劉潮 韓利紅 王海波 高永 唐利洲
(曲靖師范學(xué)院云南高原生物資源保護(hù)與利用研究中心 云南省高校云貴高原動(dòng)植物多樣性及生態(tài)適應(yīng)性進(jìn)化重點(diǎn)實(shí)驗(yàn)室,曲靖 655011)
在整個(gè)生命周期中,植物經(jīng)常暴露于不同的生物和非生物脅迫條件下,為了對(duì)抗這些環(huán)境對(duì)植物造成的不良影響,植物進(jìn)化出非常復(fù)雜而多樣的防御機(jī)制[1-2]。這些防御反應(yīng)包括,細(xì)胞壁加厚、抗毒素合成、病程相關(guān)基因表達(dá)等[3]。van Loon等[4]發(fā)現(xiàn)至少17個(gè)病程相關(guān)家族蛋白(Pathogenesisrelated protein,PR)能被卵菌、真菌、細(xì)菌、線蟲、病毒和類病毒侵染,以及昆蟲啃咬所誘導(dǎo)表達(dá)。植物類甜蛋白(Thaumatin-like protein,TLP)屬于第5家族,主要包括類甜蛋白、滲透蛋白(Osmotin)和Zeamatin。植物類甜蛋白因與熱帶植物西非竹竽(Thaumatococcus danielliBenth)果實(shí)中分離到的甜蛋白(thaumatin)氨基酸序列有很高的同源性而得名,兩種蛋白的同源性很高,但其功能完全不一樣,甜蛋白具有甜味無(wú)抗真菌活性,而TLP蛋白無(wú)甜味具有抗真菌活性[4]。目前,陸續(xù)從多種植物、動(dòng)物及微生物中發(fā)現(xiàn)了TLP蛋白[5-6]。TLP基因能被多種脅迫誘導(dǎo)表達(dá)[7-11],體內(nèi)或體外試驗(yàn)表明TLP蛋白具有抗真菌活性[12],TLP轉(zhuǎn)基因植物對(duì)真菌性病害的耐受性和抗性明顯增強(qiáng)[13-21]。然而,TLP蛋白抗真菌的分子機(jī)制及其具體生物學(xué)功能還不是很清楚。因此,對(duì)植物TLP家族的研究受到越來越的關(guān)注。本文主要從TLP蛋白結(jié)構(gòu)功能及應(yīng)用方面綜述了最新的研究成果,以期為今后的研究提供借鑒。
根據(jù)蛋白分子量的大小,TLP蛋白主要分為兩種類型:L(Large)型TLP蛋白分子量介于21到26 kD,包含16個(gè)保守的半胱氨酸殘基;S(Small)型TLP蛋白分子量大約16 kD,只有10個(gè)半胱氨酸殘基[13],雖然缺少了部分氨基酸序列,但它們?nèi)阅鼙徊≡T導(dǎo),并顯示出抗真菌活性[22]。Petre等[23]根據(jù)非典型區(qū)域?qū)LPs分為small-TLPs、TLP激酶、small-TLP激酶,這有助于預(yù)測(cè)與病原感知和病原信號(hào)有關(guān)的受體激酶。大多數(shù)TLP蛋白均具有索瑪甜家族標(biāo)簽G-X-[GF]-X-C-X-T-[GA]-D-C-X-(1,2)-G-X-(2,3)-C[24]和 5 個(gè)保守的 REDDD(1個(gè)精氨酸,1個(gè)谷氨酸和3個(gè)天門冬氨酸)殘基,后者參與蛋白維持適當(dāng)?shù)耐負(fù)浣Y(jié)構(gòu)和酸裂周圍的表面靜電勢(shì),對(duì)TLP蛋白抗真菌活性必不可少[16]。
圖1 小果野蕉1Z3Q三維結(jié)構(gòu)
典型的TLP蛋白由16個(gè)半胱氨酸殘基對(duì)形成8個(gè)二硫鍵,不僅穩(wěn)定了分子結(jié)構(gòu),也保證蛋白的正確折疊,能夠抵抗熱變性、酸、堿和蛋白酶降解作用[25-26]。目前,多個(gè)TLP蛋白三維結(jié)構(gòu)已被解析,顯示具有保守的酸性裂縫的3D構(gòu)象。Ban-TLP(1Z3Q)由3個(gè)功能域組成:domain I為N端核心功能域,由2個(gè)反向平行的β片層(分別包含5個(gè)和6個(gè)β折疊)組成(圖1-A);domain II由半胱氨酸二硫鍵形成的3個(gè)較短的α螺旋構(gòu)成;domainⅢ由2個(gè)β折疊和1個(gè)大環(huán)構(gòu)成(圖1-B)[27]。番茄TLP-NP24-Ⅰ在其結(jié)構(gòu)域I和II之間有一個(gè)明顯的“V”字形裂縫,TLP-NP24-Ⅰ一級(jí)結(jié)構(gòu)中構(gòu)成這個(gè)裂縫的側(cè)鏈具有4個(gè)保守的氨基酸殘基Glu84、Asp97、Asp102和Asp185,在三維結(jié)構(gòu)中它們均從結(jié)構(gòu)域II插入到該裂縫中[28]。