于洋,任朝媛,張文叢,王爾德
(哈爾濱工業(yè)大學(xué)(威海),山東 威海 264209)
熱靜液擠壓(Hot Hydrostatic Extrusion)是在傳統(tǒng)擠壓工藝基礎(chǔ)上發(fā)展起來(lái)并經(jīng)過(guò)改進(jìn)的先進(jìn)成形技術(shù)[1—2]。與常規(guī)擠壓不同之處在于在熱靜液擠壓過(guò)程中,擠壓坯料被傳力潤(rùn)滑介質(zhì)(類(lèi)粘塑性流體介質(zhì))包覆而與模具充分隔離,壓力通過(guò)擠壓凸模有效傳遞到傳力潤(rùn)滑介質(zhì),坯料在三向靜液壓力的作用下產(chǎn)生塑性變形,由凹??跀D出,此時(shí)傳力潤(rùn)滑介質(zhì)兼起到傳遞靜液壓力及潤(rùn)滑的雙重作用。
熱靜液擠壓工藝不僅可以有效降低擠壓力,減小模具磨損,而且一次擠壓即可完成75%的大變形量,擠壓件綜合性能高;表面質(zhì)量較好,工藝穩(wěn)定性好;后續(xù)機(jī)加工余量小,材料利用率高,基本可實(shí)現(xiàn)“近凈”成形[3],并在此基礎(chǔ)上又衍生出其復(fù)合塑性變形技術(shù)。
圖1 熱靜液擠壓工藝制備93W-4.9Ni-2.1Fe高密度鎢合金棒材及顯微組織Fig.1 Microstructure and 93W-4.9Ni-2.1Fe high density tungsten alloy rod fabricated by hot hydrostatic extrusion
表1 高密度鎢合金形變強(qiáng)化處理后力學(xué)性能Tab.1 Mechanical properties of tungsten heavy alloys processed by deformation strengthening technique
文中將簡(jiǎn)要介紹熱靜液擠壓及其復(fù)合技術(shù)在粉末冶金高密度鎢合金、W-Cu合金、鈦基復(fù)合材料及鎂合金細(xì)管等難變形材料的制備及應(yīng)用。
高密度鎢合金屬于高強(qiáng)度、高熔點(diǎn)粉末冶金難變形材料,在桿式動(dòng)能穿甲彈彈芯及侵徹彈彈芯材料等國(guó)防工業(yè)領(lǐng)域得到了廣泛應(yīng)用。由于常規(guī)粉末冶金液相燒結(jié)鎢合金強(qiáng)度較低,大大制約了其應(yīng)用。為滿足目前對(duì)桿式動(dòng)能穿甲彈高穿甲性能服役需求,各軍事強(qiáng)國(guó)對(duì)高強(qiáng)韌、大長(zhǎng)徑比鎢合金穿甲彈彈芯材料強(qiáng)化技術(shù)研究及儲(chǔ)備極為重視。
鎢合金的強(qiáng)化制備技術(shù)主要有微合金化、改性處理、細(xì)晶強(qiáng)化、優(yōu)化燒結(jié)工藝、大塑性變形及后處理等途徑[4—14],其中,形變強(qiáng)化技術(shù)被普遍認(rèn)為是一條制備高強(qiáng)韌高密度鎢合金的有效工藝途徑。
哈爾濱工業(yè)大學(xué)粉末冶金及特種材料課題組在擠壓比為 4,擠壓溫度為 1200 ℃條件下,采用熱靜液擠壓工藝獲得的93W-4.9Ni-2.1Fe高密度鎢合金棒實(shí)物照片見(jiàn)圖1a,圖1b—1d分別是其燒結(jié)態(tài)金相組織、擠壓態(tài)金相組織、鎢相的TEM照片[3]。由圖1b及 1c可見(jiàn),擠壓變形后,原始組織中近球狀或等軸狀的鎢顆粒沿?cái)D壓方向被拉長(zhǎng),形成了橢球狀和纖維狀鎢顆粒;同時(shí),在鎢相內(nèi)部,由于大塑性變形而形成了高密度位錯(cuò)胞以及沿?cái)D壓方向的長(zhǎng)條狀亞晶組織。
