李松林,賈 勇,郭 勇,鐘曉玲,崔國龍
(1.成都理工大學 信息科學與技術學院,成都 610059; 2.電子科技大學 電子工程學院,成都 611731)(*通信作者電子郵箱jiayong_cdut@hotmail.com)
建筑物內(nèi)運動人體跟蹤是目前穿墻雷達領域的研究熱點之一[1-3],目前穿墻雷達運動人體跟蹤的實現(xiàn)方法主要有:基于單發(fā)雙收陣列的檢測定位跟蹤方法[4-5]和基于多輸入多輸出(Multi-Input Multi-Output,MIMO)陣列的目標成像跟蹤方法[6-7]。由于MIMO陣列成像技術具有高信噪比、高分辨、抗干擾能力強等優(yōu)點,逐漸成為目前建筑物內(nèi)運動人體跟蹤的主要方法。
陣列天線布局方式、未知墻體穿透補償、多徑雜波抑制、旁瓣柵瓣抑制均屬于基于MIMO陣列的目標成像跟蹤的研究熱點。如文獻[8]給出了適用于超寬帶穿墻雷達運動人體成像跟蹤的最優(yōu)MIMO陣列布局;文獻[9]提出了利用墻體回波信息推算反射系數(shù)、進而確定墻體參數(shù)以實現(xiàn)墻體穿透補償?shù)乃惴ǎ纬闪溯^高分辨率的運動目標圖像;文獻[10]推導出了在MIMO穿墻雷達成像中多徑幻像的分布特性,并評估了相位相干因子(Phase Coherence Factor,PCF)對多徑幻像抑制的性能;文獻[11]在建立的多徑模型基礎上提出了從原始數(shù)據(jù)中消除多徑回波的方法,在超寬帶穿墻雷達成像中達到了實驗預期效果;文獻[12]利用MIMO多通道回波在目標區(qū)域和柵瓣區(qū)域相位分布的差異性,引入符號相干因子(Sign Coherence Factor,SCF)對穿墻雷達圖像柵瓣進行抑制。上述研究均通過直接觀察雷達圖像的方式來判斷運動目標的位置,然而墻體補償誤差、多徑雜波和旁瓣柵瓣抑制殘余,會造成單幀穿墻雷達圖像中出現(xiàn)散焦、偏移、幻像甚至丟失的問題,從而使連續(xù)多幀雷達圖像中目標圖像呈現(xiàn)“閃爍”和“抖動”的特點;同時,空間分辨率和人體散射特性的變化會進一步加劇目標圖像的“閃爍”和“抖動”,此時仍采用直接觀察圖像確定目標位置的方式,會對運動目標進行跟蹤的可靠性和準確度造成影響。因此如何從穿墻雷達圖像中提取目標位置并形成跟蹤航跡也成為MIMO成像跟蹤的一個研究方向,如文獻[8]在修正的Kirchhoff目標成像算法的基礎上對目標位置進行提取,形成了目標跟蹤航跡,但并沒有針對穿墻雷達圖像給出具體的提取目標位置的方法。
本文針對MIMO穿墻雷達圖像中運動目標位置提取與跟蹤的需求,借鑒計算機視覺中的Camshift視頻目標跟蹤算法[13],在建立的穿墻雷達圖像顏色概率分布圖中,首先采用目標預測的方法在概率分布圖中確定目標存在可能性較大的搜索區(qū)域,從而濾除雜波、幻像等干擾;然后利用迭代的思想在目標搜索區(qū)域進行運動目標位置提取,減少了目標圖像形狀、大小變化對位置提取的影響;最后對提取的目標位置進行平滑濾波處理,得到連續(xù)穩(wěn)定的跟蹤航跡。實驗結果表明,相比Meanshift與傳統(tǒng)的Camshift跟蹤算法,改進后的Camshift算法在MIMO穿墻雷達實時成像系統(tǒng)中對建筑物內(nèi)運動人體目標具有更好的跟蹤效果。
如圖1所示的MIMO陣列運動人體目標成像跟蹤模型,墻體后運動人體目標沿A、B、C運動到D點,假設MIMO天線陣列連續(xù)發(fā)送和接收n個周期超寬帶脈沖信號,接收到n個周期的回波信號經(jīng)兩脈沖背景對消[14]、墻體補償[15]和后向投影成像算法[16-17]得到n幀連續(xù)的穿墻雷達圖像。
在連續(xù)的n幀穿墻雷達圖像中,由于受穿墻雷達中多徑雜波[18-19]、背景雜波殘余[18-19]和圖像旁瓣[20]及柵瓣[12]的影響,會在部分幀圖像中出現(xiàn)幻像干擾;同時因為墻體補償誤差、圖像分辨率變化以及運動人體目標散射特性變化,在多幀圖像中會出現(xiàn)目標圖像形狀、大小變化,這些都會將影響目標位置提取的準確度。