NP24-Ⅰ和其它具有抗真菌活性的TLP蛋白類似,其“V”字形裂縫呈酸性(帶負(fù)電)[27-28]。一些TLP蛋白含有N端信號(hào)肽,用于引導(dǎo)成熟的蛋白到分泌路徑。逆滲透蛋白(osmotin)和植物OLPs還具有C端前導(dǎo)肽,用于引導(dǎo)蛋白到達(dá)液泡[29]。4個(gè)擬南芥和7個(gè)水稻PR-5蛋白具有疏水結(jié)構(gòu),能結(jié)合到膜上。其他TLP蛋白具有跨膜片段和激酶結(jié)構(gòu)域,可能具有感知胞外信號(hào)和信號(hào)轉(zhuǎn)導(dǎo)功能[30]。這些發(fā)現(xiàn)說明一些防御相關(guān)蛋白具有對(duì)病原和生長(zhǎng)發(fā)育信號(hào)傳導(dǎo)的作用[4]。疏水性TLP蛋白和抗菌肽的“V”字形裂縫的邊緣都具有2個(gè)疏水氨基酸殘基Phe91和Phe96,而在甜蛋白的裂縫中這兩個(gè)氨基酸殘基均被被疏水性差的Tyr所取代。
有多項(xiàng)研究對(duì)TLP家族的進(jìn)化關(guān)系進(jìn)行了分析[6,13,23,31]。蛋白結(jié)構(gòu)同源建模分析表明,動(dòng)物和植物TLP蛋白高度相似,二者僅在表面暴露的環(huán)結(jié)構(gòu)存在差異[6]。通過對(duì)昆蟲、線蟲、水稻和擬南芥TLP家族蛋白序列進(jìn)化分析發(fā)現(xiàn),動(dòng)物TLP蛋白單獨(dú)分在一支,可能是以單一祖先序列的形式,且來自于植物;而水稻和擬南芥TLP蛋白分布于多個(gè)支系,并存在染色體內(nèi)和染色體間的復(fù)制[6]。單子葉和雙子葉植物進(jìn)化上發(fā)生分離后,TLP蛋白基因在10個(gè)進(jìn)化枝上發(fā)生了不對(duì)稱的增加[6]。植物、動(dòng)物和真菌等真核生物TLP蛋白序列進(jìn)化分析顯示,陸生植物進(jìn)化過程中TLP基因含量和多樣性顯著增加了[23]。對(duì)從18個(gè)植物基因組序列獲取的TLP家族基因比較發(fā)現(xiàn),從萊茵衣藻(Chlamydomonas reinhardtii)到毛果楊(Populus trichocarpa)TLP基因發(fā)生了多樣性的進(jìn)化[23]。Liu等[13]將獲得的118個(gè)TLP蛋白序列分為9組,植物TLP蛋白主要包括5個(gè)組(Ⅳ、Ⅵ、Ⅶ、Ⅷ和Ⅸ),他們認(rèn)為TLP基因來自于大約10億年前的植物、動(dòng)物和真菌的共同祖先。在有些植物中,同一染色體上甚至同一位點(diǎn)存在TLP基因簇,說明串聯(lián)重復(fù)是TLP超家族不對(duì)稱擴(kuò)張的重要機(jī)制。
近年來,TLP蛋白的抗真菌活性得到深入研究。超過20個(gè)來自動(dòng)物、真菌和植物的TLP蛋白具有抗真菌活性[13]。Osmotin通過改變真菌細(xì)胞膜的透性而具有抗真菌活性[5]。植物TLP蛋白主要通過裂解真菌孢子,抑制孢子萌發(fā),降低幼嫩菌絲活力等方式對(duì)致病和非致病真菌產(chǎn)生抑制作用[5,32-33]。Zeamatin通過極化活性而穿透微生物的質(zhì)膜[34]。TLP蛋白的電子極化的酸性裂隙直接作用于真菌細(xì)胞膜,是其抑菌活性必需的[33,35],TLP蛋白轉(zhuǎn)基因植物能夠延緩多種真菌病害發(fā)展過程,增強(qiáng)植物對(duì)病原真菌的抗性[36-37]。TLP蛋白參與多種轉(zhuǎn)基因植物對(duì)不同病原真菌的抗性。野生花生中的AdTLP重組蛋白比報(bào)道的其他TLP蛋白具有更強(qiáng)的抗真菌活性[17]。體外實(shí)驗(yàn)表明,龍葵TLP重組蛋白對(duì)多種植物病原真菌具有抗性[38-39]。TLP蛋白的疏水部位有利于其對(duì)真菌細(xì)胞膜的作用,番茄的各種TLP蛋白中,疏水性TLP蛋白的抗真菌活性高于非疏水性TLP蛋白,具有抗真菌活性的TLP蛋白其domainI和domain II之間存在負(fù)電荷的表面裂縫[40]。但到目前為止,TLP蛋白的抗真菌機(jī)制仍不很清楚。
