陳祎, 宋婷玉, 李金海, 肖永樂, 曾光志, 萬小平,楊璐一, 方鵬飛*, 王澤洲, 高榮*
1. 四川大學生命科學學院,生物資源與生態(tài)環(huán)境教育部重點實驗室,動物疾病防控和食品安全四川省重點實驗室,成都610065;2. 四川省華派生物制藥有限公司,成都610026; 3. 四川省動物疫病預防控制中心,成都610035)
細胞因子因其安全性和高效性而成為一種理想的免疫佐劑,例如γ-干擾素(IFN-γ)(Wangetal.,2013)、白細胞介素2(IL-2)(Yangetal.,2010)、白細胞介素4(IL-4)(Zhangetal.,2007)和白細胞介素6(IL-6)(Lietal.,2011)。IL-2、IL-4和IL-6在細胞和體液免疫反應中起重要作用。IL-2具有多種生物學功能,包括促進T細胞增殖和增強NK細胞的細胞毒性,刺激活化的B淋巴細胞增殖,并誘導免疫球蛋白分泌等(Collins & Oldham,1993)。IL-4可影響體液免疫和細胞免疫應答,如免疫球蛋白的產(chǎn)生、類別轉換和分泌(Pasquinietal.,1997)。IL-6具有促進白細胞介素基因表達、B細胞分化、T細胞活化的作用(Kishimoto,2010)。
豬IL-2或IL-6與CpG免疫刺激序列的混合基因能有效提高動物對病原菌的抵抗力(Yangetal.,2010;Huangetal.,2013);此外,豬IL-4/6融合基因與單獨的IL-4和IL-6相比,能誘導機體產(chǎn)生更強的免疫應答;豬IL-4/6融合基因能加強大腸桿菌疫苗、豬肺炎支原體疫苗、豬繁殖與呼吸綜合征(PRRS)疫苗對機體的體液和細胞免疫,提高接種動物的免疫保護性(Zhangetal.,2007;Zhangetal.,2012;Yangetal.,2013);豬IL-2、IL-4、IL-6的融合基因(IL-4/6-2)相比于IL-4/6和IL-2在小鼠Musmusculus上可產(chǎn)生更強的免疫協(xié)同調節(jié)作用(楊璐一等,2014)。
因此,本實驗在前期研究的基礎上,為研制新型高性價比的PCV-2疫苗免疫調節(jié)劑,評估共表達IL-2和IL-4/6融合基因納米顆粒對仔豬生長和PCV-2免疫應答的作用。
質粒:真核表達載體VR1020-豬融合白細胞介素4/6-2(VRIL-4/6-2),由本實驗室構建并保存;殼聚糖(CS):15 kD,脫乙酰度95%以上,購自Sigma Aldrich;多聚磷酸鈉(TPP):購自Sigma(USA);鱟試劑:購自湛江A & C公司;疫苗:PCV-2滅活疫苗(ZJ/C株)(圓環(huán)康)和實驗動物:健康21日齡長白、約克夏和杜洛克雜交仔豬均由四川省華派生物制藥有限公司提供。
1.2.1VRIL-4/6-2真核表達質粒的大量制備及內毒素檢測參照《分子克隆指南 第三版》(Josephetal.,2002)制備質粒,溶解于TE緩沖液,質粒濃度和純度使用紫外分光光度計檢測;質粒內毒素含量用鱟試劑檢測。
1.2.2VRIL-4/6-2質粒殼聚糖納米顆粒的制備離子交聯(lián)法(Bodmeieretal.,1989)制備VRIL-4/6-2質粒殼聚糖納米顆粒。將殼聚糖溶解于1%的冰醋酸溶液(pH5.5),配制為2.4 mg·mL-1的溶液;ddH2O配制10 mg·mL-1的磷酸三苯酯(TPP)溶液;以上溶液均用0.22 μm微孔濾膜過濾除菌。將VRIL-4/6-2質粒與適量TPP溶液混勻,55 ℃孵育20 min;殼聚糖與質粒質量比為30∶1,在50~55 ℃水浴磁力攪拌下將質粒與TPP的預混液緩慢滴加至殼聚糖溶液中,混合均勻,恒溫孵育10 min備用,記作VRIL-4/6-2-CS。用Zetasizer3000HS/IHPL粒度儀檢測納米顆粒粒徑和電位。
1.2.3動物實驗10頭21日齡長白、約克夏和杜洛克雜交仔豬,經(jīng)ELISA和熒光定量PCR(qPCR)檢測PCV-2、PRRS病毒、豬瘟病毒和支原體均為陰性。隨機分成實驗組和對照組,每組5頭。實驗組頸部肌肉注射2.5 mL VRIL-4/6-2-CS(0.5 mg·mL-1),對照組注射相同劑量生理鹽水;2組均頸部肌肉注射2.5 mL PCV-2疫苗。豬免疫接種前記為第0天,接種后第7、14、28天定時采集前腔靜脈血用于檢測免疫反應。接種前及實驗結束第28天時分別測量2組仔豬的體質量,用于評價實驗質粒對仔豬生長的影響。