高密度鎢合金熱靜液擠壓、旋轉(zhuǎn)鍛造、常規(guī)包套擠壓及冷靜液擠壓等室溫力學(xué)性能數(shù)據(jù)見(jiàn)表1??梢钥闯?,擠壓塑性變形的強(qiáng)化效果較明顯;其中,靜液擠壓的強(qiáng)化效果又優(yōu)于其他變形方式。這是因?yàn)椋懝に噯蔚来巫冃瘟枯^小,斷面收縮率一般不超過(guò)20%;變形量大時(shí),強(qiáng)度雖有較大幅度提高,但是變形道次多,能耗高,材料利用率較低,同時(shí)塑性下降較快。冷靜液擠壓材料時(shí),材料雖然強(qiáng)度高,但伸長(zhǎng)率的降低幅度也很明顯,而熱靜液擠壓材料單道次變形量可以高達(dá)75%,不僅強(qiáng)化效果好,效率高,而且綜合力學(xué)性能也較高。經(jīng)過(guò)固溶時(shí)效熱處理后,熱靜液擠壓 93W-4.9Ni-2.1Fe的綜合性能達(dá)到抗拉強(qiáng)度1487 MPa,伸長(zhǎng)率為13.4%[21]。
圖2 不同成分鎢銅坯料擠壓縱截面掃描照片F(xiàn)ig.2 SEM graphs of hot hydrostatic extruded W-Cu with different composition along longitudinal section
圖3 熱靜液擠壓W-Cu合金電導(dǎo)率及硬度隨銅含量的變化曲線Fig.3 Specific conductance and hardness curve of W-Cu alloy with different content of Cu by hot hydrostatic extrusion
圖4 熱靜液擠壓復(fù)合工藝制備的鎢銅合金Fig.4 W-Cu alloy fabricated by hot hydrostatic extrusion compound technology
鎢銅合金兼有鎢的高熔點(diǎn)、高密度、抗電蝕性、抗熔焊性、高溫強(qiáng)度好以及銅的高導(dǎo)電率、高導(dǎo)熱率等優(yōu)點(diǎn),并且可以通過(guò)調(diào)整其成分進(jìn)而調(diào)配材料的力學(xué)、電工和物理等綜合性能[22—23],因此廣泛應(yīng)用于電觸頭料、電極、電子封裝、LED和熱沉等電工電子及軍事領(lǐng)域[24—25]。
由于鎢銅合金屬于兩相不互溶的假合金,因此不宜采用傳統(tǒng)鑄造等方法進(jìn)行制備,目前一般采用粉末冶金技術(shù)獲得。目前主要有高溫液相燒結(jié)法、活化液相燒結(jié)法和熔滲法。上述方法存在燒結(jié)性能不高、燒結(jié)密度低以及產(chǎn)品質(zhì)量均勻性較差等問(wèn)題。此外熱等靜壓法也可以制備鎢銅合金,這種方法能夠有效提高材料的致密度和綜合性能,但是設(shè)備成本高和生產(chǎn)效率低,也限制了其應(yīng)用。隨著鎢銅合金的廣泛應(yīng)用,某些特殊及極端領(lǐng)域?qū)︽u銅合金提出更高的使用要求,例如一些電子封裝基板要求致密度大于99%、厚度小于1 mm,特別是在器件小型化方面要求厚度為0.1 mm以下的鎢銅箔材和直徑為0.5 mm以下的絲材。
文獻(xiàn)[26—28]提出鎢銅粉末燒結(jié)和熱靜液擠壓致密復(fù)合成形新工藝,獲得近致密、組織均勻且性能優(yōu)異的不同鎢含量鎢銅合金;文獻(xiàn)[29—30]通過(guò)熱擠壓得到高致密度且具有良好組織性能的鎢銅合金;而文獻(xiàn)[31]則對(duì)鎢銅材料進(jìn)行兩次熱擠壓大塑性變形,不僅進(jìn)一步提高材料致密度,而且優(yōu)化坯料微觀組織,最終顯著改善了材料的綜合性能。
接著本課題組又進(jìn)行了W-Cu合金棒材、絲材、板材和管材的熱靜液擠壓及其相關(guān)復(fù)合塑性變形工藝的深入研究和開(kāi)發(fā),例如熱靜液擠壓-拉拔、熱靜液擠壓-軋制及熱靜液擠壓-旋轉(zhuǎn)鍛造等[32—33]。圖2給出了 900 ℃熱靜液擠壓不同銅含量燒結(jié)擠壓坯料縱截面(沿?cái)D壓方向)掃描電鏡照片,亮色的為鎢,暗色的為銅。從圖2可以看出,鎢銅兩相分布較為均勻。
圖3是用熱靜液擠壓技術(shù)制備W-Cu合金的電導(dǎo)率和硬度隨銅含量的變化規(guī)律??梢?jiàn),合金的電導(dǎo)率隨著銅含量的增加略有提高,但當(dāng)銅質(zhì)量分?jǐn)?shù)超過(guò)30%以后提高則不明顯,W-40wt.%Cu電導(dǎo)率已經(jīng)達(dá)到48%IACS以上。
