李浩宇 賀曉云
(1. 中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,北京 100083;2. 農(nóng)業(yè)部轉(zhuǎn)基因生物安全評(píng)價(jià)(食用)重點(diǎn)實(shí)驗(yàn)室,北京 100083)
卵泡抑素(Follistatin,F(xiàn)ST)發(fā)現(xiàn)于1987年,由兩位科學(xué)家Naoto Ueno和D.M.Robertson幾乎同時(shí)分別從豬和牛的卵泡液當(dāng)中提取出來(lái),目的是為了找到一種抑制卵泡刺激素(Follicle-stimulating hormone,F(xiàn)SH)的蛋白質(zhì)[1-2]。盡管FST最初是作為一種腦垂體FSH的內(nèi)分泌調(diào)節(jié)劑而從性腺中分離出來(lái)的,但隨后在成年哺乳動(dòng)物和胚胎的各種組織中都證實(shí)FSTmRNA和FST蛋白的存在,如心臟、腦、卵巢、睪丸、垂體、腎、腎上腺、骨髓、胸腺、骨骼肌和皮膚等。因此,目前一般認(rèn)為FST大多是通過(guò)自分泌和旁分泌的方式在組織與器官中產(chǎn)生[3-4]。FST是一種富含半胱氨基酸的分泌型糖蛋白,由于FST對(duì)FSH、激活素(Activin,ACT)和TGF-β超家族成員具有很強(qiáng)的親和性,故對(duì)這幾種蛋白有高水平的調(diào)控作用,它可以通過(guò)幾乎不可逆的方式與激活素綁定,從而使其無(wú)法與自己的受體結(jié)合[5-6]。FST在結(jié)構(gòu)上具有高度的保守性,在哺乳動(dòng)物中FST的同源性達(dá)到了95%。
成熟的FST蛋白有3種亞型,分別為FST-288、FST-300和FST-315。FST基因序列中包含了6個(gè)外顯子,在RNA水平可以被剪切為編碼344與317個(gè)氨基酸的mRNA片段,其中FST-315與FST-288兩種形式的蛋白便是這兩個(gè)mRNA在經(jīng)過(guò)剪切N端編碼27個(gè)氨基酸片段的基因之后由外顯子Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ與外顯子Ⅰ、Ⅱ、Ⅲ和Ⅳ所編碼的蛋白,而FST-300則是FST-315在體內(nèi)進(jìn)一步水解產(chǎn)生的[7]。FST的3種亞型在不同的組織中分布,且與細(xì)胞表面的結(jié)合能力各不相同,這暗示3種FST亞型蛋白在具有各自獨(dú)有的生理功能[8]。根據(jù)Sidis等[9]的研究顯示,這3種亞型FST蛋白與激活素的親和能力不相上下,而與細(xì)胞表面的結(jié)合能力FST-288 >FST-303 > FST-315[10]。在體外實(shí)驗(yàn)中,當(dāng)激活素和FST-288會(huì)被抑制,而FST-315的表達(dá)量升高,與激活素相關(guān)的TT細(xì)胞也出現(xiàn)了增殖的情況。
FST的3種亞型的存在、多組織表達(dá)的特性暗示著FST在機(jī)體中具有多種功能。除了可以調(diào)控FSH的分泌[11],F(xiàn)ST還具有促進(jìn)卵泡成熟[12]與精子發(fā)生[13],促進(jìn)骨骼肌發(fā)育與分化,促進(jìn)脂肪棕色化,促進(jìn)棕色脂肪分化,調(diào)節(jié)肝內(nèi)穩(wěn)態(tài)[14],促進(jìn)傷口恢復(fù)[15],炎癥反應(yīng)的抑制[16]等多種功能。但目前關(guān)于FST的醫(yī)學(xué)應(yīng)用還尚未開(kāi)發(fā)成熟,本文是整理近年來(lái)國(guó)內(nèi)外FST生理功能的研究動(dòng)態(tài)與相關(guān)機(jī)制的發(fā)現(xiàn),并以FST藥用的角度作出展望,旨在為日后FST的醫(yī)用開(kāi)發(fā)奠定理論基礎(chǔ)。
1.1.1 FST促進(jìn)卵母細(xì)胞成熟與胚胎早期發(fā)育作用的發(fā)現(xiàn) FST作為從卵泡液中提取出來(lái)的蛋白,是卵巢卵泡內(nèi)重要的局部調(diào)節(jié)因子,對(duì)卵母細(xì)胞及胚胎的成熟發(fā)育具有重要的促進(jìn)作用[17-18]。Jorgez等[12]的研究表明,敲除成年動(dòng)物顆粒細(xì)胞的FST基因后其卵泡和卵母細(xì)胞成熟遲緩,卵巢活動(dòng)提前終止最終導(dǎo)致生育能力顯著下降。有研究表明在受精7 d后處于卵裂期的牛胚胎中添加外源FST,可以顯著提高早期卵裂率,囊胚率和擴(kuò)張囊胚率以及滋養(yǎng)層細(xì)胞數(shù)量促進(jìn)胚胎發(fā)育[19]。王春強(qiáng)等[20]探究了關(guān)于FST對(duì)牛卵母細(xì)胞體外成熟及早期胚胎發(fā)育的影響,結(jié)果表明FST對(duì)牛卵母細(xì)胞的體外成熟無(wú)顯著影響,但是10 ng/mL的FST可以顯著降低囊胚率,5、10和20 ng/mL的FST均可顯著提高受精卵的總卵裂率,表明FST對(duì)胚胎發(fā)育有促進(jìn)作用。劉星等[21]研究了FST對(duì),結(jié)果顯示豬卵母細(xì)胞和早期胚胎中FST的mRNA表達(dá)量上調(diào);外源FST的添加會(huì)提前初次卵裂時(shí)間提高囊胚形成率,暗示著FST在調(diào)控卵母細(xì)胞成熟和促進(jìn)胚胎發(fā)育過(guò)程中有重大作用。