TLP蛋白具有葡聚糖結(jié)合或葡聚糖酶活性[41-43],TLP蛋白的葡聚糖酶活性與其抗真菌活性有關(guān),葡聚糖酶活性使TLP蛋白能結(jié)合并降解真菌細(xì)胞壁的主要組分 β-1,3-葡聚糖[44],為 TLP 蛋白進(jìn)一步破壞真菌細(xì)胞膜奠定了基礎(chǔ)[45]。TLP8能結(jié)合到谷物提取物中不溶性的(1,3,1,4)-β-D葡聚糖上,有助于去除啤酒發(fā)酵中此類不需要的物質(zhì),這對(duì)啤酒發(fā)酵過程的理解和釀造工藝的改進(jìn)具有重要意義[46]。模型預(yù)測(cè)發(fā)現(xiàn),葡聚糖的多糖鏈與蛋白酸性裂在性狀上能很好的互補(bǔ),并且Glu84與兩個(gè)Asp(Asp102、Asp97)分別位于酸性裂的兩側(cè),因Glu84與Asp97距離太近不能進(jìn)行催化反應(yīng),而Glu84與Asp102的距離又太大,也許是作為質(zhì)子供體和親核劑成為內(nèi)切葡聚糖酶活性所必需的催化中心[28]。一般認(rèn)為,功能域I和II之間酸性氨基酸是TLP蛋白具有β-1,3-葡聚糖酶活性所必需的[27]。也有研究表明,雖然TLP家族一些蛋白具有β-1,3-葡聚糖酶活性,但活性偏低[47]。但也有些TLP蛋白并不具有 β-1,3-葡聚糖酶活性[24]。雖然 TLP 蛋白抗真菌能力可能與葡聚糖酶活性有關(guān),但也有研究表明有些具有低的葡聚糖酶活性的TLP蛋白,不具有抗真菌能力。香蕉TLP蛋白具有可檢測(cè)的低活性的β-1,3-葡聚糖酶活性,并不具有抗真菌活性[48]。
多種植物果實(shí)和花粉TLP蛋白具有過敏原活性[49]。植物來源的過敏原能引起人類Ⅰ型過敏反應(yīng),通過飲食或者上呼吸道吸入誘發(fā)。研究發(fā)現(xiàn),TLP蛋白在多種水果和作物中具有過敏原活性,如獼猴桃、蘋果、櫻桃、橄欖、香蕉、番茄和小麥及柏樹的花粉等[49]。在蘋果中發(fā)現(xiàn)的32 kD的TLP蛋白Mal d 2具有過敏原活性[50]。在桃中發(fā)現(xiàn)3個(gè)TLP蛋白亞型Pru p 2.0101、Pru p 2.0201和Pru p 2.0301具有過敏原活性[51]。人心果酸性TLP基因無(wú)內(nèi)含子和非糖基化,其蛋白在臨床上能引起口腔過敏綜合征,被鑒定為新的過敏原[52]。NP24屬于食品過敏類蛋白[53],NP24-Ⅰ致敏表位(152-186)位于功能域Ⅱ的螺旋中,其含有7個(gè)Ig-E結(jié)合基序(圖2),均位于三維結(jié)構(gòu)的表面[28]。這些TLP蛋白3-D結(jié)構(gòu)中的功能域Ⅱ表現(xiàn)出非常保守的構(gòu)象,預(yù)測(cè)這些氨基酸序列為主要的IgE結(jié)合表位[27]。鑒于果實(shí)和花粉中TLP致敏原的結(jié)構(gòu)高度相似,可以通過蛋白結(jié)構(gòu)預(yù)測(cè)設(shè)計(jì)有針對(duì)性的治療劑,對(duì)過敏原特異性免疫治療進(jìn)行指導(dǎo)。
細(xì)胞程序性死亡是生物體發(fā)育過程中普遍存在的,是一個(gè)由基因決定的細(xì)胞主動(dòng)的有序的死亡方式。植物與病原的非親和互作過程中會(huì)伴隨著過敏反應(yīng)(Hypersensitive response,HR)發(fā)生,包括宿主細(xì)胞程序性死亡(Bogrammed cell death,PCD),親和互作中也會(huì)發(fā)生PCD,其具體機(jī)制還不是很清楚[54]。植物滲透蛋白誘導(dǎo)了酵母菌MAPK信號(hào)通路,并通過刺激細(xì)胞壁成分的改變而增加了細(xì)胞毒性,導(dǎo)致滲透蛋白能夠通過細(xì)胞膜并引起細(xì)胞死亡[55]。煙草TLP蛋白通過RAS2/cAMP通路介導(dǎo)的胞內(nèi)活性氧(Reactive oxygen species,ROS)積累誘導(dǎo)了酵母細(xì)胞凋亡[56],說明植物TLP蛋白具有抗菌蛋白活性。滲透蛋白誘導(dǎo)了目標(biāo)微生物胞內(nèi)積累抗菌肽,抗菌肽通過結(jié)合或破壞核酸而起作用[57]。宿主因子誘導(dǎo)病原PCD是宿主-病原互作的重要因素[56]。
圖2 NP24-Ig-E結(jié)合表位分布