圖4為熱靜液擠壓得到的厚度為4 mm的W-Cu(鎢質(zhì)量分?jǐn)?shù)為85%)合金板材,經(jīng)過(guò)軋制工藝得到的滿足尺寸及綜合性能要求的厚度1.0 mm的薄板,經(jīng)機(jī)械加工成某型號(hào)光電管底盤(pán)成品[34],其余為熱靜液擠壓-旋轉(zhuǎn)鍛造及熱靜液擠壓-旋轉(zhuǎn)鍛造等復(fù)合工藝制備的 W-Cu合金棒材、絲材和薄壁管材[35—36]。熱靜液擠壓及其復(fù)合塑性變形工藝能夠很好應(yīng)用于鎢銅合金薄板、棒材、絲材及管材等型材的制備。
鈦合金具有較高的比強(qiáng)度及比剛度、較低的密度、優(yōu)良的抗腐蝕性能和抗剝蝕破壞能力。其傳統(tǒng)用途主要集中在航空航天與航海工業(yè)領(lǐng)域,但許多其他用途也不斷被發(fā)現(xiàn),其中包括汽車(chē)、生物醫(yī)用、儲(chǔ)氫以及其他民用等領(lǐng)域[37]。非連續(xù)鈦基復(fù)合材料相比常規(guī)鈦合金具有更高的比強(qiáng)度和比模量、高的疲勞和蠕變性能,以及優(yōu)異的高溫性能和耐腐蝕性能,因此成為金屬基復(fù)合材料研究中極其活躍的一支[38]。
鈦基復(fù)合材料管材在航空航天發(fā)動(dòng)機(jī)輸油管、液壓管路以及核電、汽車(chē)等行業(yè),較鈦合金管材有更大的應(yīng)用潛力,但目前對(duì)鈦基復(fù)合材料管材研究較少。目前鈦及鈦合金管材的制備及生產(chǎn)工藝分為:① 管坯制備,主要有機(jī)械鉆孔、擠壓、斜軋穿孔和板(帶)材焊接;② 成品管材的生產(chǎn),主要有軋制、擠壓、拉拔和旋壓,將其單獨(dú)或組合起來(lái)時(shí),可將管坯制成要求的管材[39—40]。文獻(xiàn)[41]通過(guò)軋制工藝生產(chǎn)出Ф20 mm×1.5 mm的TA18鈦合金管材;文獻(xiàn)[42]通過(guò)擠壓工藝生產(chǎn)出Ф40~110 mm不同規(guī)格的TA15鈦合金管材;文獻(xiàn)[43]先將TC4合金鍛造成棒坯,然后在兩相區(qū)擠壓,最終生產(chǎn)出Ф47 mm×3 mm的管坯,然而上述研究只是限于外徑大于10 mm的管材。鈦基復(fù)合材料細(xì)管變形抗力大,塑性不高,是一種典型的難變形及難加工型材,這不僅對(duì)塑性加工工藝提出較高的要求,而且對(duì)工裝要求也高,因此制備該型材非常困難。本研究采用真空熱壓燒結(jié)和熱靜液擠壓復(fù)合塑性變形工藝,成功制備出精度較好的高性能鈦基復(fù)合材料細(xì)管和緊固件[44—46]。經(jīng)熱靜液擠壓及其復(fù)合工藝得到外徑為Ф7 mm、壁厚為1 mm、長(zhǎng)度大于300 mm的大長(zhǎng)徑比鈦基復(fù)合材料細(xì)管和直徑為Ф6~Ф16 mm棒材。管材室溫抗拉強(qiáng)度達(dá)到1091 MPa,伸長(zhǎng)率達(dá)到10.9%;棒材室溫抗拉強(qiáng)度達(dá)到1200 MPa以上,伸長(zhǎng)率達(dá)到12%以上。得到壁厚分布均勻的航空航天用薄壁細(xì)管及緊固件見(jiàn)圖5。
圖5 熱靜液擠壓體積分?jǐn)?shù)為3.5%的TiBw/TC4復(fù)合材料薄壁細(xì)管及緊固件Fig.5 Thin-wall tube and fastener of 3.5vol.%TiBw/TC4 composite fabricated by hot-hydrostatic extrusion