1.1.2 FST促進(jìn)卵母細(xì)胞成熟與胚胎早期發(fā)育作用機(jī)理 有研究表明,F(xiàn)ST調(diào)節(jié)卵母細(xì)胞成熟主要是在卵泡中通過(guò)激活素(ACT)-抑制素(INHA)-卵泡抑素通路實(shí)現(xiàn)的,卵母細(xì)胞上存在著激活素受體并且在成熟的卵母細(xì)胞中,F(xiàn)ST表達(dá)水平顯著高于未成熟的卵母細(xì)胞[22-23],這都提示著FST對(duì)卵母細(xì)胞的成熟有重要的調(diào)控作用。陳穎,何方方等[24]通過(guò)在生發(fā)泡期的卵母細(xì)胞中加入不同組合與濃度的激活素A(ACTA)、抑制素A(INHA)、FST,探究了激活素-抑制素-卵泡抑素系統(tǒng)影響小鼠卵母細(xì)胞成熟的機(jī)制,結(jié)果表明ACTA,INHA對(duì)生發(fā)泡期的卵母細(xì)胞體外成熟有明顯的促進(jìn)作用,且這種促進(jìn)作用會(huì)被外源添加的FST所抑制,但是當(dāng)卵母細(xì)胞中ACTA,INHA不足時(shí),F(xiàn)ST會(huì)對(duì)卵母細(xì)胞的成熟起促進(jìn)作用[24]。有研究表明骨形態(tài)發(fā)生蛋白(Bone morphogenetic proteins,BMP)可以調(diào)節(jié)FSH、雌激素與孕酮之間的平衡,影響小鼠胚胎細(xì)胞滋養(yǎng)層的發(fā)育,而FST可以與BMP特異性結(jié)合或者與BMPs通路上重要的信號(hào)蛋白Smad結(jié)合,從胞內(nèi)與胞外兩方面來(lái)調(diào)節(jié)BMPs信號(hào)通路,進(jìn)而影響卵母細(xì)胞的成熟與胚胎發(fā)育[25-26]。
1.1.3 FST促進(jìn)卵母細(xì)胞成熟與胚胎早期發(fā)育作用的生物學(xué)意義 胚胎工程對(duì)于當(dāng)代醫(yī)學(xué)和生物技術(shù)學(xué)有重要意義,而卵母細(xì)胞的成熟與胚胎的發(fā)育又是胚胎工程中重要的一環(huán),它作為輔助生育的前沿技術(shù),在多囊卵巢綜合征、卵巢反應(yīng)不良、婦女生育力保存等方面應(yīng)用前景廣闊,并且對(duì)于體外受精技術(shù)和動(dòng)物克隆技術(shù),卵母細(xì)胞的體外成熟和胚胎的早期發(fā)育也顯得至關(guān)重要[24,27]。FST作為一種可以調(diào)控卵母細(xì)胞成熟與胚胎發(fā)育的細(xì)胞因子,對(duì)胚胎工程這一生物學(xué)技術(shù)的發(fā)展具有重要推動(dòng)作用[28]。有研究表明,F(xiàn)ST在人類(lèi)的胚胎階段適當(dāng)表達(dá)可以促進(jìn)胚胎早期卵裂,進(jìn)而促進(jìn)了胚胎在囊胚期的發(fā)育及后期胚胎的著床[29]。適當(dāng)?shù)腇ST表達(dá)會(huì)促進(jìn)胚胎發(fā)育,但是過(guò)量的FST表達(dá)可能會(huì)造成胎兒生長(zhǎng)受限,于芳芳等[30]對(duì)30個(gè)患有胎兒生長(zhǎng)受限的新生兒的胎盤(pán)進(jìn)行了關(guān)于FST表達(dá)的免疫組化及實(shí)時(shí)熒光定量PCR分析,結(jié)果表明生長(zhǎng)受限胎兒的胎盤(pán)中FST表達(dá)量顯著高于正常胎兒。由此來(lái)看想要使FST真正應(yīng)用于輔助人類(lèi)生殖上還需要更多的臨床試驗(yàn)的推動(dòng)。
1.2.1 FST對(duì)骨骼肌增殖分化的調(diào)控作用的發(fā)現(xiàn) 雖然FST是在卵泡液中發(fā)現(xiàn)的,暗示著它參與了動(dòng)物的生殖能力的調(diào)控,但許多動(dòng)物實(shí)驗(yàn)都表明當(dāng)外源注射FST時(shí),實(shí)驗(yàn)動(dòng)物身上都出現(xiàn)了骨骼肌過(guò)度增長(zhǎng)的表型[31]。李西和聶芬等[32]通過(guò)構(gòu)建FST轉(zhuǎn)基因斑馬魚(yú)探究高表達(dá)FST對(duì)肌肉生長(zhǎng)的影響,結(jié)果顯示在高表達(dá)FST的轉(zhuǎn)基因魚(yú)的骨骼肌中,肌纖維數(shù)目明顯增加,單位面積中肌纖維數(shù)量增加,表明FST確實(shí)促進(jìn)了斑馬魚(yú)肌肉的生長(zhǎng)。與斑馬魚(yú)的動(dòng)物實(shí)驗(yàn)結(jié)果類(lèi)似,F(xiàn)ST的轉(zhuǎn)基因小鼠也出現(xiàn)了相同的結(jié)果[33]。在定向突變純合子小鼠的骨骼肌中過(guò)表達(dá)FST基因會(huì)導(dǎo)致新生小鼠的肌肉質(zhì)量明顯下降[34]。體外實(shí)驗(yàn)表明,F(xiàn)ST表達(dá)量的提升可以促進(jìn)肌肉細(xì)胞的分化和肌肉的再生[35]。此外,PGC1-α,P21表達(dá)量提升時(shí)也與FST具有相似的結(jié)果[36]。