觀察組48例中,痊愈15例,顯效20例,有效10例,無效3例,總有效率為93.75%;對照組48例中,痊愈11例,顯效15例,有效12例,無效10例,總有效率為79.16%,觀察組明顯優(yōu)于對照組,兩組效果比較,差異有統(tǒng)計學意義(P<0.05)。
1.2.4PCV-2特異性抗體的測定取500 μL抗凝血低速離心后收集血清,參照ELISA試劑盒說明書操作,在酶標儀上測定OD630值,檢測血清中PCV-Ab的含量,試劑盒購自武漢科前生物公司。
1.2.5IgG1和IgG2a的測定取500 μL抗凝血低速離心后收集血清,參照ELISA 試劑盒說明書操作,在酶標儀上測定OD450值,檢測血清中IgG1和IgG2a的含量,試劑盒購自成都敏鑫科生物科技公司。
1.2.6CD4+和CD8+T淋巴細胞的測定取100 μL新鮮抗凝血搖勻,加入2 μL anti-porcine CD3-SPRD、2 μL anti-porcine CD4-FITC、2 μL anti-porcine CD8-PE,震蕩混勻避光孵育30 min;加入600 μL紅細胞裂解液,避光裂解10 min,500 r·min-1離心5 min,去上清;加入1 mL 磷酸緩沖鹽溶液(PBS),輕輕懸浮細胞,500 r·min-1離心5 min,去上清;重復洗滌1次,細胞沉淀加入300 μL PBS混勻,懸浮細胞,上機檢測。
1.2.7熒光定量檢測基因表達水平100 μL抗凝血加入1 mL的RNAiso pius,充分裂解后提取細胞總RNA,用TransScript All-in-One First-Strand cDNA Synthesis SuperMix for Qpcr (One-Step gDNA Removal)反轉錄試劑盒合成cDNA。根據(jù)GenBank中的豬PPIA、TLR-2、TLR-7、IL-2、IL-4、IL-6、TNF-α、STAT-1、STAT-2、STAT-3基因的cDNA序列,分別設計合成其特異性擴增引物(表1)。
以仔豬不同時期血液cDNA為模板,表1中設計的引物進行擴增。用Bio-Rad IQ5熒光定量PCR儀檢測不同基因相對表達的情況,15 μL體系,用SsoAdvanceTMUniversal SYBR Green Supermix進行熒光定量分析。擴增參數(shù)為:95 ℃ 預變性30 s;95 ℃變性 5 s,最佳退火溫度退火30 s,40個循環(huán)。熔解曲線參數(shù):65~95 ℃,每6 s上升0.5 ℃。PPIA為內參基因,采用2-ΔΔCT法分析實時熒光PCR數(shù)據(jù),比較同一目的基因不同時期的相對表達水平差異。
1.2.8數(shù)據(jù)分析以上各數(shù)據(jù)用GraphPad Prism 6中的雙因素方差分析和單因素方差分析進行差異比較,P<0.05表示差異有統(tǒng)計學意義。
表1 熒光定量PCR特異性引物Table 1 The primers for qPCR
實驗開始及結束時分別稱量每只仔豬的體質量,分別計算每組仔豬體質量的平均值和方差,仔豬體質量變化見表2。結果顯示,實驗組仔豬體質量增加顯著高于對照組(P<0.05)。
表2 實驗28天仔豬體質量變化Table 2 Body mass change of piglets during 28 days
注 Note:*P<0.05
在接種第7天后,實驗組和對照組中均可以檢測到PCV-2抗體,但是2組含量之間的差異無統(tǒng)計學意義(P>0.05)(圖1)。
圖1 仔豬血清中PCV-2抗體含量的變化Fig. 1 PCV-2 antibody titers in the serum of the experimental piglets
S/P=(S-N)/(P-N)=(樣品OD值-陰性對照OD值)/(陽性對照OD值-陰性對照OD值), 當S/P≥0.16時, 認為PCV-2抗體檢測為陽性