鎂合金由于具有良好的可降解性和生物力學(xué)相容性,在現(xiàn)代介入醫(yī)療器械應(yīng)用上具有極大的優(yōu)越性,目前有望成為可降解醫(yī)用冠脈支架的首選材料[47—50]。目前,清華大學(xué)、北京大學(xué)、上海交通大學(xué)、西北有色金屬研究院和哈爾濱工業(yè)大學(xué)等科研院所在近幾年開(kāi)展了相關(guān)研究。2009年 3月,德國(guó)Biotronik公司在前期研究并應(yīng)用的基礎(chǔ)上,率先推出了生物可吸收金屬鎂支架[51]。目前已經(jīng)獲得歐盟CE認(rèn)證,代表目前國(guó)際最高水平。
支架用鎂合金細(xì)管目前主要采用精密機(jī)械加工、拉拔等方法制備,對(duì)于成形壁厚為0.15~0.8 mm、外徑為1.8~3.0 mm、長(zhǎng)度超過(guò)300 mm的大長(zhǎng)細(xì)比鎂合金細(xì)管則極為困難。
本研究采用低溫靜液擠壓技術(shù)及其復(fù)合塑性變形技術(shù)制備出鎂合金毛細(xì)管和細(xì)絲。毛細(xì)管外徑為Ф1.8~Ф3 mm,壁厚為0.10~0.50 mm,圖6a和6b為毛細(xì)管實(shí)物,圖 6c—6e為低溫靜液擠壓復(fù)合塑性變形技術(shù)制備Ф0.1~Ф3 mm鎂合金及純鎂細(xì)絲。該工藝相對(duì)鎂合金常規(guī)擠壓而言,不僅晶粒細(xì)化效果明顯,而且綜合力學(xué)性能高,可以實(shí)現(xiàn)近凈成形[52—60]。
圖6 熱靜液擠壓復(fù)合工藝制備鎂合金薄壁細(xì)管及細(xì)絲Fig.6 Thin-wall tube of magnesium alloy fabricated by hot hydrostatic extrusion and its composite technologies
熱靜液擠壓及其復(fù)合塑性變形工藝是一種先進(jìn)的形變強(qiáng)化成形技術(shù),非常適合高熔點(diǎn)合金、難變形材料的塑性加工以及粉末冶金燒結(jié)材料的后續(xù)致密化固結(jié)成形。隨著航空航天、軍事、電子、海洋工程、汽車(chē)等工業(yè)的快速發(fā)展與技術(shù)進(jìn)步,對(duì)各種高溫、高強(qiáng)韌以及具有特殊組織結(jié)構(gòu)和性能材料的需求越來(lái)越多。采用傳統(tǒng)成形方法,一般很難同時(shí)保證這類(lèi)材料的控形控性等高端需求,而熱靜液擠壓及其復(fù)合工藝正好可以填補(bǔ)該空白,可為這類(lèi)材料的應(yīng)用提供先進(jìn)成形技術(shù)、理論支撐與技術(shù)儲(chǔ)備,因此熱靜液擠壓及其復(fù)合成形技術(shù)的發(fā)展與應(yīng)用前景是廣闊的。
[1]INOUE N, NISHIHARA M. Hydrostatic Extrusion-Theory and Application[M]. Elsevier Applied Science Publisher Ltd., 1985.
[2]NISHIHARA M, OGUCHI M N. Hot Hydrostatic Extrusion of Non-Ferrous Metals[C]. Proceeding of 18th International MTDR Conference, London: Imperial College, 1977.
[3]于洋. 高強(qiáng)韌 93W-4.9Ni-2.1Fe合金粉末形變強(qiáng)化工藝及組織性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2005.YU Yang. Research on Deformation Strengthening and Microstructure of 93W-4.9Ni-2.1Fe Powder with High Strength and Ductility[D]. Harbin: Harbin Institute of Technology,2005.
[4]GERMAN R M. Tungsten and Tungsten Alloys-1992[M].Princeton: Metal Powder Industries Federation, 1992.