1.2.2 FST對(duì)骨骼肌增殖分化的調(diào)控的作用機(jī)理 FST促進(jìn)骨骼肌增殖分化的機(jī)理與TGF-β超家族蛋白息息相關(guān)。MST是TGF-β超家族的一員,一直被認(rèn)為是一種骨骼肌的負(fù)向調(diào)節(jié)劑[37]。敲除了MST基因的純合子小鼠的骨骼肌質(zhì)量出現(xiàn)了快速且顯著的增長(zhǎng),由于肌纖維開(kāi)始肥大和增多,導(dǎo)致MST敲除鼠的肌肉重量約是野生型小鼠的兩倍[38]。此外,關(guān)于牛、羊、狗和人的遺傳學(xué)研究都表明了MST作為一種肌肉增長(zhǎng)的負(fù)面調(diào)節(jié)劑跨越了多個(gè)物種[39]。MST的功能通過(guò)一些能夠與它相結(jié)合的蛋白來(lái)調(diào)控,而FST就是其中之一。通過(guò)體外基因分析實(shí)驗(yàn),F(xiàn)ST可以與MST結(jié)合從而阻礙MST與其他受體相連接[40]。FST不僅可以與MST結(jié)合從而抑制MST活性,而且可以與MST調(diào)節(jié)肌肉發(fā)育的信號(hào)通路下游Smad蛋白競(jìng)爭(zhēng)性結(jié)合,阻礙信號(hào)通路,從而減弱MST對(duì)骨骼肌增長(zhǎng)的抑制作用[41]。而FST對(duì)骨骼肌增長(zhǎng)的促進(jìn)作用不僅是由于它對(duì)肌肉抑制劑MST具有抑制作用,有實(shí)驗(yàn)表明FST對(duì)肌肉的增殖效果要強(qiáng)于只抑制MST對(duì)于肌肉的增殖效果[42]。Act A是一種近年來(lái)發(fā)現(xiàn)的被認(rèn)為與MST具有類(lèi)似的抑制肌肉生長(zhǎng)功能的TGF-β超家族蛋白,研究發(fā)現(xiàn)FST會(huì)調(diào)控Act A進(jìn)而促進(jìn)肌肉的生長(zhǎng)。有實(shí)驗(yàn)表明,在小鼠中表達(dá)只能與MST相結(jié)合而不與Act A結(jié)合的FST,肌肉的增加量與過(guò)表達(dá)正常FST蛋白的小鼠相比下降了18%,也說(shuō)明了FST會(huì)通過(guò)調(diào)控Act A來(lái)促進(jìn)肌肉的增長(zhǎng)[23,43-44]。在抑制MST的基礎(chǔ)上使用Act A抗體特異性抑制Act A活性會(huì)大幅促進(jìn)肌肉的增長(zhǎng)[45],這都說(shuō)明了FST可以通過(guò)抑制Act A來(lái)調(diào)控骨骼肌的發(fā)育[46]。此外,F(xiàn)ST也能通過(guò)調(diào)控骨形成蛋白(Bone morphogenetic proteins,BMPs)[47]間接調(diào)控骨骼肌發(fā)育。BMPs可以通過(guò)Pax-3表達(dá)通路促進(jìn)骨骼肌前體細(xì)胞增殖進(jìn)而促使骨骼肌增長(zhǎng),也可以誘導(dǎo)細(xì)胞凋亡來(lái)抑制骨骼肌增長(zhǎng)[48]。Amthor等[49]的研究表明,在雞的腿部過(guò)表達(dá)FST會(huì)提升 BMP7促進(jìn)骨骼肌增長(zhǎng)的功能并且抑制BMP7誘導(dǎo)細(xì)胞凋亡。綜上,F(xiàn)ST可以通過(guò)影響多種信號(hào)通路進(jìn)而促進(jìn)骨骼肌的生長(zhǎng)。
1.2.3 FST對(duì)骨骼肌增殖分化的調(diào)控作用的醫(yī)學(xué)應(yīng)用 杜氏肌肉營(yíng)養(yǎng)不良癥是一種伴X染色體隱性疾病,它是由于肌纖維中抗肌萎縮蛋白缺失所造成的,患病者的肌肉更容易受到損傷,肌肉退化甚至被脂肪和結(jié)締組織替換[50]。抑制MST蛋白會(huì)使得骨骼肌迅速增長(zhǎng),增加肌肉力量,這為治療肌肉萎縮提供了思路。已有實(shí)驗(yàn)證明,通過(guò)多種途徑抑制MST,如使用抗體,過(guò)表達(dá)MST抑制蛋白前體,阻斷下游ActRⅡB信號(hào)通路[51],會(huì)使肌肉萎縮小鼠模型的肌肉在質(zhì)量與力量上均得到增長(zhǎng)[52]。雖然抑制MST可以促進(jìn)小鼠肌肉的增殖分化,但在包括人類(lèi)在內(nèi)的靈長(zhǎng)類(lèi)動(dòng)物中,單獨(dú)抑制MST所起到的肌肉增殖作用并不明顯[53]。FST與ActRⅡB結(jié)合可以阻礙多種通過(guò)ActRⅡB傳導(dǎo)抑肌信號(hào)的骨骼肌負(fù)調(diào)控因子(MST,BMP9,BMP10)及多種刺激素(Activin A、B、C和E)使得其具有顯著的促進(jìn)骨骼肌生長(zhǎng)的作用[54]。但是由于FST的調(diào)節(jié)范圍太廣,有些ActRⅡB的配體蛋白可能具有其他重要的功能,會(huì)出現(xiàn)一些不能預(yù)期的副作用。有關(guān)肌肉萎縮癥的臨床治療實(shí)驗(yàn)也因?yàn)槌霈F(xiàn)了溶血的并發(fā)癥而不得不停止[55],后續(xù)研究指出這是由于ActRⅡB的配體之一BMP9受到了抑制導(dǎo)致的,這種蛋白在調(diào)節(jié)骨骼肌發(fā)育的同時(shí)還與內(nèi)皮細(xì)胞的功能有關(guān)[56-57]。根據(jù)現(xiàn)在的研究基礎(chǔ)來(lái)看,F(xiàn)ST用于治療人類(lèi)的肌肉萎縮癥等肌肉相關(guān)疾病還需要進(jìn)一步研究。