研究發(fā)現(xiàn)TLP蛋白還具有酶抑制劑活性,在植物的防御中發(fā)揮作用[26]。TLP蛋白也提高了植物對(duì)多種非生物脅迫的耐受性[32]。研究發(fā)現(xiàn),植物TLP蛋白在質(zhì)外體中積累,提高了植物對(duì)冷環(huán)境的適應(yīng)性[58]。TLP1在桃冷害敏感品系Hermoza的細(xì)胞壁中后期積累,而在抗寒品系Oded中早期積累,TLP蛋白在核果冷害發(fā)生過程中參與了水果細(xì)胞壁結(jié)構(gòu)改變,有助于水果對(duì)寒冷的抵抗[59]。TLP蛋白作為防凍劑,在控制冷凍酸奶冰晶體的形成中起作用[60]。巴西橡膠樹滲透蛋白通過提高水勢(shì),降低植物對(duì)滲透脅迫的耐受性,參與了乳汁細(xì)胞的滲透調(diào)節(jié)[61],滲透蛋白過表達(dá)植株通過程序性細(xì)胞死亡、細(xì)胞骨架構(gòu)建以及鈣離子信號(hào)等,增強(qiáng)了對(duì)冷脅迫的防御能力[62]。除了冷脅迫,TLP蛋白過表達(dá)植株顯著提高了對(duì)其他多種非生物脅迫的抗性[17,63]。
TLP蛋白除了參與植物的脅迫反應(yīng)之外,也參與了生長(zhǎng)發(fā)育的多項(xiàng)進(jìn)程。一些TLP蛋白在植物的組織器官或特定的發(fā)育階段高度表達(dá),有些植物(如櫻桃、蘋果、香蕉)果實(shí)成熟時(shí)很多TLP蛋白高表達(dá)[64-66]。光照延長(zhǎng)時(shí),PpTLP轉(zhuǎn)錄增加,而幼葉中其表達(dá)很低,這可能有利于植物保護(hù)營(yíng)養(yǎng)器官和生殖器官[16]。
TLP基因一般在植物特定組織、器官中低水平組成型表達(dá),而且表達(dá)活性不同。多種高等植物遭受病原侵染時(shí),TLP蛋白上調(diào)表達(dá)[13,67]。楊樹中TLP在細(xì)胞和組織中的定位較復(fù)雜,TLP1主要在維管系統(tǒng)如中脈、葉柄和莖中表達(dá),而另一個(gè)31 kD的TLP主要在幼葉和莖的淀粉粒中表達(dá)[68]。多項(xiàng)研究表明TLP蛋白定位于胞外空間,能夠增強(qiáng)植物對(duì)多種脅迫的耐受[14,17]。定位研究顯示,病原誘導(dǎo)型TLP蛋白分泌到質(zhì)外體中起作用[7]。
TLP基因的表達(dá)能被多種信號(hào)所調(diào)控,如水楊酸、茉莉酸甲酯、脫落酸、受傷、紫外、滲透脅迫以及細(xì)菌、真菌、病毒等生物體的侵襲[69]。受到外界逆境脅迫后,TLP基因的表達(dá)迅速上調(diào)。TLP蛋白與植物的抗逆反應(yīng)有關(guān),當(dāng)植物受到病原物(真菌、細(xì)菌和病毒等),化學(xué)因子(乙烯、水楊酸、氨基酸衍生物和重金屬離子等),物理因子(紫外線、熱處理和機(jī)械損傷等)以及特定的生理因素(衰老、開花和質(zhì)壁分離等)誘導(dǎo)時(shí),TLP基因在植物體特定部位迅速表達(dá)并積累。Ahmed等[70]從大白菜中鑒定了20個(gè)TLP蛋白,其中多個(gè)基因能被病原菌和非生物脅迫所誘導(dǎo),說明TLP蛋白參與了大白菜對(duì)脅迫的響應(yīng)。通過DNA漸滲將來自于野黃瓜的CsTLP蛋白基因構(gòu)建了IL5211S系,從該系中分離到CsTLP基因,該基因響應(yīng)了Pseudoperonospora cubensis和其他非生物脅迫[71]。
基因上游多樣的順式調(diào)控元件是基因特異性表達(dá)所必不可少的。TLP基因表達(dá)受啟動(dòng)子區(qū)特定順式元件的調(diào)控。Rtlp1啟動(dòng)子區(qū)的W-box能顯著提前其對(duì)真菌病原的響應(yīng),在真菌侵入細(xì)胞前,Rtlp1已被誘導(dǎo)[72]。SA處理1 h后和MeJA處理2 h后Rtlp1啟動(dòng)子活性顯著增強(qiáng)[72]。煙草滲透蛋白啟動(dòng)子區(qū)的GCC-boxes對(duì)其乙烯響應(yīng)所必需[73]。啟動(dòng)子中的沉默子會(huì)抑制生姜(Zingiber officinale)防御反應(yīng)中ZoPR5蛋白的表達(dá),啟動(dòng)子中的GT-1 box和TGTCA可以激活植物防御反應(yīng)中杧果姜CaPR5蛋白(Curcuma amada)的表達(dá)[74]。