[5]劉志國(guó), 張寶生, 莊育智. 高比重鎢合金的低溫?zé)Y(jié)[J].稀有金屬, 1995, 19(3): 168—172.LIU Zhi-guo, ZHANG Bao-sheng, ZHUANG Yu-zhi. Lowtemperature Sintering of Tungsten Heavy Alloy[J]. Rare Metals, 1995, 19(3): 168—172.
[6]YU Yang, ZHANG Wen-cong, Yu Chen, et al. Effect of Swaging on Microstructure and Mechanical Properties of Liquid Phase Sintered 93W-4.9(Ni, Co)-2.1Fe Alloy[J]. International Journal of Refractory Metals and Hard Materials, 2014, 44: 103—108
[7]LIN Kuan-hong, HSU Chen-sheng, LIN Shun-tian. Variables on the Precipitation of an Intermetallic Phase for Liquid Phase Sintered W-Mo-Ni-Fe Heavy Alloys[J]. International Journal of Refractory Metals & Hard Materials,2002, 20: 401—408.
[8]SOON H H, HO J R. Combination of Mechanical Alloying and Two Stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy[J]. Materials Science and Engineering A,2003, 344: 253—260.
[9]WU G C, YOU Q, WANG D. Influence of the Addition of Lanthanum on a W-Mo-Ni-Fe Heavy Alloy[J]. International Journal of Refractory Metals & Hard Materials, 1999, 17:299—304.
[10][LIANG G X, WANG E D. Influence of Hot Extrusion on Microstructure and Mechanical Properties of Tungsten Based Heavy Alloy[J]. Materials Science and Technology, 1996,12: 1032—1034.
[11]吳復(fù)堯, 祝志祥, 程興旺, 等. 90W-NiAlFe合金的燒結(jié)工藝和力學(xué)性能研究[J]. 稀有金屬, 2007, 31(5): 602—605.WU Fu-yao, ZHU Zhi-xiang, CHENG Xing-wang, et al. Research on Sintering Process and Mechanical Properties of 90W-NiAlFe Alloy[J]. Rare Metals, 2007, 31(5): 602—605.
[12]李志, 楊蘊(yùn)林, 席聚奎. 高比重鎢合金的旋鍛形變強(qiáng)化[J]. 兵器材料科學(xué)與工程, 1998, 21(2): 56—59.LI Zhi, YANG Yun-lin, XI Jv-kui. Deformation Strengthening by Rotary Swaging of Tungsten Heavy Alloy[J].Ordnance Material Science and Engineering, 1998, 21(2):56—59.
[13]YU Yang, HU Hai, ZHANG Wen-cong, et al. Microstructure Evolution and Recrystallization After Annealing of Tungsten Heavy Alloy Subjected to Severe Plastic Deformation[J]. Journal of Alloys and Compounds, 2016, 685:971—977.
[14]ZHANG Zhao-hui, WANG Fu-chi. Research on the Deformation Strengthening Mechanism of a Tungsten Heavy Alloy by Hydrostatic Extrusion[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19: 177—182.
[15]YU Yang, HU Lian-xi, WANG Er-de. Microstructure and Mechanical Properties of a Hot-Hydrostatically Extruded 93W-4.9Ni-2.1Fe Alloy[J]. Materials Science and Engineering A, 2006, 435/436: 620—624.
[16]GONG X, FAN J L, DING F, et al. Effect of Tungsten Content on Microstructure and Quasi-static Tensile Fracture Characteristics of Rapidly Hot-extruded W-Ni-Fe Alloys[J].International Journal of Refractory Metals & Hard Materials, 2012, 30: 71—77.
[17]齊志望, 樊存山, 候福青, 等. 大變形鍛造鎢合金顯微組織特征研究[J]. 稀有金屬, 1995, 19(3): 18—22.QI Zhi-wang, FAN Cun-shan, HOU Fu-qing, et al. Microstructural Characteristic of Tungsten Heavy Alloy Forged with Severe Deformation[J]. Rare Metals, 1995, 19(3):18—22.
[18]WEERASOORIYA T. Deformation Behavior of 93W-5Ni-2Fe at Different Rates of Compression Loading and Temperatures[J]. Tungsten Base Alloys, 1998.
[19]DOWDING R J, TAUER K J. Strain Aging in Tungsten Heavy Alloys[J]. Scripta Metallurgica Et Materialia, 1991,25(1): 15.
[20]WENDY L, LEE M J, DEEPAK K. Proceedings of the International Symposium on Tungsten and Tungsten Alloys[C]. Adelphi: Army Research Lab, MD, 1993: 127.