圖1 MIMO陣列運動人體目標成像跟蹤模型Fig. 1 Moving target imaging tracking model based on MIMO array
Camshift算法,即連續(xù)自適應Meanshift算法,其基本思想是對視頻序列的所有圖像作Meanshift運算,利用目標的顏色直方圖模型將圖像轉化為顏色概率分布圖,初始化一個搜索窗的大小和位置,并根據(jù)上一幀得到的結果自適應調(diào)整窗口的位置和大小[13]。利用這一優(yōu)點,并結合穿墻雷達圖像的特點,本文提出了基于改進Camshift的穿墻雷達運動人體目標成像跟蹤算法,其關鍵是在每一幀穿墻雷達圖像中準確提取目標位置,然后結合多幀目標位置信息給出跟蹤濾波處理后的連續(xù)穩(wěn)定的目標運動航跡。算法主要分為目標位置預測、目標位置提取及航跡平滑處理。
改進Camshift的穿墻雷達運動人體目標成像跟蹤算法的處理流程如圖2所示,相比傳統(tǒng)的Camshift視頻目標跟蹤算法,改進后的算法對穿墻雷達成像圖中目標位置提取進行了兩點優(yōu)化:第一,針對多徑雜波、背景雜波殘余、圖像旁瓣和柵瓣的影響,本文在算法中融入目標預測思想,首先根據(jù)目標運動特征確定目標位置搜索波門(目標可能性較大區(qū)域),抑制了波門外的幻像干擾。第二,由于墻體補償誤差散焦、圖像分辨率變化、運動人體散射特性變化造成的目標圖像形狀、大小變化,將影響目標位置的提取。針對該問題,本文提出了目標圖像質心位置迭代搜索,根據(jù)目標圖像形狀、大小變化,調(diào)整搜索窗尺度進行波門內(nèi)目標質心位置迭代,提取出多幀目標位置信息,最后利用α-β濾波得到連續(xù)穩(wěn)定的目標運動航跡。
圖2 基于改進Camshift的穿墻雷達運動人體目標成像跟蹤算法流程Fig. 2 Flow chart of moving target tracking algorithm based on improved Camshift for through-wall-radar imaging
本文對目標位置的提取是在顏色概率分布圖上進行的,顏色概率分布圖中的像素概率值是用來度量目標出現(xiàn)“可能性”的值,這種可能性是目標運動過程中在此像素位置的概率。將MIMO陣列實時成像中得到的n幀連續(xù)穿墻雷達圖像經(jīng)直方圖反向投影處理后得到顏色概率分布圖[13,21]。在直方圖反向投影的過程中,穿墻雷達圖像中的像素被顏色直方圖中相應的像素統(tǒng)計量所代替,然后重新量化就得到顏色概率分布圖,定義如下:
假設像素種類為m個,像素個數(shù)共有j個,那么位置{(xi,yi)}i=1,2,…, j處直方圖表示為{q}u=1,2,…,m,即在u=1,2,…,m出現(xiàn)的概率,定義一個映射c:R2→{1,2,…,m},用以表示(xi,yi)的索引值,則直方圖可以寫成:
(1)
其中δ(x)是Delta函數(shù),如下所示:
(2)
進行直方圖歸一化處理,即將[0,max(qu)]的范圍變換到[0,255]。
(3)
其中:max[qu]是特征值中的最大值,m為特征空間中特征值的個數(shù)。設與原圖尺寸相同的顏色概率分布圖為I,(xi,yi)為原圖像直方圖中任意一像素點,則該像素點對應的顏色概率分布圖的概率為pI(xi,yi):
(4)
本文利用傳統(tǒng)Camshift算法在前兩幀穿墻雷達圖像中進行目標起始速度確定。首先對前兩幀圖像進行直方圖反向投影得到相應的顏色概率分布圖,然后在第一幀圖像中直接手動標注目標位置,以此確定下一幀固定的目標搜索波門,并在標注目標位置區(qū)域內(nèi)建立目標圖像顏色概率分布圖;接著以當前幀目標位置為搜索中心,在固定的波門內(nèi)進行第二幀目標位置搜索,該范圍內(nèi)某一區(qū)域像素概率值最大,即認定該區(qū)域為目標位置。利用得到的第一幀和第二幀的目標位置和時間關系,確定目標初始運動速度為:
(5)
其中時間T為連續(xù)兩幀圖像時間間隔。
傳統(tǒng)Camshift算法針對目標的大小,以n幀確定的目標位置直接作為第n+1幀目標波門搜索中心進行目標位置提取(計算像素概率值最大區(qū)域)。但是在MIMO雷達圖像中,由于受多徑雜波、背景雜波殘余、圖像旁瓣及柵瓣的影響,會造成圖像散焦和幻像,圖像中目標位置容易發(fā)生偏移,目標的航跡會受到很大影響,甚至會造成目標誤判與錯誤航跡;同時目標處于運動狀態(tài),第n幀目標質心位置和第n+1幀目標質心位置會有一定距離,這使得部分幀圖像出現(xiàn)虛假的目標位置以及目標跟蹤丟失等問題。
(6)
在上文得到的目標可能性較大區(qū)域(即波門范圍)內(nèi)進行目標質心位置提取,然而在運動過程中,目標圖像的形狀、大小時刻在變化,目標圖像的質心位置難以確定。針對這一問題,本節(jié)提出了目標質心位置迭代計算方法,在連續(xù)多幀雷達圖像中,通過在波門范圍內(nèi)自適應調(diào)整目標搜索窗的大小,使搜索窗與目標圖像相匹配,最后將搜索窗中心作為目標位置。
如圖3所示,圖中陰影部分為穿墻雷達圖像中目標圖像區(qū)域,虛線圓形為搜索波門,實線框為目標搜索窗,在目標跟蹤起始之后,即第三幀開始,在波門范圍內(nèi),以波門中心為當前時刻搜索窗中心(點S),在上一幀搜索窗大小的基礎上膨脹ρ倍作為當前時刻搜索窗大小,在此搜索窗內(nèi)建立顏色概率分布圖,利用其零階矩和一階矩來確定搜索窗內(nèi)目標圖像的質心位置。
圖3 提取目標質心位置過程Fig. 3 Process of extracting target centroid position
考慮到對噪聲不敏感的突出優(yōu)點,顏色概率分布圖的零階矩和一階矩被用來確定搜索窗內(nèi)目標圖像的質心位置,零階矩和一階矩[13]分別定義為:
零階矩:
(7)
X軸和Y軸方向一階矩:
(8)
其中:pI(x,y)為顏色概率分布圖中坐標(x,y)處的像素概率值,x和y的變化范圍為當前搜索窗口的大小。
根據(jù)式(7)、(8)可得到目標圖像區(qū)域的質心位置為:
(9)
每完成一次迭代計算,即確定了搜索窗內(nèi)部分目標圖像質心位置,然后將搜索窗中心移至該質心位置,并利用式(10)重新計算搜索窗大小。重復上述迭代過程,當搜索窗中心與波門范圍內(nèi)目標圖像質心位置重合或距離小于設定的閾值,則認定迭代收斂。如圖3所示,從點S到點Q′,其中W和H兩點為迭代過程中搜索窗的中心位置,每一次迭代都會重新得到新的搜索窗中心位置。為了表述清晰,只選取了迭代過程中較典型的W和H兩點,省略了迭代過程中其他搜素窗中心位置,此時將搜索窗中心作為當前幀提取的目標位置。
(10)
其中γ為搜索窗控制參數(shù),根據(jù)大量的實測實驗得出,當γ為2.5時,可實現(xiàn)搜索窗對目標圖像的最優(yōu)匹配。
在上述迭代過程中:膨脹系數(shù)ρ過大將增加波門范圍內(nèi)雜波幻像對目標圖像質心位置提取的影響;ρ過小將降低迭代效率,甚至出現(xiàn)搜索窗未包含目標圖像的情況,從而導致迭代中斷。在本文給出的實驗中設置ρ=1。
(11)
(12)
針對多幀連續(xù)雷達圖像進行上述目標位置預測、目標位置提取,并得到每一幀濾波處理后的目標位置,最后形成連續(xù)穩(wěn)定的目標運動航跡。
實驗場景如圖4所示,墻體為粘土磚墻,墻體厚度為0.24 m。穿墻雷達采用兩發(fā)八收陣列,兩個發(fā)射天線分別放置在接收陣列的兩端,相鄰收發(fā)天線間距為15 cm,相鄰接收天線間距為30 cm。發(fā)射信號為步進掃頻連續(xù)波(Stepped Frequency Continuous Wave, SFCW)信號,頻帶為1~2 GHz,頻率步進為2 MHz。雷達設置在距墻體5 m處,并且距離地面1.2 m,以使聚焦平面在高度為1.75 m的人體散射部分(胸部位置),即保證來自胸部位置散射的最強回波是形成人體圖像的大部分數(shù)據(jù)。在建筑物內(nèi)運動人體以不大于1.5 m/s的運動速度從一端墻角A位置(2,9)到達另一端B位置(-1,11),如圖4(a)所示。為了更好地說明本文算法的性能,圖中標注了運動目標的實際運動航跡,并在下文對運動航跡進行了定量誤差分析。