S/P=(S-N)/(P-N)=(ODsample-ODnegative control)/(ODpositive control-ODnegative control), titer of PCV-2 antibody was considered positive whenS/P≥0.16
實驗組仔豬血清中IgG1的含量顯著低于對照組(P<0.05),而IgG2a的含量顯著高于對照組(P<0.05)(圖2)。
流式細胞術檢測仔豬血液中CD4+和CD8+T淋巴細胞亞群的數(shù)量變化,實驗組仔豬血液中的CD4+T和CD8+T淋巴細胞的數(shù)量與對照組相比均顯著增加(P<0.05)(圖3)。
2.5.1Toll-like受體基因表達定量分析實驗組TLR-2基因的表達水平只在免疫后第14天顯著高于對照組(P<0.05),而實驗組TLR-7基因的表達水平在免疫后第28天顯著高于對照組(P<0.05)(圖4)。
圖2 仔豬血清中IgG1和IgG2a含量的變化Fig. 2 The change of the levels of IgG1 and IgG2a in the serum of piglets
圖3 仔豬血液中 CD4+和CD8+T淋巴細胞數(shù)量的變化Fig. 3 CD4+ and CD8+ T cell numbers in the blood of experimental piglets
2.5.2細胞因子基因表達定量分析實驗組仔豬血液中IL-2、IL-4、IL-6和TNF-α基因的表達水平在免疫后第28天均顯著高于對照組(P<0.05),其中,IL-4和IL-6基因表達水平分別在第7天和第14天顯著高于對照組(P<0.05)(圖5)。
2.5.3免疫信號傳導分子基因表達定量分析STAT-1基因表達水平在免疫后第7~14天均顯著高于對照組(P<0.05),STAT-2基因表達水平在免疫后第14~28天顯著高于對照組(P<0.05),STAT-3基因表達水平在免疫后第7、28天顯著高于對照組(P<0.05)(圖6)。
細胞因子是調節(jié)動物免疫功能的關鍵分子。許多細胞因子被證實作為佐劑對體液或細胞免疫有增強作用(Pasquinietal.,1997;Kayamuroetal.,2010)。IL-2不僅支持T細胞和NK細胞的活化和增殖,還可以刺激和活化B淋巴細胞增殖和誘導免疫球蛋白分泌(Smith,1988;Collins & Oldham,1993)。IL-4可促進體液免疫,增加特異性和非特異性殺傷功能(Erbetal.,1997;Paul,2015)。IL-6可調節(jié)B細胞活化、抗體產(chǎn)生和Th1型免疫反應(Paul & Seder,1994;Kishimoto,2006)。有研究表明,豬IL-4/6、IL-2和IL-4/6-2融合基因均可安全增強動物系統(tǒng)和全面的免疫(Yangetal.,2010,2013;楊璐一等,2014)。基于以前的研究,本研究第一次將豬IL-4/6-2融合基因應用到豬上,來加強對PCV-2疫苗的免疫效果。
圖4 仔豬TLR基因表達水平的變化Fig. 4 The change of expression levels of TLR gene in the blood of experimental piglets
圖5 仔豬細胞因子基因表達水平的變化Fig. 5 The change of cytokine gene expression in the blood of experimental piglets
圖6 仔豬免疫信號傳導分子基因表達水平的變化Fig. 6 The change of the immune signal transduction molecules related genes in the blood of experimental piglets
