胡立偉,鐘玉敏
(上海交通大學(xué)醫(yī)學(xué)院附屬上海兒童醫(yī)學(xué)中心影像診斷中心,上海 200127)
先天性心臟病(congenital heart disease, CHD)是最常見的先天性畸形,指在胚胎發(fā)育時期由于心臟及大血管形成障礙或發(fā)育異常引起的解剖結(jié)構(gòu)異常,或出生后應(yīng)自動關(guān)閉的通道未能閉合的情形[1];新生兒中CHD發(fā)病率為0.8%~1.2%。隨著術(shù)式的改良及術(shù)后治療水平的提高,多數(shù)CHD患兒可存活至成年[2]。MR檢查在評價CHD術(shù)后療效中具有重要作用[3]。心血管MR(cardiovascular MR, CMR)可評價心房、心室及大血管(主動脈和肺動脈)不同層面的心臟形態(tài)和解剖結(jié)構(gòu)特征。新技術(shù)心肌灌注[4]、對比劑延時強(qiáng)化[5]及心肌組織追蹤[6]等的出現(xiàn)及應(yīng)用,使MR評估心臟功能日趨成熟。血流分析是MR功能評估的重要技術(shù)之一。Carr等[7]最早發(fā)現(xiàn)MR信號的相干運(yùn)動;首例人體頸動脈和股動脈流速圖像于1980年被成功報道[8-9],且血流速度測量與超聲一致性較好。此后,二維相位對比(phase-contrast,PC)法逐漸成為臨床定量評估心臟血流和瓣膜反流情況的常規(guī)掃描序列[10]。目前,最新的四維血流分析(4D flow)可在3個垂直的空間方向上,利用心電門控技術(shù)和膈肌導(dǎo)航技術(shù)獲得相位流速編碼的數(shù)據(jù),通過三維空間內(nèi)速度矢量的改變,以流速圖、流線圖及跡線圖等三維可視化形式描述血流狀態(tài)與變化[11-14];還可測量常規(guī)流量和流速,血流動力學(xué)參數(shù)如壁面剪切力、脈沖波速度、壓力階差和能量損失等[15]。本文對4D flow原理及其在兒童CHD中的應(yīng)用進(jìn)行綜述。
PC MRI原理是2組或數(shù)組不同相位的運(yùn)動質(zhì)子群被激發(fā)后向外發(fā)射能量,通過計算重建的方法來選取適當(dāng)?shù)难菟惴椒▽Σ杉南辔贿M(jìn)行減影,靜態(tài)組織減影后相位為零,流動組織隨不同速度而具有不同的相位差值;最后,將相位差轉(zhuǎn)變成像素強(qiáng)度,顯示于MR圖像[10]。若采集前根據(jù)常規(guī)血流速度來選擇速度編碼值(velocity encoded cine, Venc),即選定梯度幅值和間期,則圖像上能突出顯示該速度范圍內(nèi)的血流。PC MRI包括流動補(bǔ)償和流動編碼,其中流動編碼使每個流動質(zhì)子都有相位偏移,質(zhì)子相位計算公式為:Δφ=V/Venc;Δφ表示質(zhì)子相位偏移量,范圍為±π,超過該范圍即發(fā)生相位混疊(圖1)[16]。為防止發(fā)生
相位混疊,質(zhì)子流動速度(V)需小于Venc,其中Venc即為可測量的最大流度值。當(dāng)Venc降低時,為獲得較大的梯度區(qū)域,需更長的TE和TR。PC MRI中,速度圖的圖像質(zhì)量易受噪聲影響,其中V噪聲與Venc成正比,與SNR成反比[10],計算公式為V噪聲≈Venc/SNR。因此,為獲得高質(zhì)量圖像,選擇最佳速度尤為關(guān)鍵,Venc較高可避免相位混淆,而Venc較低可降低V噪聲。
最新技術(shù)4D flow可同時基于3個互相垂直的維度編碼獲得相位流速編碼電影圖像。2D-PC僅能于選定的某個二維層面上測定流速流量,而3D-PC可測量ROI空間體積內(nèi)具有時間分辨率的三維速度場值。與傳統(tǒng)的2D-PC MRI相比,3D圖像采集掃描時間較長(15~20 min),且無法進(jìn)行屏氣掃描。采用4D flow采集心臟圖像時[17],心電門控技術(shù)和/或膈肌導(dǎo)航技術(shù)可避免掃描時未能屏氣導(dǎo)致的心臟及呼吸運(yùn)動偽影(圖2)。
圖1 法洛四聯(lián)癥患者術(shù)后肺動脈跡線圖示混疊現(xiàn)象[16] A.收縮中期主肺動脈整體跡線圖; B.Venc為160 cm/s,收縮中期左肺動脈相位圖,收縮方向朝左顯示為白色,灰色區(qū)域為流速差異(箭); C.Venc為160 cm/s,收縮中期右肺動脈相位圖,收縮方向朝右顯示為白色,而在白色體素中存在黑色區(qū)域(箭)提示該區(qū)域流速超過Venc,存在混疊現(xiàn)象 圖2 4D flow圖像采集方式[23] 在心電門控和膈肌導(dǎo)航同時觸發(fā)的情況下,采集3個互相垂直的維度編碼,最終獲得主動脈的一組基準(zhǔn)掃描和3組相位流速編碼電影圖 (ECG:心電門控)