在本次穿墻雷達探測實驗中,本文提取了100幀連續(xù)雷達圖像對提出的算法進行驗證分析,其中連續(xù)兩幀圖像間隔 為0.5 s。圖5(a)~(c)分別給出了Meanshift算法、傳統(tǒng)Camshift算法以及改進后Camshift算法對100幀連續(xù)雷達圖像的跟蹤結果。本文定義了均方根誤差(Root-Mean-Square Error, RMSE)來定量分析改進Camshift算法與其他兩種算法的跟蹤航跡誤差。
(13)
其中:n為圖像幀數(shù),實測實驗中n=100;Xest,i為算法跟蹤過程中第i幀目標位置;Xact,i為目標實際運動中的位置。
通過上述定義的均方根誤差分析,改進Camshift算法與實際目標運動航跡相比均方根誤差為0.272 m,傳統(tǒng)Camshift算法和Meanshift算法均方誤差分別為0.461 m、0.478 m,改進Camshift算法較傳統(tǒng)Camshift算法跟蹤航跡誤差降低了40.99%,較Meanshift算法跟蹤航跡誤差降低了43.09%。整體上看,相比Meanshift算法和傳統(tǒng)Camshift算法,本文提出的改進Camshift算法獲得的目標航跡更加貼近目標運動狀態(tài),且人體目標跟蹤航跡更為穩(wěn)定平滑。
為了進一步說明算法的優(yōu)勢,圖6給出了在跟蹤過程中第3、42、100幀目標位置提取結果,在此三幀雷達圖像中目標圖像存在明顯的大小起伏,且受到雜波幻像與旁瓣柵瓣的干擾,這些因素降低了Meanshift算法和傳統(tǒng)Camshift算法對目標位置提取的可靠性,如圖6(a)和(b)所示,用于提取目標位置的搜索窗未能夠準確地圈定目標圖像。對比而言,圖6(c)給出的改進Camshift算法處理結果顯示,目標搜索窗準確圈定了雷達圖像中目標圖像,從而形成了更平滑的跟蹤航跡。實測數(shù)據(jù)驗證了本文提出的改進Camshift算法通過引入目標預測和迭代搜索思想,可有效對抗雷達圖像“閃爍”和“抖動”,保證了對目標位置提取的可靠性。
圖4 實驗場景Fig. 4 Experimental scene
本文提出了基于改進Camshift的穿墻雷達運動人體目標成像跟蹤算法,引入了目標預測與迭代搜索的思想,避免了連續(xù)多幀雷達圖像的“閃爍”和“抖動”對目標位置提取的影響,最后由α-β濾波獲得了連續(xù)穩(wěn)定的目標跟蹤航跡。實驗結果表明:一方面相比直接觀察圖像的方式,本文算法獲得的跟蹤航跡清晰地給出了目標的運動過程;另一方面相比Meanshift與傳統(tǒng)的Camshift算法,本文算法給出了平滑度更高的目標運動航跡。
圖5 整體跟蹤結果比較Fig. 5 Comparison of overall tracking results
圖6 目標位置提取結果比較Fig. 6 Comparison of target position extraction results
參考文獻:
[1]BEKTAS H O, OZDEMIR O, ORHAN M, et al. An experimental investigation of F-K migration and SAR algorithm using beam space MUSIC for UWB through-the-wall imaging [C]// Proceedings of the 2016 IEEE Radar Methods and Systems Workshop. Piscataway, NJ: IEEE, 2016: 70-75.