傳統(tǒng)農(nóng)業(yè)一般通過使用殺菌劑控制植物真菌病害,但農(nóng)藥的廣泛應(yīng)用可能導(dǎo)致嚴(yán)重的環(huán)境污染和食品安全問題。基因工程通過利用多種抗病基因?yàn)楝F(xiàn)代農(nóng)業(yè)提供了一條可持續(xù)發(fā)展的道路。體外研究表明TLP蛋白有很強(qiáng)的抗真菌活性,希望能通過過表達(dá)或轉(zhuǎn)基因來提高植物對(duì)真菌的抗性。多種轉(zhuǎn)基因作物明顯提高了植物對(duì)疾病的抗性以及對(duì)干旱和鹽脅迫的耐受性。AdTLP轉(zhuǎn)基因稻煙草中,顯著增強(qiáng)了其對(duì)病原真菌Rhizoctonia solani的抗性,同時(shí)增強(qiáng)了植物對(duì)鹽和氧脅迫的耐受性[17]。將水稻的TLP基因轉(zhuǎn)入大麥(Hordeum vulgare)并過量表達(dá),轉(zhuǎn)基因植株的抗真菌能力提高[75]。將海島棉具有次級(jí)細(xì)胞壁發(fā)育功能的類索瑪甜蛋白基因(GbTLP1)轉(zhuǎn)入煙草中,顯著增強(qiáng)了煙草對(duì)多種脅迫的抗性[63]。將水稻的TLP基因轉(zhuǎn)入香蕉植株中,增強(qiáng)了其對(duì)尖孢鐮刀菌的抗性,控制了香蕉鐮刀枯萎病的發(fā)生[15]。多數(shù)研究確實(shí)提高了植物對(duì)真菌的抗性,但卻不能對(duì)病原完全免疫,說明單個(gè)基因過量表達(dá)產(chǎn)生的蛋白還不足以有效保護(hù)植物完全不受病原菌的侵染。
除了PR基因本身,植物PR基因啟動(dòng)子的可誘導(dǎo)性在植物抗病基因工程中也有極高的應(yīng)用價(jià)值。植物抗病基因工程中經(jīng)常將抗菌蛋白或?qū)Σ≡卸拘晕镔|(zhì)的基因置于超強(qiáng)啟動(dòng)子控制下來提高抗病能力。但是,高度組成性表達(dá)的抗菌化合物持續(xù)在整個(gè)生育期的所有的組織中合成,對(duì)植物的生長(zhǎng)又極為不利。而若用PR蛋白基因的啟動(dòng)子控制,則轉(zhuǎn)基因只在受到病原菌侵染或其他脅迫因子處理時(shí)才表達(dá),具有重要的利用價(jià)值。
雖然研究者對(duì)植物TLP家族已開展了大量研究,但其抗真菌的核心機(jī)理還不是很清楚,這將大大限制該家族基因在植物遺傳育種中的應(yīng)用。植物TLP家族成員眾多,在植物不同的生命進(jìn)程中發(fā)揮作用的基因數(shù)量和種類還不是很清楚,這些成員在植物生長(zhǎng)發(fā)育和對(duì)抗脅迫中的具體對(duì)應(yīng)關(guān)系有待深入研究。對(duì)該家族單個(gè)基因和多個(gè)基因在植物生命進(jìn)程中具體作用的深入研究,將是今后植物病理學(xué)和遺傳育種研究中的重要內(nèi)容。
[1] Solano R, Gimenez-Ibanez S. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens[J]. Frontiers in Plant Science, 2013, 4:72.
[2] Kazan K, Lyons R. Intervention of phytohormone pathways by pathogen effectors[J]. The Plant Cell, 2014, 26(6):2285-2309.
[3] Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens[J]. Trends Plant Sci, 2012, 17(2):73-90.
[4] van Loon LC, Rep M, Pieterse CM. Significance of inducible defenserelated proteins in infected plants[J]. Annu Rev Phytopathol,2006, 44:135-162.
[5] Abad LR, D’Urzo MP, Liu D, et al. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization[J]. Plant Science, 1996, 118(1):11-23.