本實驗用殼聚糖將重組質粒VRIL-4/6-2包裹,制備殼聚糖納米顆粒,與PCV-2疫苗同時對實驗仔豬進行肌肉注射免疫接種。實驗所用重組質粒通過2A短肽連接3種白細胞介素基因,構建共表達質粒。2A短肽具有的自剪切機制使連接前后的基因表達量相同(de Felipe & Ryan,2004;Szymczak & Vignali,2005)。裸露的基因不穩(wěn)定且半衰期短,轉染效率低;而殼聚糖包裹質粒可形成小的帶正電荷的納米顆粒,與裸露的質粒相比,它可以更有效地攜帶目的基因進入細胞,還可以抑制其在生物體內降解,被證實是一種有潛力的緩釋材料,并且還具有生物相容性(Chewetal.,2003;Cui & Mumper,2003),因此,殼聚糖作為基因載體的研究發(fā)展迅速(Buschmannetal.,2013;Fernándezetal.,2016)。Huang等(2005)通過熒光標記研究殼聚糖-DNA復合粒子進入細胞的過程,證實了殼聚糖-DNA復合粒子可以被細胞內吞,繼而進行后續(xù)基因轉染。之前的研究也表明,殼聚糖納米粒子在動物身上用于基因傳遞幾乎沒有毒性和影響(Yangetal.,2010;Zhangetal.,2012),并且空白載體質粒組與空白組沒有差異(Yangetal.,2010)。本次實驗由于陰性動物難于篩選獲得,數(shù)量有限,并未進行空白載體質粒組的實驗。
在實驗期間,實驗組和對照組仔豬注射局部均未出現(xiàn)病變、損傷或其他系統(tǒng)性癥狀。實驗開始和結束時分別記錄了每只仔豬的體質量,結果顯示,實驗組仔豬的生長速率顯著高于對照組。有研究顯示,IL-2、IL-4、IL-6、IL-10、TNF-α等細胞因子可在豬小腸中持續(xù)表達,并且細胞因子除了直接的免疫調節(jié)作用,還可影響上皮細胞的生長、內環(huán)境穩(wěn)態(tài)和免疫細胞的運輸(Oswald,2006;Devriendtetal.,2010)。推測VRIL-4/6-2質粒對調節(jié)仔豬內分泌、促進物質代謝有積極作用。
PCV-2特異性抗體和PCV-2中和抗體是體液免疫反應的重要檢測指標(Meertsetal.,2006;Fortetal.,2007)。研究結果表明,實驗組和對照組仔豬血清中PCV-2抗體的含量差異無統(tǒng)計學意義,且實驗組仔豬血清中IgG1的含量顯著低于對照組,這表明IL-4/6-2可能沒有明顯增強仔豬對PCV-2疫苗的體液免疫。此外,有研究顯示,誘導細胞免疫對于PCV-2的防控很有必要(Fortetal.,2009)。本研究結果表明,實驗組的CD4+和CD8+T淋巴細胞數(shù)量顯著高于對照組,并且實驗組的IL-2、TNF-α基因表達水平在第28天顯著高于對照組。IL-2、IFN-γ和TNF-α均由Th1細胞產(chǎn)生,Th1細胞可誘導巨噬細胞活化、遲發(fā)性超敏反應和IgG2a的產(chǎn)生(Mosmann & Coffman,1989;Abbasetal.,1996)。同時,本次實驗發(fā)現(xiàn),接種質粒的實驗組比對照組產(chǎn)生了更多的IgG2a抗體,表明實驗組仔豬產(chǎn)生了更強的Th1型免疫應答,相比對照組,VRIL-4/6-2-CS提高了仔豬對PCV-2疫苗的細胞免疫應答。
另外,實驗組仔豬血液中IL-4、IL-6、TLR-2、TLR-7、STAT-1、STAT-2、STAT-3基因的表達水平在不同時間段內也顯著高于對照組。TLRs是先天免疫系統(tǒng)的重要組成部分,Toll-like受體在先天免疫中識別不同病原菌的保守分子模式,并參與對病原體的特異性體液和細胞免疫反應的激活(Kawai & Akira,2010)。STAT-1、STAT-2參與IFNs應答反應,并在干擾素抗病毒應答調節(jié)中起重要作用(Mitchell & John,2005;Steen & Gamero,2013);STAT-3可由多種細胞因子激活,例如IL-6、IL-12具有有效的抗炎作用,可調節(jié)細胞生長、凋亡、炎性基因的轉錄等重要細胞過程(Egwuagu,2009);JAK激酶和STAT蛋白參與了許多細胞因子的信號轉導,它在細胞因子介導的免疫反應和調控中具有重要作用(Shuai & Liu,2003)。綜上,這些基因表達水平的提高表明VRIL-4/6-2-CS誘導了更加全面的免疫應答,增強了仔豬的先天性和適應性免疫應答。
總之,本研究結果首次證實VRIL-4/6-2-CS可有效協(xié)同增強仔豬對PCV-2疫苗的免疫應答。VRIL-4/6-2-CS是一種新型高性價比佐劑,可提高豬對抗PCV-2感染的免疫預防能力,具有重要應用前景。
Joseph S, David W, 黃培堂, 等. 2002. 分子克隆實驗指南(第三版)[M]. 北京: 科學出版社: 32-36.