[2]HU J, SONG Y, JIN T, et al. Shadow effect mitigation in indication of moving human behind wall via MIMO TWIR [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 453-457.
[3]TIVIVE F H C, BOUZERDOUM A, AMIN M G. An SVD-based approach for mitigating wall reflections in through-the-wall radar imaging [C]// Proceedings of the 2011 IEEE Radar Conference. Piscataway, NJ: IEEE, 2011: 519-524.
[4]AHMAD F, AMIN M G. A noncoherent approach to radar localization through unknown walls [C]// Proceedings of the 2006 IEEE Radar Conference. Piscataway, NJ: IEEE, 2006, 4: 583-589.
[5]IYA N M, MUQAIBEL A H, JOHAR U M. Ultra wideband wall compensation for through-wall tracking and imaging [C]// ICUWB 2011: Proceedings of the 2011 IEEE International Conference on Ultra-wideband. Piscataway, NJ: IEEE, 2011: 81-85.
[6]WANG W, LU B, SONG Y, et al. Parallel realization of moving target imaging in 2D MIMO through-wall radar applications [C]// ICCP 2015: Proceedings of the 2015 International Conference on Communication Problem-Solving. Piscataway, NJ: IEEE, 2015: 137-140.
[7]RALSTON T S, CHARVAT G L, PEABODY J E. Real-time through-wall imaging using an ultrawideband Multiple-Input Multiple-Output (MIMO) phased array radar system [C]// ARRAY 2010: Proceedings of the 2010 International Symposium on Phased Array Systems and Technology. Piscataway, NJ: IEEE, 2010: 551-558.
[8]吳世有,譚愷,徐艷云,等.超寬帶穿墻雷達天線陣列配置分析及運動人體跟蹤成像算法[J].電子與信息學報,2012,34(11):2601-2607. (WU S Y, TAN K, XU Y Y, et al. Study on UWB through-wall radar antenna array configuration and moving person tracking and imaging algorithm [J]. Journal of Electronics & Information Technology, 2012, 34(11): 2601-2607.)
[9]AFTANAS M, SACHSY J, DRUTAROVSKY M, et al. Efficient and fast method of wall parameter estimation by using UWB radar system [J]. Frequenz, 2009, 63(11/12): 231-235.
[10]LIU J, KONG L, YANG X, et al. First-order multipath ghosts’ characteristics and suppression in MIMO through-wall imaging [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1-5.
[11]CHEN X, CHEN W. Multipath ghost elimination for through-wall radar imaging [J]. IET Radar, Sonar & Navigation, 2015, 10(2): 299-310.
[12]LIU J, JIA Y, KONG L. Sign-coherence-factor-based suppression for grating lobes in through-wall radar imaging [J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(11): 1681-1685.
[13]BRADSKI G R. Computer vision face tracking for use in a perceptual user interface [J]. Intel Technology Journal, 1998, Q2: 214-219.
[14]WANG H-N, LU B-Y, ZHOU Z-M, et al. Through-the-wall imaging and correction based on the estimation of wall parameters [C]// Proceedings of the 2011 IEEE CIE International Conference on Radar. Piscataway, NJ: IEEE, 2011: 1327-1330.
[15]LIU J, KONG L, YANG X, et al. Refraction angle approximation algorithm for wall compensation in TWRI [J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(7): 943-946.
[16]DEHMOLLAIAN M, SARABANDI K. Refocusing through building walls using synthetic aperture radar [J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(6): 1589-1599.
[17]AHMAD F, AMIN M G, MANDAPATI G. Autofocusing of through the-wall radar imagery under unknown wall characteristics [J]. IEEE Transactions on Image Processing, 2007, 16(7): 1785-1795.
[18]TAN Q Y, LEUNG H, SONG Y, et al. Multipath ghost suppression for through-the-wall-radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2284-2292.
[19]GENNARELLI G, SOLDOVIERI F. Multipath ghosts in radar imaging: physical insight and mitigation strategies [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(3): 1078-1086.
[20]WANG W, LU B, QIU L, et al. A modified adaptive sidelobe reduction method for through-the-wall radar imaging [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1255-1259.
[21]XIU C, BA F. Target tracking based on the improved Camshift method [C]// CCDC 2016: Proceedings of the 2016 Chinese Control and Decision Conference. Piscataway, NJ: IEEE, 2016: 3600-3604.