亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On k-trees with Extremal Signless Laplacian Estrada Index and Estrada Index

        2018-04-09 10:56:32,,
        關(guān)鍵詞:中圖定理證明

        , ,

        (College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)

        All graphs considered in this paper are finite, undirected and simple. LetG=(V,E) be a connected graph, letNG(v)={u|uv∈E},NG[v]=NG(v)∪{v}. DenotedG(v)=|NG(v)| by the degree of the vertexvofG. IfW?V, letNG(W)=∪v∈WNG(v)W,NG[W] be the set of vertices within distance at most 1 fromW,G-Wbe the subgraph ofGobtained by deleting the vertices ofWand the edges incident with them. IfE0?E(G), we denote byG-E0the subgraph ofGobtained by deleting the edges inE0. IfE1is the subset of the edge set of the complement ofG,G+Edenotes the graph obtained fromGby adding the edges inE1: IfE={xy} andW={v}, we writeG-xyandG-vinstead ofG-{xy} andG-{v}, respectively. The joinG1∨G2of two edge-disjoint graphsG1andG2is obtained by adding an edge from each vertex inG1to each vertex inG2. For other undefined notations we refer to Bollobás[1].

        LetD=D(G)=diag(d(v1),…,d(vn)) be a diagonal matrix with degrees of the corresponding vertices ofGon the main diagonal and zero elsewhere, whered(vi) is the degree ofvi. The matrixQ=D(G)+A(G) is called the signless Laplacian ofG. SinceQis real symmetric and positive semi-definite matrix, its eigenvalues are real numbers. Letq1≥q2≥…≥qn≥0 are the signless Laplacian eigenvalues ofG. The multiplicity of 0 as an eigenvalue ofQis equal to the number of bipartite connected components ofG. The set of all eigenvalues ofQis the signless Laplacian spectrum ofG.

        1 Preliminaries

        In this section, we give some definitions and structure properties ofk-trees which will be used in the proof of our main results.

        Lemma1[11]

        LetGandHbe two graphs withu1,v1∈V(G) andu2,v2∈V(H). IfMk(G;u1,v1)≤Mk(H;u2,v2) for all positive integersk, then we write (G;u1,v1)?M(H;u2,v2). If (G;u1,v1)?M(H;u2,v2) and there is at least one positive integerk0such thatMk0(G;u1,v1)

        Fig.1 The k-trees Sk,n-k and 圖1 k-樹 Sk,n-k 和

        Lemma3Letu,v∈V(G) andNG(v)?NG[u]. Then

        (i) (G;v)?M(G;u),and (G;w,v)?M(G;w,u) for eachw∈V(G) . Moreover, ifdG(v)

        (ii) (G;v)?T(G;u), and (G;w,v)?T(G;w,u) for eachw∈V(G)[12]. Moreover, ifdG(v)

        ProofWe only need to prove (i).

        Firstly, we prove (G;v)?M(G;u).

        LetWbe a walk inWk(G;v). Ifuis not inW, note thatNG(v)?NG[u], letf(W)=W′, whereW′ is the walk that is obtained by replacing the vertexvbyu, obviously,W′∈Wk(G;u) . Ifuis inW, we can also lookWas a walk which is starting and ending at vertexu, letf(W)=W.

        Obviously,fis an injection fromWk(G;v) toWk(G;u). Hence (G;v)?M(G;u). IfdG(v)

        (i) If (G;v)T(G;u), and (G;wi,v)?M(G;wi,u) for eachi=1,2,…,r,thenEE(Gv)

        (ii) If (G;v)T(G;u), and (G;wi,v)?T(G;wi,u) for eachi=1,2,…,r, thenSLEE(Gv)

        Lemma 4 is an excellent tool to deal with the extremal problems on Estrada index and signless Laplacian Estrada index, but it has many conditions which have to be provided when we want to use it.The lemma 3 enables us to discover a special case that provides such conditions.

        2 Main results

        In this section, we will give a unified method to characterize thek-trees with the largest and second largest Estrada index and signless Laplacian Estrada index, respectively, which is simpler than the method provided in Ref[10].

        Lemma5LetGbe a graph withvu,uw∈E(G) andvw?E(G). LetG′=G-vu+vw. IfNG(v)?NG[u], thenEE(G)

        ProofLetH=G-vu. ThenG=H+vu;G′=H+vwandNH(v)?NH[u]. Note thatw?NG[v], we havedH(v)

        Repeated by Lemma 5, we can obtain the following result.

        Lemma6LetGbe a graph andX={x1,x2,…,xt} be an independent set of equivalent vertices such thatxiu,uw∈E(G) andxiw?E(G) for 1≤i≤t. LetG′=G-{xiu,1≤i≤t}+{xiw,1≤i≤t}. IfNG(v)?NG[u], thenEE(G)

        ProofSince there exists a vertexv∈S1(G-S1(G)), letNG-S1(G)(v)={v1,v2,…,vk},UG(v)=NG(v)-NG-S1(G)(v). Then the vertices inNG-S1(G)(v) induce a complete graphKk; and the vertices inUG(v) which are all simplicial verices, induce an empty graph.

        For a vertexx∈UG(v), it is adjacent to all but one vertex inNG-S1(G)(v). LetUibe the set of vertices inUG(v) whose neighbour set isPG(v)=|{1≤i≤k,Ui≠?}|, where 1≤i≤k. For a vertexv∈S1(G-S1(G)), letv∈S1(G-S1(G)) andp(G)=min|{PG(v),v∈S1(G-S1(G))}|.Without loss of generality, letpG(u)=p(G),NG-S1(G)(v)={v1,v2,…,vk} andUG(u)=U1∪…∪Up(G)(as shown in Fig.2). Obviously, we haveNG[Ui]?NG[u] for 1≤i≤k. LetG′=G-{ux:x∈U1}+{v1x:x∈U1}.