1.3.1 棕色脂肪與其生物學(xué)意義 棕色脂肪組織(Brown adipose tissue,BAT)是人體非顫栗產(chǎn)熱的主要來(lái)源,對(duì)于新生哺乳動(dòng)物的產(chǎn)熱具有重要作用[58]。棕色脂肪與主要以甘油三酯來(lái)儲(chǔ)存能量的白色脂肪組織(White adipose tissue,WAT)不同,棕色脂肪具有很強(qiáng)的能量消耗能力,它可以通過(guò)促進(jìn)甘油三酯與葡萄糖的消耗來(lái)促進(jìn)機(jī)體生熱[59]。棕色脂肪有兩個(gè)最大的特點(diǎn),其一是棕色脂肪是以多腔脂質(zhì)滴的形式聚集脂肪,而另一個(gè)特點(diǎn)是棕色脂肪內(nèi)部存在關(guān)鍵的產(chǎn)熱蛋白,解偶聯(lián)蛋白1(Uncoupling protein 1,UCP1)它只存在于哺乳動(dòng)物棕色脂肪中,在棕色脂肪線粒體中大量表達(dá)。UCP1存在于線粒體內(nèi)膜上,它可以在線粒體內(nèi)膜生成可以使H+內(nèi)流的跨膜“質(zhì)子漏”,使線粒體呼吸作用與氧化磷酸化解偶聯(lián),使得經(jīng)過(guò)三羧酸循環(huán)并沿電子傳遞鏈釋放的能量直接以熱能形式釋放而不是用于合成ATP[60]。當(dāng)機(jī)體處于特定的環(huán)境中如冷暴露時(shí),白色脂肪會(huì)向棕色脂肪轉(zhuǎn)化,生成米色脂肪(Beige adipose tissue)。米色脂肪在結(jié)構(gòu)上與棕色脂肪相似,均為多腔脂質(zhì)滴,并且也會(huì)表達(dá)UCP1等棕色脂肪特征蛋白,加強(qiáng)脂肪消耗,增加機(jī)體產(chǎn)熱[61]。近年來(lái)有許多研究表明FST可以促進(jìn)棕色脂肪的分化和白色脂肪棕色化,這對(duì)通過(guò)棕色脂肪增加機(jī)體能量代謝,降低胰島素抵抗,預(yù)防肥胖及糖尿病具有重大意義[62]。
1.3.2 FST促進(jìn)脂肪棕色化作用的發(fā)現(xiàn) Braga等[63]成功構(gòu)建了MST敲除小鼠,并與正常野生型小鼠對(duì)比后發(fā)現(xiàn)白色脂肪中棕色脂肪特征蛋白開(kāi)始表達(dá),暗示著棕色化的開(kāi)始。相似的結(jié)果在Shan等[64]的研究中也有出現(xiàn),他們發(fā)現(xiàn)在MST敲除鼠的白色脂肪中,產(chǎn)熱基因UCP1,PGC1α的表達(dá)量顯著上升,米色化相關(guān)基因Tmem26和CD137轉(zhuǎn)錄水平也得到了提升。Choi等在MST敲除型小鼠中也發(fā)現(xiàn)了相比于正常野生型小鼠,MST敲除鼠的脂肪酸氧化程度和能量代謝水平更高[65]。FST作為MST的抑制劑,在棕色脂肪分化的過(guò)程中表達(dá)量顯著上升,并且在冷刺激條件下,小鼠的棕色脂肪中FST表達(dá)量也得到了顯著提升。敲除了FST基因的小鼠在剛出生不久就死亡,解剖后發(fā)現(xiàn)棕色脂肪含量過(guò)少,肌肉發(fā)育不完整,導(dǎo)致新生小鼠無(wú)法正常產(chǎn)熱維持體溫[34]。在分化中的前脂肪細(xì)胞中添加外源FST,產(chǎn)熱基因的表達(dá)量增加50%-80%,棕色脂肪特征蛋白顯著增加,而FST基因敲除的胚胎細(xì)胞中UCP1蛋白的表達(dá)量相比于野生型細(xì)胞下降了50%,這些結(jié)果都說(shuō)明了FST影響了棕色脂肪的形成與分化[66]。
1.3.3 FST促進(jìn)脂肪棕色化的作用機(jī)理 Singh等[67]進(jìn)行了FST轉(zhuǎn)基因小鼠的動(dòng)物實(shí)驗(yàn),當(dāng) FST過(guò)表達(dá)時(shí),棕色脂肪質(zhì)量增加,白色脂肪中棕色脂肪與米色脂肪特征蛋白表達(dá)量均有所提高,表明棕色化已經(jīng)形成,并且磷酸化的pp38MAPK/pERK1/2通路上的蛋白表達(dá)水平也得到提升。在3T3-L1脂肪前體細(xì)胞中,用藥物抑制pp38MAPK/pERK1/2通路的同時(shí)添加外源FST,結(jié)果顯示由FST誘導(dǎo)的UCP1蛋白的表達(dá)受到了阻礙,這暗示著FST可能是通過(guò)pp38MAPK/pERK1/2通路來(lái)誘導(dǎo)脂肪棕色化的。在MST敲除鼠中出現(xiàn)了白色脂肪棕色化,經(jīng)Shan等[64]的研究發(fā)現(xiàn),這是通過(guò)腺苷酸活化蛋白激酶(AMPK)-過(guò)氧化物酶增殖物激活受體(PGC1α)-鳶尾素(Fndc5)通路導(dǎo)致的。MST的缺失會(huì)導(dǎo)致AMPK蛋白表達(dá)量增高,而AMPK間接激活了PGC1α和Fndc5的表達(dá),F(xiàn)ndc5作為一種肌肉因子會(huì)促進(jìn)棕色脂肪與米色脂肪相關(guān)蛋白的表達(dá)[68]。FST是MST的抑制劑,并且有研究證明外源FST會(huì)促進(jìn)小鼠細(xì)胞Fndc5的表達(dá)[64],這都暗示了FST可能是通過(guò)AMPK-PGC1α-Fndc5通路促進(jìn)了白色脂肪的棕色化[69]。
