī)劃,以適應動蕩環(huán)境[1,2]。從現有文獻看,在新產品推廣領域上普遍使用傳統(tǒng)的評價方法,而傳統(tǒng)評價方法忽視了投資的不可逆性、不確定性以及管理的靈活性這三個基本特征,從而忽視了隱含的期權價值。一方面,有關實物期權運用于動蕩環(huán)境下新產品的推廣多階段性的應用尚未發(fā)現,尤其是應用于類似電信行業(yè)新產品投資預測與決策方面。討論MOD的文章更少,且大多是對實物期權方法介紹性的運用,幾乎全部選擇B-S模型進行說明和實證,且偏向于靜態(tài)研究。尚未發(fā)現針對動蕩環(huán)境下,透過實物期權進行多期分析與運用,不間斷的檢查與監(jiān)測新產品的研究。另一方面,當前分析電信投資理論仍偏向以傳統(tǒng)的投資決策理論為主,并且研究內容側重在投資決策方法論,以數學模型等方法所作的靜態(tài)研究。結合電信行業(yè)的投資特點以及未來發(fā)展,多階段性的動態(tài)投資決策研究不多,投資決策理論缺乏實證方面的研究。
中華電信MOD投資成本巨大,且大多設備專有性強,投資行為不可逆,又面臨多變的市場環(huán)境,具有了高度不確定性。運用實物期權理論和灰色預測方法進行中華電信投資分析時,由于能夠充分考慮到這些投資特征,能夠科學地作出投資決策。因此,本文結合灰色預測以多階段的實物期權理論方法,運用動態(tài)規(guī)劃、模型論證、案例研究、比較研究、模擬仿真等方法對中華電信MOD項目進行投資決策研究。
灰色GM(1,1)是指一階微分、一個變量的Gray模型,主要是將所要分析的數據經過適當的數列轉化,經差分方程及微分方程的組合,建立灰色預測模式[3]。GM(1,1)預測模型定義為微分方程:
GM(1,1)方程式中定義x(1)的初始值為x(0)(1),而由常微分方程式求解,可以得到x(1)為:
對于GM(1,1)預測模型中的參數a,b的大小,目前都是使用最小二乘法(Least Square Method)做計算,在的方程式中,代入已知的數值得:
將方程式(5)轉換成矩陣的方式分析計算,就可以轉化成Y=Ba的形式,而參數值可以利用矩陣的公式a?=(BTB)-1BTY加以求出。代入方程式(2)的微分方程中,得到x(1)響應式[4]。接著利用初始條件x(1)(1)=x(0)(1)求出灰微分方程式的解,可以得到x(1)響應式如下列兩式所示:
在建構模式后必須做精確度的檢驗,了解預測值和實際值間的誤差e(k)。本文使用傳統(tǒng)的殘差檢驗法,根據實際值與預測值做殘差比較得誤差為:
定義精確度為1-e(k)。在精確度的分析上,本文采用吳漢雄[5]的論點作為精確度的衡量標準,嚴格控制預測精確度大于90%范圍內。他認為如果平均精確度大于90%,則此一灰預測模式的預測效能稱為良好,如果平均精確度小于90%,則表示此一灰預測模式的預測效能較差,不適合該領域的研究[6]。
對于任何一組原始數據并非都可適用于GM(1,1)建模,故需要進行級比(Class Ratio)分析[7]。分析結果必須符合級比的限制,所建立的模型才會有一定的水平,亦即有一定的精確度。級比的定義為:
對GM(1,1)模型而言,為了使方程式a必須落于(-2,2)區(qū)間中,數據的級比必須符合σ(0)(k)∈(e-2,e2)=(0.135,7.839),稱為GM(1,1)建模的可容區(qū)。如果要使預測精確度提高,根據過去的研究,資料的級比則和建立模型的個數相關,數學式為級比必須介于為建立模型的個數;例如在n=4時,限制區(qū)間為而在n=6 時,限制區(qū)間為
在新產品進行推廣決策時,常用凈現值法對投資項目的凈現值進行分析。凈現值法是運用投資項目的凈現值來進行投資評估的基本方法,凈現值等于投資項目未來凈現金流量按資本成本折算成現值減去初始投資后的余額[9]。計算公式如下:
凈現值分析是靜態(tài)的,而實物期權分析必須是動態(tài)的,故要將新產品的NPV值投入實物期權分析必須加以改進,應包含該項目的凈現值(NPV)和項目靈活性價值兩部分,這種包含靈活性價值項目的真實價值可稱為擴展凈現值(ENPV),擴展凈現值價值的體現可從二項式模型與網格圖分析得到充分證明。
二項式模型是對基礎資產價值變化的一種以簡單描述為基礎的估價模型,即假定在每個時間段,基礎資產價值的變化只能取兩個可能結果中的一個:上升某個百分點或下降某個百分點。比如,假定基礎資產初始價值為V(未來現金流價值),那么,在第一個時間段結束時,它要么向上變?yōu)閂u,要么向下變?yōu)閂d,即第一節(jié)點的值可能是Vu或者Vd;同樣,在第一節(jié)點的基礎上,資產價值的變化又將是兩種可能結果中的一個,這樣的資產價值變化過程可以延伸到多個時間段,這種變化形成了資產價值變化網絡。