楊璐一, 肖永樂, 萬小平, 等. 2014. 豬白細胞介素2與融合白細胞介素4/6基因共表達的免疫效應研究[J]. 四川動物, 33(2): 167-173.
Abbas AK, Murphy KM, Sher A. 1996. Functional diversity of helper T lymphocytes[J]. Nature, 383(6603): 787.
Allan G, McNeilly F, Ellis J,etal. 2004. PMWS: experimental model and co-infections[J]. Veterinary Microbiology, 98(2): 165-168.
Beach NM, Meng XJ. 2012. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2)[J]. Virus Research, 164(1): 33-42.
Bodmeier R, Chen H, Paeratakul O. 1989. A novel approach to the oral delivery of micro- or nanoparticles[J]. Pharmaceutical Research, 6(5): 413-417.
Buschmann MD, Merzouki A, Lavertu M,etal. 2013. Chitosans for delivery of nucleic acids[J]. Advanced Drug Delivery Reviews, 65(9): 1234-1270.
Chae C. 2005. A review of porcine circovirus 2-associated syndromes and diseases[J]. The Veterinary Journal, 169(3): 326-336.
Chew JL, Wolfowicz CB, Mao HQ,etal. 2003. Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice[J]. Vaccine, 21(21): 2720-2729.
Collins R, Oldham G. 1993. Recombinant human interleukin 2 induces proliferation and immunoglobulin secretion by bovine B-cells: tissue differences and preferential enhancement of immunoglobulin A[J]. Veterinary Immunology and Immunopathology, 36(1): 31-43.
Cui Z, Mumper RJ. 2003. Microparticles and nanoparticles as delivery systems for DNA vaccines[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 20(2-3): 103-137.
de Felipe P, Ryan MD. 2004. Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences[J]. Traffic, 5(8): 616-626.
Devriendt B, Stuyven E, Verdonck F,etal. 2010. EnterotoxigenicEscherichiacoli(K88) induce proinflammatory responses in porcine intestinal epithelial cells[J]. Developmental & Comparative Immunology, 34(11): 1175-1182.
Egwuagu CE. 2009. STAT3 in CD4+T helper cell differentiation and inflammatory diseases[J]. Cytokine, 47(3): 149-156.
Erb KJ, Rüger B, Von Brevern M,etal. 1997. Constitutive expression of interleukin (IL)-4invivocauses autoimmune-type disorders in mice[J]. Journal of Experimental Medicine, 185(2): 329-340.
Fernández EF, Santos-Carballal B, Weber WM,etal. 2016. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line[J]. International Journal of Pharmaceutics, 502(1): 1-9.
Fort M, Fernandes LT, Nofrarias M,etal. 2009. Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets[J]. Veterinary Immunology and Immunopathology, 129(1): 101-107.
Fort M, Olvera A, Sibila M,etal. 2007. Detection of neutralizing antibodies in postweaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs[J]. Veterinary Microbiology, 125(3): 244-255.
Ge X, Wang F, Guo X,etal. 2012. Porcine circovirus type 2 and its associated diseases in China[J]. Virus Research, 164(1): 100-106.