圖3 患兒男,16歲,永存動脈干、房間隔缺損、室間隔缺損、肺動脈狹窄,F(xiàn)ontan術(shù)后血流流量圖 Venc為100 cm/s,雙側(cè)上腔靜脈與兩側(cè)肺動脈吻合(黑箭),外管道與右肺動脈吻合口通暢(白箭) 圖4 患兒女,1歲,右心室雙出口[23] A.采用后處理軟件重建完整全心三維模型; B、C.肺動脈(B)和主動脈(C)在一個心動周期內(nèi)的平均流速圖(紅色為4D flow,黑色為2D-PC),兩組數(shù)據(jù)一致性較好; D、E.肺動脈(B)和主動脈(C)在心臟收縮期的血流流速圖,兩組數(shù)據(jù)一致性較好
常規(guī)4D flow心血管掃描參數(shù)如下:Venc 50~200 cm/s,TE 2~4 ms,TR 5~7 ms;CHD兒童心臟以及大血管4D flow掃描參數(shù)[18-20]和Venc選擇見文獻(xiàn)[21-22]。
在速度混淆及圖像噪聲之外,相位偏移誤差是4D flow圖像處理過程中另一個亟待解決的問題。導(dǎo)致相位偏移誤差的主要原因有渦流效應(yīng)、麥克斯維爾方程及梯度場不均勻性等[15]。目前采用心臟后處理軟件可糾正相位偏移誤差,同時,使用Matlab軟件編寫代碼也可進(jìn)行矯正。相位偏移誤差圖像校正在低Venc情況下效果較好,而在高Venc情況下差異較??;其圖像校正效果不僅與Venc的選擇有關(guān),且與掃描范圍以及梯度線圈設(shè)計有關(guān)[22]。
在掃描過程中,Venc的選擇是定量測量流速準(zhǔn)確性的最大影響因素。Venc較低時,以4D flow定量測量慢血流,評估更精確(圖3);然而在高流速血管和狹窄段血管中,以4D flow測量峰值流速的精確度明顯下降。同時,當(dāng)Venc較高時,以4D flow采集的靜脈血流信號會由于噪聲增大而有所降低。有學(xué)者[23]認(rèn)為采用2D-PC與4D flow測量動靜脈流速的一致性較好(圖4)。此外,還有學(xué)者[24]對大動脈轉(zhuǎn)位Switch術(shù)后4D flow血流動力學(xué)評估中發(fā)現(xiàn),4D flow與超聲心動圖測量主動脈、肺動脈峰值流速的差異無統(tǒng)計學(xué)意義,但4D flow序列在狹窄段的峰值流速測量中略顯不足:尚無法精準(zhǔn)模擬兒童一個心動周期內(nèi)心臟血液動力學(xué)改變。
超聲心動圖是評價CHD的主要方法之一,但無法提供完整的血流動力學(xué)信息[25]。兒童血管管徑小,且常不能屏氣,故采用4D-Flow技術(shù)采集CHD患兒圖像的時間相對較長[26]。多項研究[27-28]提出以優(yōu)化計算機(jī)算法、改進(jìn)MR硬件及更新采集技術(shù)等措施提高數(shù)據(jù)采集能力和圖像分析效率,使4D flow技術(shù)可更好地應(yīng)用于對兒童CHD的定量評估。4D flow可在一次采集的同時定量分析血流流速和流量,并能可視化分析心內(nèi)及心外結(jié)構(gòu)和血流。與2D flow相比,4D flow無須多次采集多個血管平面,即可獲得任何一個ROI的血流平面,以測定流速流量;同時還能分析局部狹窄及側(cè)支血管血流。
4D flow技術(shù)已廣泛應(yīng)用于CHD的術(shù)前評價和術(shù)后評估。Gabbour等[29]評估32例CHD患者的血流,發(fā)現(xiàn)4D flow與超聲心動圖測量的主動脈和肺動脈峰值流速及反流分?jǐn)?shù)等參數(shù)的一致性較好。Valverde等[30]采用4D flow觀察1例部分型肺靜脈異位引流患兒,發(fā)現(xiàn)通過可視化的方法可準(zhǔn)確評估血流信息。此外,采用4D flow還可定量評估完全性大動脈轉(zhuǎn)位、法洛四聯(lián)癥及單心室Glenn術(shù)后療效。
綜上所述,4D flow技術(shù)已廣泛應(yīng)用于評估CHD血流,雖然定量評估狹窄段或高速血流目前尚存在不足,但由此獲得的可視化血流信息對于傳統(tǒng)影像學(xué)診斷的輔助作用仍然值得重視。
[1] Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol, 2002,39(12):1890-1900.