        Fig.2 The structure of NG-S1(G)(v) and UG(u)圖2  NG-S1(G)(v)和UG(u)的結(jié)構(gòu)

        Note thatv1x?E(G). By Lemma 6, we haveEE(G)

        Fig.3 The structure of the graph G* in the proof in Theorem 9圖3 定理9證明中圖G* 的結(jié)構(gòu)

        LetV(G*)S1(G*)={v1,v2,…,vk+1} and |S1(G*-S1(G*))|={vk+1}. Further, letUG(vk+1)=NG(vk+1)-{v1,v2,…,vk};Uibe the set of vertices inUG(vk+1) whose neighbour set is {v1,…,vi-1,vi+1,…,vk,vk+1} for 1≤i≤k, andp=|{1≤i≤k,Ui≠?}| (as shown in Fig.3).

        Case3p=1 andS1(G*)-UG(vk+1)=?.

        This completes the proof.

        Fig.4 The graphs Sn and 圖4 圖Sn和

        [1]Bollobás B. Modern graph theory[M]. Berlin, New York: Springer-Verlag, 1998.

        [2]Estrada E. Characterization of 3D molecular structure[J]. Chemical Physics Letters, 2000, 319: 713-718.

        [4]Ayyaswamy S K, Balachandran S, Venkatakrishnan Y B, et al. Signless Laplacian Estrada index[J]. MATCH - Communications in Mathematical and in Computer Chemistry, 2011, 66: 785-794.

        [5]Harary F, Palmer E M. On acyclic simplicial complexes[J]. Mathematika, 1968,15: 115-122.

        [6]Beineke L W, Pippert R E. The number of labeledk-dimensional trees[J]. Journal of Combinatorial Theory, 1969, 6(2): 200-205.

        [7]Estes J, Wei B. Sharp bounds of the Zagreb indices ofk-trees[J]. Journal of Combinatorial Optimization, 2014, 27: 271-291.

        [8]Wang S, Wei B. Multiplicative Zagreb indices ofk-trees[J]. Discrete Applied Mathematics, 2015, 180: 168-175.

        [9]Wang X X, Zhai M Q, Shu J L. Upper bounds on the spectral radius ofk-trees[J]. Applied Mathematics- Journal of Chinese Universities Series a, 2011, 26(2): 209-214.

        [10]Huang F, Wang S. On maximum Estrada indices ofk-trees[J]. Linear Algebra and Its Applications, 2015, 487: 316-327.

        [11]Song L, Staton W, Wei B. Independence polynomials ofk-tree related graphs[J]. Discrete Applied Mathematics, 2010, 158: 943-950.

        [12]Nasiri R, Elahi H R, Fath-Tabar G H, et al. The signless Laplacian Estrada index of tricyclic graphs [EB/OL]. [2013-11-30].http://arxiv.org/abs/1412.2280v2.

        [13]Du Z, Liu Z. On the Estrada and Laplacian Estrada indices of graphs[J]. Linear Algebra and Its Applications, 2011,435: 2065-2076.

        [14]Ellahi H, Nasiri R, Fath-Tabar G, et al. On maximum signless Laplacian Estrada indices of graphs with given parameters[EB/OL]. [2013-11-30]. http:// arXiv:1406.2004v1.

        猜你喜歡
        中圖定理證明
        J. Liouville定理
        獲獎證明
        判斷或證明等差數(shù)列、等比數(shù)列
        A Study on English listening status of students in vocational school
        中華醫(yī)學(xué)會系列雜志對正文中圖的要求
        “三共定理”及其應(yīng)用(上)
        Screening of developmental dysplasia of the hip in infants and young children in hospital
        證明我們的存在
        Application of Cohesion Theory in Listening Text Analysis
        Individual Ergodic Theorems for Noncommutative Orlicz Space?
        免费的毛片视频| 一本到在线观看视频| 国产 麻豆 日韩 欧美 久久| 在线观看av永久免费| 亚洲乱码一区AV春药高潮| av毛片亚洲高清一区二区| 狠狠躁18三区二区一区| 日韩a毛片免费观看| av手机在线天堂网| 午夜视频在线观看国产19| 无遮挡18禁啪啪羞羞漫画| 黄色成人网站免费无码av| 精品黄色av一区二区三区| 精品国产一区二区三区性色| 毛片免费视频在线观看| 97se亚洲国产综合自在线图片 | 麻豆激情视频在线观看| 多毛小伙内射老太婆| 开心五月激情综合婷婷| 日本成人字幕在线不卡| 自拍偷区亚洲综合激情| 性按摩xxxx在线观看| 亚洲日韩欧美国产高清αv| 亚洲一区二区观看网站| 国产视频一区二区三区在线免费| a级毛片免费观看在线| 国产免费久久精品99re丫y| 国产精品一区二区三区三| 国产中文三级全黄| 四虎影院在线观看| 国产一区二区三区色区| 国产精品一区二区三久久不卡| 青青草97国产精品免费观看| av无码一区二区三| 亚洲精品偷拍自综合网| 黑色丝袜秘书夹住巨龙摩擦| 亚洲中文字幕久久精品蜜桃| 视频一区精品中文字幕| 国产精品无码久久综合网| 久久久久这里只有精品网| 精品奇米国产一区二区三区|