[6] Shatters RG Jr, Boykin LM, Lapointe SL, et al. Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa[J].Journal of Molecular Evolution, 2006, 63(1):12-29.
[7] Wang X, Tang C, Deng L, et al. Characterization of a pathogenesisrelated thaumatin-like protein geneTaPR5from wheat induced by stripe rust fungus[J]. Physiologia Plantarum, 2010, 139(1):27-38.
[8] Kim BG, Fukumoto T, Tatano S, et al. Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon[J]. Physiological and Molecular Plant Pathology,2009, 74(1):3-10.
[9] Kim DH, Noh MY, Park KB, et al. Expression profiles of two thaumatin-like protein(TmTLP)genes in responses to various micro-organisms fromTenebrio molitor[J]. Entomological Research, 2017, 47(1):35-40.
[10] Beatrice C, Linthorst JMH, Cinzia F, et al. Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated withPseudomonas syringaepv.actinidiae[J].European Journal of Plant Pathology, 2017, 148(1):163-179.
[11] Rout E, Nanda S, Joshi RK. Molecular characterization and heterologous expression of a pathogen inducedPR5gene from garlic(Allium sativumL.)conferring enhanced resistance to necrotrophic fungi[J]. European Journal of Plant Pathology,2016, 144(2):345-360.
[12] Guo J, Zhao X, Wang H, et al. Expression of theLePR5gene from cherry tomato fruit induced byCryptococcus laurentiiand the analysis of LePR5 protein antifungal activity[J]. Postharvest Biology and Technology, 2016, 111:337-344.
[13] Liu JJ, Sturrock R, Ekramoddoullah AKM. The superfamily of thaumatin-like proteins:its origin, evolution, and expression towards biological function[J]. Plant Cell Reports, 2010, 29(5):419-436.
[14] Wang Q, Li F, Zhang X, et al. Purification and Characterization of a CkTLP Protein fromCynanchum komaroviiSeeds that Confers Antifungal Activity[J]. PLoS One, 2011, 6(2):e16930.
[15] Mahdavi F, Sariah M, Maziah M. Expression of rice thaumatinlike protein gene in transgenic banana plants enhances resistance to fusarium wilt[J]. App Biochem Biotechnol, 2012, 166(4):1008-1019.
[16] Liu D, He X, Li W, et al. Molecular cloning of a thaumatin-like protein gene fromPyrus pyrifoliaand overexpression of this gene in tobacco increased resistance to pathogenic fungi[J]. Plant Cell,Tissue and Organ Culture(PCTOC), 2012, 111(1):29-39.
[17] Singh NK, Kumar KRR, Kumar D, et al. Characterization of a pathogen induced thaumatin-like protein geneAdTLPfromArachis diogoi, a wild peanut[J]. PLoS One, 2013, 8(12):e83963.
[18] Odeny PO. Enhancement of resistance againstColletotrichum gloeosporioidesin cassava over-expressing rice thaumatin-like protein(PR-5)gene[D]. Kenya:Kenyatta University, 2015.
[19] He R, Wu J, Zhang Y, et al. Overexpression of a thaumatinlike protein gene fromVitis amurensisimproves downy mildew resistance inVitis viniferagrapevine[J]. Protoplasma, 2017, 254(4):1579-1589.
[20] Misra RC, Sandeep MK, Kumar S, et al. A thaumatin-like protein ofOcimum basilicumconfers tolerance to fungal pathogen and abiotic stress in transgenicArabidopsis[J]. Scientific Reports, 2016, 6 :25340.
[21] Xue X, Cao ZX, Zhang XT, et al. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Disease,2016, 100(8):1634-1642.
[22] Reimmann C, Dudler R. cDNA cloning and sequence analysis of a pathogen-induced thaumatin-like protein from rice(Oryza sativa)[J]. Plant Physiol, 1993, 101(3):1113-1114.
[23] Petre B, Major I, Rouhier N, et al. Genome-wide analysis of eukaryote thaumatin-like proteins(TLPs)with an emphasis on poplar[J]. Plant Biology, 2011, 11(1):33.
[24] Jami SK, Anuradha TS, Guruprasad L, et al. Molecular, biochemical and structural characterization of os-motin-like protein from black nightshade(Solanum nigrum)[J]. Journal of Plant Physiology,2007, 164(3), 238-252.
[25] Smole U, Bublin M, Radauer C, et al. Mal d 2, the thaumatin-like allergen from apple, is highly resistant to gastrointestinal digestion and thermal processing[J]. International Archives of Allergy and Immunology, 2008, 147(4):289-298.
[26] Fierens E, Rombouts S, Gebruers K, et al. TLXI, a novel type of xylanase inhibitor from wheat(Triticum aestivum)belonging to the thaumatin family[J]. Biochemical Journal, 2007, 403(3):583-591.
[27] Leone P, Menu-Bouaouiche L, Peumans WJ, et al. Resolution of the structure of the allergenic and antifungal banana fruit thaumatinlike protein at 1. 7-?[J]. Biochimie, 2006, 88(1):45-52.