[2] Mair DD, Puga FJ, Danielson GK. The fontan procedure for tricuspid atresia: Early and late results of a 25-year experience with 216 patients. J Am Coll Cardiol, 2001,37(3):933-939.
[3] Higgins CB, Byrd BF, Farmer DW, et al. Magnetic resonance imaging in patients with congenital heart disease. Circulation, 1984,70(5):851-860.
[4] Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance. Circulation, 2001,103(18):2230-2235.
[5] Hunold P, Schlosser T, Vogt FM, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: Distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol, 2005,184(5):1420-1426.
[6] Hor KN, Baumann R, Pedrizzetti G, et al. Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp, 2011,28(48):538-544.
[7] Carr HY, Purcell EM. Effect of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review, 1954,94(3):630-638.
[8] Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging, 1982,1(4):197-203.
[9] Bryant DJ, Payne JA, Firmin DN, et al. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr, 1984,8(4):588-593.
[10] Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson, 2005,7(4):705-716.
[11] Wigstrom L, Ebbers T, Fyrenius A, et al. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med, 1999,41(4):793-799.
[12] Stankovic Z, Allen BD, Garcia J, et al. 4D flow imaging with MRI. Cardiovasc Diag Ther, 2014,4(2):173-192
[13] Markl M, Wallis W, Harloff A. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging, 2011,33(4):988-994.
[14] 胥巧麗,葉玉冰,張健康,等.4D Flow MRI技術(shù)臨床應(yīng)用的研究進(jìn)展.中國醫(yī)學(xué)影像技術(shù),2017,33(12):1898-1901.
[15] Markl M, Schnell S, Wu C, et al. Advanced flow MRI: Emerging techniques and applications. Clin Radiol, 2016,71(8):779-795.
[16] Spagnolini U. 2-D phase unwrapping and instantaneous frequency estimation. IEEE Trans Geosci Remote Sens, 1995,33(3):579-589.
[17] Markl M, Frydrychowicz A, Kozerke S, et al. 4D flow MRI. J Magn Reson Imaging, 2012,36(5):1015-1036.
[18] Schnell S, Entezari P, Mahadewia RJ, et al. Improved semiautomated 4D flow MRI analysis in the aorta in patients with congenital aortic valve anomalies versus tricuspid aortic valves. J Comput Assist Tomogr, 2016,40(1):102-108.
[19] Hirtler D, Garcia J, Barker AJ, et al. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur Radiol, 2016,26(10):3598-3607.
[20] Geiger J, Markl M, Jung B, et al. 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol, 2011,21(8):1651-1657.
[21] Fran?ois CJ, Srinivasan S, Schiebler ML, et al. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. J Cardiovasc Magn Reson, 2012,14(1):16-16.
[22] Walker PG, Cranney GB, Scheidegger MB, et al. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging, 1993,3(3):521-524.
[23] Nordmeyer S, Riesenkampff E, Crelier G, et al. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: A validation study.J Magn Reson Imaging, 2010,32(3):677-683.
[24] Jarvis K, Vonder M, Barker AJ, et al. Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography. J Cardiovasc Magn Reson, 2016,18(1):59.
[25] Helbing WA, Ouhlous M. Cardiac magnetic resonance imaging in children. Pediatr Radiol, 2015,45(1):20-26.
[26] Vasanawala SS, Hanneman K,Alley MT, et al. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging, 2015,42(4):870-886.
[27] Carlsson M, T?ger J, Kanski M, et al. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or K-t BLAST: Head to head comparisonand validation at 1.5 T and 3 T. J Cardiovasc Magn Reson, 2011,13:55. doi: 10.1186/1532-429X-13-55.
[28] Gu TL, Korosec FR, Block WF, et al. PCVIPR: A high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol, 2005,26(4):743-749.
[29] Gabbour M, Rigsby C, Markl M, et al. Comparison of 4D flow and 2D PC MRI blood flow quantification in children and young adults with congenital heart disease. J Cardiovasc Magn Reson, 2013,15(1):E90.
[30] Valverde I, Simpson J, Schaeffter T, et al. 4D phase-contrast flow cardiovascular magnetic resonance: Comprehensive quantification and visualization of flow dynamics in atrial septal defect and partial anomalous pulmonary venous return. Pediatr Cardiol, 2010,31(8):1244-1248.