1.3.4 FST促進(jìn)脂肪棕色化作用的醫(yī)學(xué)應(yīng)用展望 在C57BL6J小鼠中檢測(cè)各個(gè)組織FST的表達(dá)狀況可以發(fā)現(xiàn),在棕色脂肪和骨骼肌中,F(xiàn)ST表達(dá)量遠(yuǎn)高于其他組織,而腹股溝中的白色脂肪和肝臟中表達(dá)量較高,在其余組織的表達(dá)量均在較低水平。棕色脂肪、肝臟、骨骼肌作為機(jī)體中重要的脂質(zhì)、糖類(lèi)代謝組織,與機(jī)體產(chǎn)熱息息相關(guān),這也暗示了FST對(duì)機(jī)體脂質(zhì)糖類(lèi)代謝與產(chǎn)熱能力起到了調(diào)控作用[62]。Stanford等[70]通過(guò)對(duì)小鼠進(jìn)行棕色脂肪移植來(lái)探究棕色脂肪是否可以調(diào)節(jié)體內(nèi)血糖穩(wěn)態(tài)發(fā)現(xiàn),移植棕色脂肪過(guò)后,與同為高脂誘導(dǎo)的未移植肥胖鼠相比小鼠體內(nèi)胰島素敏感性提升,血糖隨著移植時(shí)間的推移明顯下降,說(shuō)明棕色脂肪具有改善血糖穩(wěn)態(tài)的重要作用。對(duì)高脂誘導(dǎo)的肥胖小鼠進(jìn)行冷刺激或者腎上腺素受體激動(dòng)劑處理來(lái)激活其體內(nèi)的棕色脂肪,結(jié)果顯示在高脂喂養(yǎng)的情況下,小鼠的體重并沒(méi)有增長(zhǎng),并且注射腎上腺素受體激動(dòng)劑的小鼠體重相比于對(duì)照組顯著下降[71]。在關(guān)于棕色脂肪的人體實(shí)驗(yàn)中,260個(gè)健康志愿者接受了2 h的冷刺激,隨后進(jìn)行相關(guān)棕色脂肪的檢測(cè),在260人中只有125人(48%)檢出了棕色脂肪,他們相比于未檢出人群更加年輕,體脂率更低,膽固醇,低密度脂蛋白及血糖也較未檢出人群低,暗示著棕色脂肪可以抵抗肥胖[72]。同樣是人體實(shí)驗(yàn),12名健康男性志愿者通過(guò)口服腎上腺素受體激動(dòng)劑來(lái)激活體內(nèi)棕色脂肪,通過(guò)PET-CT測(cè)量發(fā)現(xiàn)受試者的棕色脂肪代謝能力均得到提升,并且他們的靜息代謝率(Resting metabolic rate,RMR)也顯著升高[73]。動(dòng)物實(shí)驗(yàn)及人體實(shí)驗(yàn)都說(shuō)明棕色脂肪確實(shí)促進(jìn)了體內(nèi)的脂質(zhì)、葡萄糖及能量代謝,具有一定的減肥降糖效果[74-75]。由此看來(lái),F(xiàn)ST作為一種分泌型蛋白,通過(guò)促進(jìn)人體內(nèi)脂肪棕色化,可以達(dá)到降低脂肪重量,治療、預(yù)防二型糖尿病的效果,具有潛在的藥用價(jià)值,但具體的應(yīng)用開(kāi)發(fā)還需要大量動(dòng)物實(shí)驗(yàn)、臨床實(shí)驗(yàn)進(jìn)行安全性的評(píng)價(jià)。
FST作為一種分泌型蛋白,在卵母細(xì)胞成熟與胚胎發(fā)育,肌肉的增殖與分化,脂肪細(xì)胞棕色化這三個(gè)方面具有明顯的促進(jìn)作用。FST的促進(jìn)卵母細(xì)胞成熟與胚胎發(fā)育的作用可以極大提高胚胎工程的發(fā)展,更好輔助人類(lèi)生育繁衍;促進(jìn)肌肉的增殖作用可以應(yīng)用于肌肉萎縮癥的治療;誘導(dǎo)脂肪細(xì)胞棕色化則可以改善體內(nèi)能量代謝,血糖穩(wěn)態(tài),減少脂肪重量。當(dāng)今人類(lèi)不良的生活飲食習(xí)慣使得肥胖和二型糖尿病患者越來(lái)越多,已經(jīng)嚴(yán)重威脅到人類(lèi)的生命安全,F(xiàn)ST棕色化作用的發(fā)現(xiàn)給人們治療肥胖與二型糖尿病提供了更廣闊的思路。
[1]Page B, Casas E, Heaton M, et al. Evaluation of single-nucleotide polymorphisms in for association with meat tenderness in cattle[J]. Journal of Animal Science, 2002, 80(12):3077-3085.
