亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Determinants of Generalized GCD Matrices Associated with Arithmetic Functions

        2018-03-23 08:07:28ZHUYuqingLIANDongyanDIAOTianboHUShuangnian
        關鍵詞:關聯(lián)矩陣陳龍行列式

        ZHU Yuqing, LIAN Dongyan, DIAO Tianbo, HU Shuangnian,2

        ( 1. College of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan;2. College of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan)

        1 Introduction and statements of main results

        Throughout this section, we letfbe an arithmetic function andS={x1,x2,…,xn} be a set ofndistinct positive integers. We can now give the first two main results of this paper, which extend Bege’s results[20].

        Then each of the following is true:

        and then×nmatrixD=(dij) is defined by

        In what follows, we always let then×nmatricesCandDbe defined as in Theorem 1.1.From Theorem 1.1, one can deduce the following result of Bege[20].

        Then each of the following is true:

        FromTheorem1.2,onecandeducethefollowingresultofBege[20].

        From Theorems 1.1 and 1.2, we can easily get the following result.

        We organize this paper as follows. In Section 2, we prove Theorems 1.1 and 1.2. In Section 3, some examples are given to illustrate our main results.

        2 Proof of Theorems 1.1 and 1.2

        In this section, we prove Theorems 1.1-1.2. We begin with the proof of Theorem 1.1.

        ProofofTheorem1.1(i) Write

        A=Cdiag(f(x1),f(x2),…,f(xn))DT.

        Then for any integersiandj(1≤i,j≤n), we have

        Thus,

        So the desired result follows immediately. This completes the proof of part (i).

        det(C)det(diag(f(x1),f(x2),…,f(xn)))×

        (iii) As the argument given in part (ii), we let 1≤x1

        This ends the proof of Theorem 1.1.

        ProofofTheorem1.2(i) For any integersiandjwith 1≤i,j≤n, we have

        So the desired result follows immediately. This completes the proof of part (i).

        (ii) Using part (i), one infers that

        det(D)det(diag(f(x1),f(x2),…,f(xn)))×

        Since Corollaries 1.1~1.3 are very easy to get, we omit their proofs here.

        3 Examples

        In this section, we give some examples to demonstrate our main results.

        Example3.1LetS={2,4,8,12,16} andλbe the Liouville function which is defined by

        Then one has

        By Theorems 1.1 and 1.2, we have

        and

        Furthermore, we have

        Example3.2LetS={2,4,5,8}. For any positive integern, we letf(n)=n. Then we obtain

        From Theorems 1.1 and 1.2, we have

        and

        Moreover, we have

        and

        AcknowledgementsThe authors would like to thank the anonymous referee for careful reading of the manuscript and helpful comments that improve the presentation of this paper.

        [1] SMITH H J S. On the value of a certain arithmetical determinant[J]. Proc London Math Soc,1875,7(1):208-212.

        [2] BESLIN S, LIGH S. Another generalization of Smith’s determinant[J]. Bull Aust Math Soc,1989,40(3):413-415.

        [3] BOURQUE K, LIGH S. Matrices associated with classes of arithmetical functions[J]. J Number Theory,1993,45(3):367-376.

        [4] BOURQUE K, LIGH S. Matrices associated with arithmetical functions[J]. Linear Multilinear Algebra,1993,34(3/4):261-267.

        [5] BOURQUE K, LIGH S. Matrices associated with multiplicative functions[J]. Linear Algebra Appl,1995,216(2):267-275.

        [6] CODECA P, NAIR M. Calculating a determinant associated with multiplicative functions[J]. Boll Unione Mat Ital Sez B:Artic Ric Mat,2002,5(2):545-555.

        [7] HILBERDINK T. Determinants of multiplicative Toeplitz matrices[J]. Acta Arith,2006,125(3):265-284.

        [8] HONG S. Gcd-closed sets and determinants of matrices associated with arithmetical functions[J]. Acta Arith,2002,101(4):321-332.

        [9] HONG S. Factorization of matrices associated with classes of arithmetical functions[J]. J Algebra,2003,281(1):1-14.

        [10] HONG S. Nonsingularity of matrices associated with classes of arithmetical functions[J]. Linear Algebra & Its Applications,2006,416(1):124-134.

        [11] HONG S, LI M, WANG B. Hyperdeterminants associated with multiple even functions[J]. Ramanujan J,2014,34(2):265-281.