Gillespie J, Opriessnig T, Meng X,etal. 2009. Porcine circovirus type 2 and porcine circovirus-associated disease[J]. Journal of Veterinary Internal Medicine, 23(6): 1151-1163.
Huang J, Chen JL, Wang Y,etal. 2013. Enhancement of the immunity of piglets to pseudorabies vaccine with plasmids containing interleukin-6 gene and CpG motifs encapsulated in chitosan nanoparticles[J]. Procedia in Vaccinology, 7: 8-14.
Huang M, Fong CW, Khor E,etal. 2005. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation[J]. Journal of Controlled Release, 106(3): 391-406.
Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors[J]. Nature Immunology, 11(5): 373-384.
Kayamuro H, Yoshioka Y, Abe Y,etal. 2010. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus[J]. Journal of Virology, 84(24): 12703-12712.
Kishimoto T. 2006. Interleukin-6: discovery of a pleiotropic cytokine[J]. Arthritis Research & Therapy, 8(2): S2.
Kishimoto T. 2010. IL-6: from its discovery to clinical applications[J]. International Immunology, 22(5): 347-352.
Li D, Chen JL, Zhang H,etal. 2011. Improvement of the immunity of pig to hog cholera vaccine by recombinant plasmid with porcine interleukin-6 gene and CpG motifs[J]. Vaccine, 29(22): 3888-3894.
Meerts P, Misinzo G, Lefebvre D,etal. 2006. Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease[J]. BMC Veterinary Research, 2(1): 6.
Mitchell TJ, John S. 2005. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas[J]. Immunology, 114(3): 301-312.
Mosmann TR, Coffman RL. 1989. Heterogeneity of cytokine secretion patterns and functions of helper T cells[J]. Advances in Immunology, 46: 111-147.
Oswald IP. 2006. Role of intestinal epithelial cells in the innate immune defence of the pig intestine[J]. Veterinary Research, 37(3): 359-368.
Pasquini S, Xiang Z, Wang Y,etal. 1997. Cytokines and costimulatory molecules as genetic adjuvants[J]. Immunology & Cell Biology, 75(4): 397-401.
Paul WE, Seder RA. 1994. Lymphocyte responses and cytokines[J]. Cell, 76(2): 241-251.
Paul WE. 2015. History of interleukin-4[J]. Cytokine, 75(1): 3-7.
Segalés J, Allan GM, Domingo M. 2005. Porcine circovirus diseases[J]. Animal Health Research Reviews, 6(2): 119-142.
Shuai K, Liu B. 2003. Regulation of JAK-STAT signalling in the immune system[J]. Nature Reviews Immunology, 3(11): 900-911.
Smith KA. 1988. Interleukin-2: inception, impact, and implications[J]. Science, 240(4856): 1169.
Steen HC, Gamero AM. 2013. STAT2 phosphorylation and signaling[J]. Jak-Stat, 2(4): e25790. DOI: 10.4161/jkst.25790.
Szymczak AL, Vignali DA. 2005. Development of 2A peptide-based strategies in the design of multicistronic vectors[J]. Expert Opinion on Biological Therapy, 5(5): 627-638.
Wang YP, Liu D, Guo LJ,etal. 2013. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice[J]. Vaccine, 31(5): 833-838.
Yang X, Sun WK, Chen WL,etal. 2010. Promotion of the immunity of piglets to hog cholera vaccine induced by shuffled pig interleukin-2 gene and CpG immunostimulatory sequences encapsulated in chitosan nanoparticles[J]. Procedia in Vaccinology, 2(1): 51-59.
Yang X, Xiao YL, Chen JL,etal. 2013. Potentiation of immunity of piglets to mycoplasma hyopneumoniae vaccine with fused gene for pig IL-4 and IL-6 embodied in chitosan nanoparticles[J]. Procedia in Vaccinology, 7: 15-22.
Zhang H, Cheng C, Zheng M,etal. 2007. Enhancement of immunity to anEscherichiacolivaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6[J]. Vaccine, 25(41): 7094-7101.
Zhang HB, Wan XP, Bai GM,etal. 2012. Improvement of the immunity of piglets to PRRS vaccine by a porcine IL-4 and IL-6 fusion gene encapsulated in chitosan nanoparticles[J]. Procedia in Vaccinology, 6: 113-124.