[2]Costello S, O’Doherty E, Troy D, et al. Association of polymorphisms in the calpain I, calpain II and growth hormone genes with tenderness in bovine M. longissimus dorsi[J]. Meat Science,2007, 75(4):551-557.
[3]DePaolo LV, Bicsak TA, Erickson GF, et al. Follistatin and activin:a potential intrinsic regulatory system within diverse tissues[J].Proceedings of the Society for Experimental Biology and Medicine,1991, 198(1):500-512.
[4]Matzuk MM, Lu N, Vogel H, et al. Multiple defects and perinatal death in mice deficient in follistatin[J]. Nature, 1995, 374(6520):360-368.
[5]Nakamura T, Takio K, Eto Y, et al. Activin-binding protein from rat ovary is follistatin[J]. Science, 1990, 247(4944):836-849.
[6]Phillips DJ. Regulation of activin’s access to the cell:why is mother nature such a control freak?[J]. Bioessays, 2000, 22(8):689-696.
[7]Shimasaki S, Koga M, Esch F, et al. Primary structure of the human follistatin precursor and its genomic organization[J]. Proceedings of the National Academy of Sciences, 1988, 85(12):4218-22.
[8]Kita BM, Hardy CL, O’Hehir RE, et al. PB01:A recombinant human follistatin protein for the treatment of neutrophilic lung diseases[M]. A37 Cystic Fibrosis:Immune Regulatory Pathways.Am Thoracic Soc. 2016:A1413-A1423.
[9]Sidis Y, Mukherjee A, Keutmann H, et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins[J]. Endocrinology, 2006, 147(7):3586-3597.
[10]Wijayarathna R, Sarraj M, Genovese R, et al. Activin and follistatin interactions in the male reproductive tract:activin expression and morphological abnormalities in mice lacking follistatin 288[J].Andrology, 2017, 5(3):578-588.
[11]Besecke LM, Guendner MJ, Sluss PA, et al. Pituitary follistatin regulates activin-mediated production of follicle-stimulating hormone during the rat estrous cycle[J]. Endocrinology, 1997,138(7):2841-2858.
[12]Jorgez CJ, Klysik M, Jamin SP, et al. Granulosa cell-specific inactivation of follistatin causes female fertility defects[J].Molecular Endocrinology, 2004, 18(4):953-967.
[13]Guo Q, Kumar TR, Woodruff T, et al. Overexpression of mouse follistatin causes reproductive defects in transgenic mice[J].Molecular Endocrinology, 1998, 12(1):96-106.
[14]Takabe K, Wang L, Leal AM, et al. Adenovirus-mediated overexpression of follistatin enlarges intact liver of adult rats[J].Hepatology, 2003, 38(5):1107-1115.