        [12] HONG S, LOEWY R. Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (modr)[J]. Int J Number Theory,2011,7:1681-1704.

        [13] 胡雙年,陳龍,譚千蓉. 定義在兩個擬互素因子鏈上與算術函數(shù)相關聯(lián)矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(1):6-10.

        [14] HU S, HONG S. Multiple divisor chains and determinants of matrices associated with completely even functions (modr)[J]. Linear Multilinear Algebra,2014,62(9):1240-1257.

        [15] HU S, HONG S, ZHAO J. Determinants of matrices associated with arithmetic functions on finitely many quasi-coprime divisor chains[J]. Appl Math Comput,2015,258(1):502-508.

        [16] 胡雙年,譚千蓉,趙相瑜.k-集合上與算術函數(shù)關聯(lián)矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(3):456-460.

        [17] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra Appl,2013,438(3):1454-1466.

        [18] 趙建容. 使得冪GCD陣(Se)整除冪LCM矩陣[Se]的四元gcd封閉集S的一個刻畫[J]. 四川大學學報(自然科學版),2008,45(3):485-487.

        [19] 趙建容,趙偉,李懋. 六元gcd 封閉集上Smith 矩陣的整除性[J]. 數(shù)學學報,2011,54(4):609-618.

        [20] BEGE A. Generalized GCD matrices[J]. Acta Univ Sapientiae Math,2010,2(2):160-167.

        [21] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra,2013,438(3):1454-1466.

        [22] WAN J, HU S, TAN Q. New results on nonsingular power LCM matrices[J]. Electronic Journal of Linear Algebra,2014,27(1):652-669.

        [23] HONG S, HU S, LIN Z. On a certain arithmetical determinant[J]. Acta Math Hungar,2016,150(2):372-382.

        [24] HONG S, HU S, HONG S. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions[J]. Open Math,2016,14(1):146-155.

        [25] HU S, LIAN D, DIAO T, et al. Further results on generalized LCM matrices[J]. 武漢大學學報(自然科學英文版),2017,22(1):1-4.

        猜你喜歡
        關聯(lián)矩陣陳龍行列式
        n階圈圖關聯(lián)矩陣的特征值
        情書
        單圈圖關聯(lián)矩陣的特征值
        行列式解法的探討
        準確審題正確列式精確驗證
        教師·下(2017年10期)2017-12-10 12:35:13
        n階行列式算法研究
        基于關聯(lián)矩陣主對角線譜理論的歐拉圖研究
        加項行列式的計算技巧
        考試周刊(2016年89期)2016-12-01 12:38:39
        n階圈圖的一些代數(shù)性質(zhì)
        賀聰、胡軼群、張釗浩、陳龍作品
        亚洲aⅴ天堂av天堂无码麻豆| 日本av天堂一区二区三区| 亚洲gay片在线gv网站| 无码人妻精品一区二区在线视频 | 中文字幕无码无码专区| 亚洲欧美v国产蜜芽tv| 国产精品亚洲综合久久| 国产乱妇无码大片在线观看| 乱子伦视频在线看| 久久dvd| 中文日本强暴人妻另类视频| а天堂8中文最新版在线官网 | 亚洲男同gay在线观看| 最新亚洲人成无码网www电影| 久久精品国产亚洲AⅤ无码剧情| 五月开心六月开心婷婷网| 精品偷拍被偷拍在线观看| 996久久国产精品线观看| 免费在线观看亚洲视频| 国产实拍日韩精品av在线| 国产又a又黄又潮娇喘视频| 久久免费大片| 中文字幕一区二区在线看| 亚洲国产精品无码aaa片| 亚洲日本va午夜在线电影| 国产丝袜精品丝袜一区二区 | 国产精品国产亚洲精品看不卡| 亚洲一区二区三区成人网站| 男人阁久久| 91一区二区三区在线观看视频| 亚洲性无码一区二区三区| 国产曰批免费视频播放免费s| 蜜桃av噜噜一区二区三区免费 | 青青草在线公开免费视频| 免费a级毛片无码a∨蜜芽试看| 亚洲国产成人久久一区www| 欧美人与动牲交片免费| 人妻少妇精品专区性色anvn| 东北女人毛多水多牲交视频| 国产精品九九热| 日韩一区二区中文天堂|