二項式模型是用風險中性定價方法進行定價的,風險中性概率的計算公式為:
本文結合灰色預測以多階段的實物期權理論方法對中華電信MOD項目進行投資決策研究。在進行實例分析前,通過與蒙特卡羅法進行比較驗證,檢驗所建立模型和方法的可行性和有效性。中華電信MOD是一種夾著高傳輸速率可播放高畫質節(jié)目的創(chuàng)新性優(yōu)良產品,MOD進入新市場推廣將會遭遇許多動蕩的沖擊,動蕩來自于客戶、政府的態(tài)度、法令、競爭者,將有待中華電信逐一去突破或克服。MOD于2005年12月起全面開播,人為因素成份居多導致客戶數上下起伏過大,若截取此期間數據進行分析較容易失真。因此,本文采取2005年12月MOD全面開播后客戶數進行分析較具參考價值。
根據中華電信內部網站可以得到MOD開播初期2005年12月31日至2007年3月31日美半年時間段的用戶數分別為 98021、130237、178526、210310、253120、308670。取2005年12月31日至2007年3月31日六期MOD經營客戶數進行級比分析,求出級比的數據為σ(0)(k)=x(0)(k-1)/x(0)(k)=(0.7526,0.7295,0.8488,0.8309,0.8200)。比分析結果所取得的五期數據皆落在σ(0)(k)區(qū)間內,符合GM(1,1)建模的可容區(qū)。如果要使MOD客戶數預測精確度提高,級比數學式必須介于為建立模型的個數;n=4代表四期的級比限制區(qū)間為因即將取MOD全區(qū)開播最初四期的客戶數資料進行灰色預測,因此將這四期數據先進行級比分析,分析結果數值為(0.7526,0.7295,0.8488),區(qū)間亦落在(0.670,1.492)建模要求范圍內。x0=(98021,130237,178526,210310)則σ(0)=(0.7526,0.7295,0.8488)。
綜合以上兩種級比測試,無論是測試MOD最初推廣的六期客戶數,其相互間的初步關聯度,結果符合GM(1,1)建模的可容區(qū),或者將后續(xù)要投入灰色預測所取的四期客戶數進行更嚴格的級比測試,同樣通過測試符合更高精確度的要求。
實物期權計算的相關條件如表1所示。參照“二項式模型”的公式計算而得,內容如下:
表1 實物期權計算的條件 (單位:元)
新產品推廣最初四期資料投入灰色預測可預測得兩期資料,以往前滾動模式舍棄新產品推廣最初兩期數據,只取后面兩期數據連同經灰色預測已取得兩期數據,共四期客戶數再度利用灰預測模型Matlab軟件運行,第二次可預測取得兩期客戶數據。取第一、二次灰預測所測得四期資料,連同新產品推廣最初的第四期數據,合計五期進行實物期權分析。具體方法與步驟如圖1所示。
圖1 灰色預測滾動模式與實物期權組合循環(huán)模型
MOD推廣最初四期資料由第一次灰色預測已取得兩期資料,共有六期資料,先舍棄新產品推廣前兩期資料,取后兩期資料連同第一次灰色預測已測得的兩期資料,共四期客戶數資料再投入灰預測模型,往前滾動模式進行第二次預測,可測得兩期新的資料。取MOD最初推廣的第四期資料,連同第一、二次灰預測所測得四期資料,共五期進行實物期權分析。根據公式計算出凈現金流NPV=-161.3。依圖1步驟得到二叉樹法第二步MOD測算結果數字圖,如圖2所示。將各腳點數值還原為放棄、擴張、收縮或繼續(xù),并畫出中線,越往上半部代表越來越看好投資環(huán)境,越往下半部代表越來越看壞投資環(huán)境。由起始點數值為正,判斷這多階段實物期權可進行下一階段。但從觀測看無論從越來越看好或越來越看壞投資環(huán)境都顯示放棄,但第一順位卻為繼續(xù)代表本該放棄MOD經營,但似乎又有一些希望顯示要堅持撐過難關就會有轉機。
圖2 MOD初期推廣測算結果數字圖
在推廣中期,由于已累積足夠數據,故無須進行灰色預測,可以用中期的數據直接進行實物期權分析。由圖1中實物期權分析步驟得到推廣中期二叉樹法第二步MOD測算結果數字圖,如圖3所示。由圖中起始點數值為正可判斷這多階段實物期權可進行下一階段,然而由圖看不管越來越看好或越來越看壞投資環(huán)境,幾乎傾向于指示投資決策者要縮小規(guī)模或放棄經營,只有少部分顯示可以繼續(xù)經營,雖然投資環(huán)境如此惡劣但與早期的結果相比較,顯然推廣效果已有所改善,因為圖型的腳點顯示漸漸由放棄經營轉變成為繼續(xù)經營,情況雖有好轉但還需加強推廣,慢慢會有轉機。
圖3 MOD中期推廣測算結果數字圖