[15]Wankell M, Munz B, Hübner G, et al. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis[J]. The EMBO Journal, 2001, 20(19):5361-5372.
[16]Jones KL, De Kretser DM, Patella S, et al. Activin A and follistatin in systemic inflammation[J]. Molecular and Cellular Endocrinology, 2004, 225(1):119-125.
[17]于建寧, 吳正三, 劉慶友, 等. 免疫抑制素/卵泡抑素對(duì)家畜胚胎體外生產(chǎn)效率的提高[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2014, 4):796-801.
[18]K?ninger A, Schmidt B, Damaske D, et al. Follistatin during pregnancy and its potential role as an ovarian suppressing agent[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2017, 212:150-154.
[19]郭鎮(zhèn)華. 卵泡抑素影響牛胚胎早期發(fā)育的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2012.
[20]王春強(qiáng), 馬寧. 卵泡抑素對(duì)牛卵母細(xì)胞體外成熟及早期胚胎生長(zhǎng)發(fā)育的影響[J]. 中國(guó)畜牧雜志, 2011, 47(15):23-25.
[21]劉星. 卵泡抑素對(duì)豬著床前胚胎體外發(fā)育的影響[D]. 合肥:安徽農(nóng)業(yè)大學(xué), 2014.
[22]Silva C, Groome N, Knight P. Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization[J].Reproduction, 2003, 125(1):33-42.
[23]Sharkey DJ, Tremellen KP, Briggs NE, et al. Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time[J]. Human Reproduction, 2016, 31(10):2183-2191.
[24]陳穎, 何方方, 王增艷, 等. 激活素-抑制素-卵泡抑素系統(tǒng)對(duì)小鼠卵母細(xì)胞體外成熟及早期胚胎發(fā)育潛能的影響機(jī)制[J]. 生殖與避孕 , 2008, 28(3):134-139.
[25]Lee KB, Bettegowda A, Wee G, et al. Molecular determinants of oocyte competence:potential functional role for maternal (oocytederived)follistatin in promoting bovine early embryogenesis[J].Endocrinology, 2009, 150(5):2463.
[26]Lowery JW, Decaestecker MP. BMP signaling in vascular development and disease[J]. Cytokine & Growth Factor Reviews, 2010, 21(4):287-298.
[27]Rhee JH. Oocyte donation in infertility treatment[J]. Korean Journal of Obstetrics and Gynecology, 2006, 49(6):1188-1195.
[28]田錦, 李志敏, 傅衍, 等. 抑制素、活化素和卵泡抑素研究進(jìn)展[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2008, 29(12):77-81.
[29]Salumets A, Hydén-Granskog C, M?kinen S, et al. Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures[J]. Human Reproduction, 2003, 18(4):821-832.
[30]于芳芳, 曹慧, 沈宗姬. 胎盤(pán)中抑制素α亞基和卵泡抑素的表達(dá)及與胎兒生長(zhǎng)受限的關(guān)系[J]. 實(shí)用婦產(chǎn)科雜志, 2013, 29(9):671-675.
[31]暢飛. Myostatin基因敲除豬與Follistatin轉(zhuǎn)基因豬骨骼肌發(fā)育的相關(guān)研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué), 2014.
[32]李西, 聶芬, 殷戰(zhàn), 等. 轉(zhuǎn)基因高表達(dá)卵泡抑素1對(duì)斑馬魚(yú)肌肉生長(zhǎng)促進(jìn)作用研究[J]. 中國(guó)科學(xué):生命科學(xué), 2011(1):53-60.
[33]Zimmers TA, Lee SJ. Induction of cachexia in mice by systemically administered myostatin[J]. Science, 2002, 296(5572):1486.
[34]Matzuk MM, Lu N, Vogel H, et al. Multiple defects and perinatal death in mice deficient in follistatin[J]. Nature, 1995, 374(6520):360-367.
[35]Al-Zaidy SA, Sahenk Z, Rodino-Klapac LR, et al. Follistatin gene therapy improves ambulation in becker muscular dystrophy[J].Journal of Neuromuscular Diseases, 2015, 2(3):185-192.
[36]Li Y, Li J, Zhu J, et al. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration[J]. Molecular Therapy,2007, 15(9):1616-2162.
[37]McPherron AC, Lawler AM, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J].Nature, 1997, 387(6628):183-194.
[38]Luc G, Dimitri P, Frédéric F, et al. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene[J]. Genesis, 2003, 35(4):227.
[39]Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine, 2004, 350(26):2682-2688.
[40]Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth[J]. Proceedings of the National Academy of Sciences,2001, 98(16):9306-9311.
[41]Winbanks CE, Weeks KL, Thomson RE, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin[J]. J Cell Biol, 2012, 197(7):997-1008.
[42]Lee SJ. Quadrupling muscle mass in mice by targeting TGF-signaling pathways[J]. PLoS One, 2007, 2(8):e789.
[43]Gilson H, Schakman O, Kalista S, et al. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin[J]. American Journal of Physiology-Endocrinology and Metabolism, 2009, 297(1):E157-E164.
[44]Fang DY, Lu B, Hayward S, et al. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice[J]. Transplantation Direct, 2016, 2(7):33-48.
[45]Latres E, Mastaitis J, Fury W, et al. Activin A more prominently regulates muscle mass in primates than does GDF8[J]. Nature Communications, 2017, 8:15153.