[21]YU Yang, ZHANG Wen-cong, WANG Er-de. Effect of Heat Treatment on Microstructure and Mechanical Properties of Hot-hydrostatically Extruded 93W-4.9Ni-2.1Fe Alloy[J]. Journal of Alloys and Compounds, 2015, 622: 880—884
[22]夏揚(yáng), 宋月清, 崔舜, 等. Mo-Cu和W-Cu合金的制備及性能特點(diǎn)[J]. 稀有金屬, 2008, 32(2): 240—244.XIA Yang, SONG Yue-qing, CUI Shun, et al. Preparation and Properties of Mo-Cu and W-Cu Alloys[J]. Rare Metals,2008, 32(2): 240—244.
[23]周武平, 呂大銘. 鎢銅材料應(yīng)用和生產(chǎn)的發(fā)展現(xiàn)狀[J].粉末冶金材料科學(xué)與工程, 2005, 10(1): 21—25.ZHOU Wu-ping, LYU Da-ming. Development of Application and Production in W-Cu Materials[J]. Materials Science and Engineering of Powder Metallurgy, 2005,10(1): 21—25.
[24]王志法, 劉正春, 姜國(guó)圣. W-Cu電子封裝材料的氣密性[J]. 中國(guó)有色金屬學(xué)報(bào), 1999, 9(2): 323—326.WANG Zhi-fa, LIU Zheng-chun, JIANG Guo-sheng. Airtightness of W-Cu Electronic Packaging Materials[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(2): 323—326.
[25]HAMIDI A G, ARABI H, RASTEGARI S. A Feasibility Study of W-Cu Composites Production by High Pressure Compression of Tungsten Powder[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(1): 123—127.
[26]劉祖巖, 于洋, 王爾德. 鎢銅粉末材料燒結(jié)-擠壓致密化研究[J]. 稀有金屬, 2006, 30(S1): 72—75.LIU Zu-yan, YU Yang, WANG Er-de. Research on Densification of Tungsten-Copper Powders by Sintering and Extrusion[J]. Rare Metals, 2006, 30(S1): 72—75.
[27]于洋, 王爾德, 劉祖巖. W-35%Cu粉末形變強(qiáng)化復(fù)合材料組織及性能研究[J]. 材料科學(xué)與工藝, 2007, 15(5):163—167.YU Yang, WANG Er-de, LIU Zu-yan. Microstructure and Properties of W-35%Cu Powders Composite Consolidated by Deformation Strengthening[J]. Materials Science &Technology, 2007, 15(5): 163—167.
[28]LI Da-ren, LIU Zu-yan, YU Yang, et al. Research on the Densification of W-40wt.%Cu by Liquid Sintering and Hot-hydrostatic Extrusion[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26: 286—289.
[29]LI Da-ren, LIU Zu-yan, YU Yang, et al. The Influence of Mechanical Milling on the Properties of W-40wt.%Cu Composite Produced by Hot Extrusion[J]. Journal of Alloys and Compounds, 2008, 462: 94—98.
[30]李達(dá)人, 于洋, 劉祖巖, 等. 機(jī)械球磨對(duì)熱擠壓 W-40Cu材料組織性能的影響[J]. 稀有金屬材料與工程. 2009,38(4): 738—741.LI Da-ren, YU Yang, LIU Zu-yan, et al. Effect of Mechanical Milling on Microstructure and Properties of W-40Cu Subjected to Hot-Extruded[J]. Rare Metal Materials and Engineering, 2009, 38(4): 738—741.
[31]于洋, 李達(dá)人, 王爾德, 等. 鎢銅熱變形致密化工藝及組織性能研究[J]. 粉末冶金技術(shù), 2009, 27(1): 45—47.YU Yang, LI Da-ren, WANG Er-de, et al. Microstructure and Properties of Tungsten Copper Produced by Hot Deformation Densification Technology[J]. Powder Metallurgy Technology, 2009, 27(1): 45—47.
[32]YU Yang, ZHANG Wen-cong, YU Huan. Effect of Cu Content and Heat Treatment on the Properties and Microstructure of W-Cu Composites Produced by Hot Extrusion with Steel Cup[J]. Advanced Powder Technology, 2015, 26:1047—1052
[33]YU Yang, XU Xiao-qiang, ZHANG Wen-cong. W-Cu Composites Subjected to Heavy Hot Deformation[J]. International Journal of Materials Research, 2017, 108(4):292—297.