[28] Ghosh R, Chakrabarti C. Crystal structure analysis of NP24-Ⅰ :a thaumatin-like protein[J]. Planta, 2008, 228(5):883-890.
[29] An?lovar S, Dermastia M. The comparative analysis of osmotins and osmotin-like PR-5 proteins[J]. Plant Biology, 2003, 5(2):116-124.
[30] Wang X, Zafian P, Choudhary M, et al. The PR5K receptor protein kinase fromArabidopsis thalianais structurally related to a family of plant defense proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(6):2598-2602.
[31] Sakamoto Y, Watanabe H, Nagai M, et al.Lentinula edodestlg1encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence[J]. Plant Physiol,2006, 141(2):793-801.
[32] Rajam MV, Chandola N, Saiprasad Goud P, et al. Thaumatin gene confers resistance to fungal pathogen as well as tolerance to abiotic stresses in transgenic tobacco plants[J]. Biologia Plantarum,2007, 51(1):135-141.
[33] Ramos MV, de Oliveira RSB, Pereira HM, et al. Crystal structure of an antifungal osmotin-like protein fromCalotropis proceraand its effects onFusarium solanispores, as revealed by atomic force microscopy:insights into the mechanism of action[J].Phytochemistry, 2015, 119:5-18.
[34] Roberts WK, Selitrennikoff CP. Zeamatin, an antifungal protein from maize with membrane permeabilizing activity[J].Microbiology, 1990, 136(9), 1771-1778.
[35] Batalia MA, Monzingo AF, Ernst S, et al. The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like,PR-5 protein family[J]. Nature Structural & Molecular Biology,1996, 3(1):19-22.
[36] Yan X, Qiao H, Zhang X, et al. Analysis of the grape(Vitis viniferaL.)thaumatin-like protein(TLP)gene family and demonstration that TLP29 contributes to disease resistance[J]. Scientific Reports, 2017, 7(1):4269.
[37] Chowdhury S, Basu A, Kundu S. Overexpression of a new osmotinlike protein gene(SindOLP)confers tolerance against biotic and abiotic stresses in sesame[J]. Frontiers in Plant Science, 2017, 8.
[38] Campos MA, Silva MS, Magalh?es CP, et al. Expression inEscherichia coli, purification, refolding and antifungal activity of an osmotin fromSolanum nigrum[J]. Microbial Cell Factories,2008, 7(1):7.
[39] Liu C, Cheng F, Sun Y, et al. Structure-function relationship of a novel PR-5 protein with antimicrobial activity from soy hulls[J].J Agric Food Chem, 2016, 64(4):948-959.
[40] Koiwa H, Kato H, Nakatsu T, et al. Crystal structure of tobacco PR-5d protein at 1. 8 ? resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins[J]. J Mol Biol,1999, 286:1137-1145.
[41] Osmond RIW, Hrmova M, Fontaine F, et al. Binding interactions between barley thaumatin-like proteins and(1, 3)-β-D-glucans[J].European Journal of Biochemistry, 2001, 268(15):4190-4199.
[42] Van Damme EJ, Charels D, Menu-Bouaouiche L, et al.Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree(Sambucus nigraL.)[J]. Planta, 2002, 214(6):853-862.
[43] Menu-Bouaouiche L, Vriet C, Peumans WJ, et al. A molecular basis for the endo-β 1, 3-glucanase activity of the thaumatin-like proteins from edible fruits[J]. Biochimie, 2003, 85(1):123-131.
[44] Theis T, Stahl U. Antifungal proteins:targets, mechanisms and prospective applications[J]. Cellular and Molecular Life Sciences, 2004, 61(4):437-455.
[45] Grenier J, Potvin C, Trudel J, et al. Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans[J]. The Plant Journal, 1999,19(4):473-480.
[46] Singh S, Tripathi RK, Lemaux PG, et al. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley[J]. Proc Nat Acad Sci, 2017, 114(29):7725-7730.
[47] 姜曉玲, 黃秋嫻, 李虹, 趙嘉平. 植物類甜蛋白基因家族研究進(jìn)展[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào), 2012(2):279-287.
[48] Barre A, Peumans WJ, Menu-Bouaouiche L, et al. Purification and structural analysis of an abundant thaumatin-like protein from ripe banana fruit[J]. Planta, 2000, 211(6):791-799.
[49] Breiteneder H. Thaumatin-like proteins-a new family of pollen and fruit allergens[J]. Allergy, 2004, 59(5):479-481.
[50] Krebitz M, Wagner B, Ferreira F, et al. Plant-based heterologous expression of Mal d 2, a thaumatin-like protein and allergen of apple(Malus domestica), and its characterization as an antifungal protein[J]. J Mol Biol, 2003, 329(4):721-730.
[51] Palacín A, Tordesillas L, Gamboa P, et al. Characterization of peach thaumatin-like proteins and their identification as major peach allergens[J]. Clini Exp Allergy, 2010, 40(9):1422-1430.