[46]O’Connell AR, McNatty KP, Hurst PR, et al. Activin A and follistatin during the oestrous cycle and early pregnancy in ewes[J]. Journal of Endocrinology, 2016, 228(3):193-203.
[47]Iemura SI, Yamamoto TS, Takagi C, et al. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo[J]. Proceedings of the National Academy of Sciences,1998, 95(16):9337-9342.
[48]Amthor H, Christ B, Weil M, et al. The importance of timing differentiation during limb muscle development[J]. Current Biology, 1998, 8(11):642-652.
[49]Amthor H, Christ B, Rashid-Doubell F, et al. Follistatin regulates bone morphogenetic protein-7(BMP-7)activity to stimulate embryonic muscle growth[J]. Developmental Biology, 2002, 243(1):115-127.
[50]Kemaladewi DU, Hoogaars WM, van Heiningen SH, et al. Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy[J]. BMC Medical Genomics, 2011, 4(1):36-45.
[51]Lidbury BA, Kita B, Lewis DP, et al. Activin B is a novel biomarker for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME)diagnosis:a cross sectional study[J]. Journal of Translational Medicine, 2017, 15(1):60-77.
[52]Li ZB, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis[J]. Journal of Biological Chemistry,2008, 283(28):19371-19378.
[53]Latres E, Pangilinan J, Miloscio L, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice[J]. Skeletal Muscle, 2015, 5(1):34-44.
[54]Koncarevic A, Kajimura S, Cornwall-Brady M, et al. A novel therapeutic approach to treating obesity through modulation of TGFβ signaling[J]. Endocrinology, 2012, 153(7):3133-3146.
[55]Newell LF, Defor TE, Cutler CS, et al. Follistatin and endoglin:potential biomarkers of endothelial damage and non-relapse mortality after myeloablative allogeneic hematopoietic cell transplantation in blood and marrow transplant clinical trials network(BMT CTN)0402[J]. Biology of Blood and Marrow Transplantation, 2017, 23(3):S73-S74.
[56]Tillet E, Bailly S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia[J]. Frontiers in Genetics, 2015, 5 :456.
[57]Nolan-Stevaux OP, Zhong W, Wickramasinghe D, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-Endoglin antibodies[J].PLoS One, 2012, 7(12):e50920.
[58]Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development[J]. Cell Metabolism, 2010, 11(4):257-269.
[59]Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance[J]. Nature Medicine, 2011, 17(2):200-209.
[60]Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat:fighting the metabolic syndrome[J]. Cell Metabolism, 2011, 13(3):238-245.
[61]Kajimura S, Saito M. A New Era in Brown adipose tissue biology:molecular control of brown fat development and energy homeostasis[J]. Annual Review of Physiology, 2014, 76(76):225-229.
[62]Rajan S, Melissa B, Shehla P. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling[J]. Frontiers in Cell & Developmental Biology, 2014, 2(2):60-80.
[63]Braga M, Pervin S, Norris K, et al. Inhibition of in vitro and in vivo brown fat differentiation program by myostatin[J]. Obesity,2013, 21(6):1180-1188.
[64]Shan T, Liang X, Bi P, et al. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle[J]. The FASEB Journal, 2013, 27(5):1981-1989.
[65]Choi SJ, Yablonkareuveni Z, Kaiyala KJ, et al. Increased energy expenditure and leptin sensitivity account for low fat mass in myostatin-deficient mice[J]. Am J Physiol Endocrinol Metab,2011, 300(6):1031-1037.
[66]Braga M, Reddy ST, Vergnes L, et al. Follistatin promotes adipocyte differentiation, browning, and energy metabolism[J]. Journal of Lipid Research, 2014, 55(3):375-384.
[67]Singh R, Braga M, Reddy ST, et al. Follistatin targets distinct pathways to promote brown adipocyte characteristics in brown and white adipose tissues[J]. Endocrinology, 2017, 158(5):1217-1230.
[68]Bostr?m P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382):463-468.
[69]Triantafyllou GA, Skouvaklidou EC, Saridakis ZG, et al. Circulating follistatin and irisin in young, healthy individuals:a one-year prospective cohort study[M]. GPCRs, Growth Factors, Tyrosine Kinases, Inhibits, Activins, and TGF Beta Superfamily(posters).Endocrine Society, 2016:123-134.
[70]Stanford KI, Middelbeek RJ, Townsend KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity[J].The Journal of Clinical Investigation, 2013, 123(1):215-223.
[71]Guerra C, Koza RA, Yamashita H, et al. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity[J]. Journal of Clinical Investigation,1998, 102(2):412-422. .
[72]Matsushita M, Yoneshiro T, Aita S, et al. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans[J]. International Journal of Obesity, 2014, 38(6):812-817. .
[73]Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist[J].Cell Metabolism, 2015, 21(1):33-38.
[74]Pervin S, Singh V, Tucker A, et al. Modulation of transforming growth factor-β/follistatin signaling and white adipose browning :therapeutic implications for obesity related disorders[J].Hormone Molecular Biology and Clinical Investigation, 2017, 31(2):11-18.
[75]Graham MR, Baker JS, Davies B. Peptide hormones, metformin and new-wave practices and research therapies[M]. Chemically Modified Bodies. Springer, 2016:201-229.