在推廣近期,由于實物期權分析須具備前瞻性,故選取最近四期既有客戶數資料投入灰色預測Matlab軟件,可預測得到未來兩期客戶數。經前期以灰預測多次滾動模式所預測得到客戶資料與既有客戶數做比較,精確度皆大于90%,間接證明所預測得到未來兩期客戶數是值得信賴的。取未來兩期客戶數連同最近三期客戶數,一并投入實物期權分析,作為為決策者參考指標。MOD取八期客戶數分析所得的σ(0)區(qū)間落在(0.670,1.492)內,符合灰色預測以四期資料建模精確度更高的要求。因此,可以進行下一階段的灰色預測模型構建。
將MOD客戶數分成八期,先取頭四期客戶數資料投入灰色預測Matlab軟件。依灰色預測既有四期資料可預測兩期的特性,可預測得出2013年9月30日及2013年12月31日兩期的客戶數,再循著滾動方法進行第二次以后的預測。根據表2和表3比較,精確度皆為98%以上,達到本文針對新產品預測精確度90%以上要求的屬性。從已經發(fā)生的既有客戶數資料,預測的資料進行比較分析,其精確度幾乎達100%,可推斷所預測的未來兩期客戶數是準確的。亦即經灰色工具所預測2014年9月30日及2014年12月31日,中華電信MOD未來這兩期客戶數是合理而值得信賴的。
表2 中華電信MOD預測與實際客戶數比較 (單位:戶)
表3 中華電信MOD預測與實際客戶數比較 (單位:戶)
針對類似MOD這種新產品于新市場推廣面臨未知風險的特性,本文以充分利用少量數據與兼顧前瞻性理念為出發(fā)點,取預測所得未來兩期客戶數資料,連同最近實際的客戶數共五期,根據圖1中實物期權分析步驟得到MOD近期推廣測算結果數字圖,如圖4。由起始點數值為正,判斷這多階段實物期權可進行下一階段。無論從上半部越來越看好投資環(huán)境或下半部越來越看壞投資環(huán)境觀察,幾乎都顯示要繼續(xù)經營或擴大規(guī)模,未來前景大好。
通過實物期權與灰色預測理論相結合對中華電信MOD初期、中期、近期發(fā)展情形的實證分析,根據分析得到以下結論:在推廣初期,從圖越來越看好或越來越看壞投資環(huán)境觀察,都顯示放棄,代表中華電信MOD這新產品初期進入動蕩環(huán)境推廣將會遭遇到許多阻力困難重重。分析都顯示繼續(xù)經營MOD有困難卻也有希望,撐過難關就會否極泰來。在推廣中期,不管看好或看壞未來投資環(huán)境,幾乎傾向于指示投資決策者要縮小規(guī)模或放棄經營。從近期看,中華電信MOD用戶數已突破一百萬的經濟規(guī)模,不管看好或看壞未來投資環(huán)境幾乎傾向于指示決策者要擴大投資規(guī)模或繼續(xù)經營。
圖4 MOD近期推廣測算結果數字圖
本文通過結合實物期權與灰色預測理論構建了新產品推廣決策模型,在較少數據小樣本進行新產品推廣客戶數預測時,灰色預測與實物期權結合預測結果的準確度達到了90%以上,說明模型具有可行性和有效性。最后,對中華電信產品的推廣進行實證分析,結果證明本文構建的實物期權與灰色預測相結合的模型較實物期權與灰色預測單方面決策更具有效,可以根據新產品不同時間段的情況進行合理有效的決策,為新產品推廣決策提供一種新方法,具有一定的借鑒意義。
參考文獻:
[1]Roger D,Mason B Product Tactics in a Complex and Turbulent Envi?ronment Viewed Through a Complexity Lens[J].The Business Review,2012,20(1).
[2]Kipley D,Lewis A,Jewe R.Entropy—disrupting Ansoff’s Five Lev?els of Environmental Turbulence[J].Business Strategy Series,2012,13(6).
[3]孫曉云,張濤,王振東,王明明.基于改進灰色GM(1,1)模型的錨桿承載力的預測方法[J].河北師范大學學報:自然科學版,2014,(6).
[4]徐廷學,朱會傳,董琪.基于改進灰色模型和RBF優(yōu)化模型的導彈儲存壽命預測[J].計算機與現代化,2015,(8).
[5]吳漢雄,鄧聚龍,溫坤禮.灰色分析入門(第一版)[M].臺北:高立圖書公司,1996.
[6]溫坤禮.灰色系統(tǒng)理論[M].臺北:伍南圖書公司,2013.
[7]張昌娟,焦鋒,趙波,牛贏.基于灰色-馬爾可夫模型的刀具磨損預測[J].河南理工大學學報:自然科學版,2015,36(6).
[8]高子源.基于改進灰色模型的物流成本預測研究[J].現代商貿工業(yè),2016,(19).
[9]盧銘凱.結合新產品擴散特征的實物期權定價模型研究[J].科技進步與對策,2011,28(17).