[52] Kumar HGA, Hegde VL, Shetty SM, et al. Characterization and gene cloning of an acidic thaumatin-like protein(TLP 1), an allergen from sapodilla fruit(Manilkara zapota)[J]. Allergology International, 2013, 62(4):447-462.
[53] Schein CH, Ivanciuc O, Braun W. Bioinformatics approaches to classifying allergens and predicting cross-reactivity[J].Immunology and Allergy Clinics of North America, 2007, 27(1):1-27.
[54] Dangl J. Innate immunity:plants just say NO to pathogens[J].Nature, 1998, 394(6693):525-527.
[55] Yun DJ, Ibeas JI, Lee H, et al. Osmotin, a plant antifungal protein subverts signal transduction to enhance fungal cell susceptibility[J]. Molecular Cell, 1998, 1:807-17.
[56] Narasimhan ML, Damsz B, Coca MA, et al. A plant defense response effector induces microbial apoptosis[J]. Molecular Cell, 2001, 8(4):921-930.
[57] Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II:buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions[J]. Biochemical and Biophysical Research Communications, 1998, 244(1):253-257.
[58] Hon WC, Griffith M, Mlynarz A, et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins[J]. Plant Physiol, 1995, 109(3):879-889.
[59] Dagar A, Friedman H, Lurie S. Thaumatin-like proteins and their possible role in protection against chilling injury in peach fruit[J]. Postharvest Biology and Technology, 2010, 57(2):77-85.
[60] Yasmin N, Saleem M, Naz M, et al. Molecular characterization,structural modeling, and evaluation of antimicrobial activity of basrai thaumatin-like protein against fungal infection[J]. Biomed Research International, 2017:504651.
[61] Tong Z, Sun Y, Wang D, et al. Identification and functional characterization of HbOsmotin fromHevea brasiliensis[J]. Plant Physiology and Biochemistry, 2016, 109:171-180.
[62] D’Angeli S, Altamura MM. Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization[J]. Planta, 2007, 225(5):1147-1163.
[63] Munis MF, Tu L, Deng F, et al. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance againstVerticillium dahliaeand other stresses in transgenic tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 393(1):38-44.
[64] Fils-Lycaon BR, Wiersma PA, Eastwell KC, et al. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like[J]. Plant Physiol, 1996, 111(1):269-273.
[65] Kim SH, Lee JR, Kim SR. Molecular characterization of a fruitpreferential thaumatin-like gene from apple(Malus domesticacv.Fuji)[J]. Journal of Plant Biology, 2003, 46(1):52-58.
[66] Ho VS, Wong JH, Ng TB. A thaumatin-like antifungal protein from the emperor banana[J]. Peptides, 2007, 28(4):760-766.
[67] Mukherjee AK, Carp MJ, Zuchman R, et al. Proteomics of the response ofArabidopsis thalianato infection withAlternaria brassicicola[J]. Journal of Proteomics, 2010, 73:709-720.
[68] Dafoe NJ, Gowen BE, Constabel CP. Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar[J]. BMC Plant Biology, 2010, 10(1):191.
[69] Velazhahan R, Datta SK, Muthukrishnan S. The PR-5 family:thaumatin-like proteins[M]//Datta SK, Muthukrishnan S(eds).Pathogenesis related Proteins in Plants. Boca Raton:CRC Press,1999:107-129.
[70] Ahmeda NU, Parka JI, Junga HJ, et al. Molecular characterization of thaumatin family genes related to stresses inBrassica rapa[J].Scientia Horticulturae, 2013, 152:26-34.
[71] Wan H, Chen J. Enhanced expression of a thaumatin-like gene,involved in ‘Pseudoperonospora cubensis’ and abiotic stresses,induced by DNA introgression from a wild relative,Cucumis hystrix[J]. Plant Omics, 2013, 6(2):135.
[72] Hiroyuki K, Terauchi R. Regulation of expression of rice thaumatinlike protein:inducibility by elicitor requires promoter W-box elements[J]. Plant Cell Reports, 2008, 27(9):1521-1528.
[73] Raghothama KG, Maggio A, Narasimhan ML, et al. Tissue-specific activation of the osmotin gene by ABA, C2H4 and NaCl involves the same promoter region[J]. Plant Mol Biol, 1997, 34(3):393-402.
[74] Prasath D, El-Sharkawy I, Sherif S, et al. Cloning and characterization of PR5 gene fromCurcuma amadaandZingiber officinalein response toRalstonia solanacearuminfection[J]. Plant Cell Reports, 2011, 30(10):1799-809.
[75] Tobias DJ, Manoharan M, Pritsch C, et al. Co-bombardment,integration and expression of rice chitinase and thaumatin-like protein genes in barley(Hordeum vulgarecv. Conlon)[J]. Plant Cell Reports, 2007, 26(5):631-639.