[34]于洋, 于歡, 張文叢, 等. 軋制塑性變形對(duì)W-Cu復(fù)合材料組織性能影響[J]. 粉末冶金技術(shù), 2013, 31(3): 159—163.YU Yang, YU Huan, ZHANG Wen-cong, et al. Effect of the Rolling Plastic Deformation on Microstructure and Properties of W-Cu Composite[J]. Powder Metallurgy Technology, 2013, 31(3): 159—163.
[35]于洋, 張文叢. 一種軋制態(tài)鎢銅合金材料的制備方法:中國(guó), ZL200810137441.0.[P]. 20100-09-29.YU Yang, ZHANG Wen-cong. A Preparation Method of Rolled Tungsten Copper Alloy. Authorization Number:China, ZL200810137441.0.[P]. 20100-09-29.
[36]于洋, 張文叢. 一種粉末形變鎢銅復(fù)合材料細(xì)管的制備方法: 中國(guó), ZL201410510447.3[P]. 2017-02-01.YU Yang, ZHANG Wen-cong. A Preparation Method of Powder-deformed Tungsten-Copper Composite Thin Tube:China, ZL201410510447.3[P]. 2017-02-01.
[37]蔡一湘, 李達(dá)人. 粉末冶金鈦合金的應(yīng)用現(xiàn)狀[J]. 中國(guó)材料進(jìn)展, 2010(5): 30—38.CAI Yi-xiang, LI Da-ren. Application of Ti-Alloys Pre-pared by Powder Metallurgy[J]. Materials China, 2010(5):30—38.
[38]TJONG S C, MAI Y W. Processing-structure-property Aspects of Particulate and Whisker-reinforced Titanium Matrix Composites[J]. Composites Science and Technology,2008, 68(3/4): 583—601.
[39]江志強(qiáng), 楊合, 詹梅, 等. 鈦合金管材研制及其在航空領(lǐng)域應(yīng)用的現(xiàn)狀與前景[J]. 塑性工程學(xué)報(bào), 2009, 16(4): 44—50.JIANG Zhi-qiang, YANG He, ZHAN Mei, et al. State-ofthe-arts and Prospective of Manufacturing and Application of Titanium Alloy Tube in Aviation Industry[J]. Journal of Plasticity Engineering, 2009, 16(4): 44—50.
[40]張旺峰, 李艷, 王玉會(huì), 等. Ti-3Al-2.5V鈦合金管材研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2011, 25(23): 133—137.ZHANG Wang-feng, LI Yan, WANG Yu-hui, et al. Research Progress in Ti-3Al-2.5V Alloy Tube[J]. Materials Review,2011, 25(23): 133—137.
[41]席錦會(huì), 楊亞社, 南莉, 等. 航空導(dǎo)管用 TA18鈦合金管材研制[J]. 鈦工業(yè)進(jìn)展, 2011, 28(5): 34—37.XI Jin-hui, YANG Ya-she, NAN Li, et al. Development of TA18 Alloy Pipe for Aeronautical Catheter[J]. Titanium Industry Progress, 2011, 28(5): 34—37.
[42]尚秀麗, 佟學(xué)文, 晏小兵, 等. TA15鈦合金管材熱加工工藝[J]. 中國(guó)有色金屬學(xué)報(bào), 2010(S1): 765—769.SHANG Xiu-li, TONG Xue-wen, YAN Xiao-bing, et al.Hot Extrusion Process of TA15 Titanium Alloy Tube[J]. The Chinese Journal of Nonferrous Metals, 2010, S1:765—769.
[43]張永強(qiáng), 馮永琦, 李渭清, 等. TC4合金管材擠壓成型工藝研究[J]. 稀有金屬快報(bào), 2006, 25(10): 27—29.ZHANG Yong-qiang, FENG Yong-qi, LI Wei-qing, et al.Research on Extrusion Molding of TC4 Alloy Pipe[J]. Rare Metals Letters, 2006, 25(10): 27—29.
[44]YU Yang, ZHANG Wen-cong, DONG Wen-qian, et al.Research on Heat Treatment of TiBw/Ti6Al4V Composites Tubes[J]. Materials & Design, 2015, 73: 1—9.
[45]YU Yang, ZHANG Wen-cong, DONG Wen-qian, et al.Effects of Pre-sintering on Microstructure and Properties of TiBw/Ti6Al4V Composites Fabricated by Hot Extrusion with Steel Cup[J]. Materials Science and Engineering, 2015,A638: 38—45.
[46]ZHANG Wen-cong, JIAO Xue-yan, YU Yang, et al. Microstructure and Properties of 3.5vol.%TiBw/Ti6Al4V Composite Tubes Fabricated by Hot-hydrostatic Extrusion[J].Journal of Materials Science & Technology, 2014, 30(7):710—714.
[47]WAKSMAN R, PAKALA, KUCHULAKANTI P K. Safety and Efficacy of Bioabsorbable Magnesium Alloy Stents in Porcine Coronary Arteries Coronary Arteries[J]. Catheterization and Cardiovascular Interventions, 2006, 68: 607—617.
[48]SCHRANZ D, ZARTNER P, MICHEL-BEHNKE I, et al.Bioabsorbable Metal Stents for Percutaneous Treatment of Critical Recoarctatio of the Aorta in a New Born[J]. Cathterization and Cardiovascular Interventions, 2006, 67: 671—673.
[49]ZARTNER P, CESNJEVARR, SINGER H, et al. First Successful Implantation of a Biodegradable Metal Stents into the Left Pulmonary Artery of a Preterm Baby[J]. Catheter Cardiovasc Interv, 2005, 66: 590—594.
[50]ERNE P, SCHIER M, RESINK T J. The Road to Bioabsorbable Stents: Reaching Clinical Reality[J]. Cardiovasc Intervent Radiol, 2006, 29: 11—16.
[51]董思遠(yuǎn). 心臟支架材料的比較應(yīng)用研究[J]. 中國(guó)藥物警戒, 2012, 9(12): 728—730.DONG Si-yuan. Study on Comparative Application of the Materials of Heart Stents[J]. Chinese Journal of Pharmacovigilance, 2012, 9(12): 728—730.
[52]YU Yang, WANG Er-de. The Effects of Cold Extrusion on Grain Size Refinement and Plasticity for Magnesium Alloy[J]. International Journal of Modern Physics, 2009,23(6/7): 821—825.
[53]CHAO Hong-ying, YU Yang, WANG Er-de. Achieving Ultrafine Grain Size in Mg-Al-Zn by Cold Drawing[J]. International Journal of Modern Physics, 2009, 23(6/7):927—933.
[54]CHAO H Y, YANG Y, WANG X, et al. Effect of Grain Size Distribution and Texture on the Cold Extrusion Behavior and Mechanical Properties of AZ31 Mg Alloy[J]. Materials Science and Engineering A, 2011, 528: 3428—3434.
[55]WANG X L, YU Y, WANG E D. Effect of Extrusion Deformation on Microstructures and Properties of AZ31 Magnesium Alloy[J]. Transaction of Nonferrous Metals Society of China, 2005, 15(S2): 183.
[56]王曉林, 于洋, 梁書(shū)錦, 等. 熱擠壓工藝對(duì)AZ31鎂合金晶粒大小及性能的影響[J]. 材料科學(xué)與工藝, 2005, 13(6):567—569.WANG Xiao-lin, YU Yang, LIANG Shu-jin, et al. The Effects of Extrusion Deformation on Grain Size and Properties of AZ31 Magnesium Alloy[J]. Materials Science &Technology, 2005, 13(6): 567—569.
[57]WANG X L, YU Y, WANG E D. The Effects of Grain Size on Ductility of AZ31 Magnesium Alloy[J]. Materials Science Forum, 2005(488/489): 535—538.
[58]于洋, 張文叢, 段祥瑞. AZ31鎂合金細(xì)管靜液擠壓工藝及組織性能分析[J]. 粉末冶金技術(shù), 2013, 31(3): 199—205.YU Yang, ZHANG Wen-cong, DUAN Xiang-rui. Study on Microstructure and Properties of Thin Tube of AZ31 Magnesium Alloy by Extrusion Technology[J]. Powder Metallurgy Technology, 2013, 31(3): 199—205.
[59]于洋, 裴崇雷, 張文叢. 大長(zhǎng)細(xì)比鎂合金細(xì)管復(fù)合塑性變形工藝研究[J]. 粉末冶金技術(shù), 2015, 33(3): 208—212.YU Yang, PEI Chong-lei, ZHANG Wen-cong. Research of Composite Plastic Deformation Process on Thin Wall Tube of Magnesium Alloy with Large Slenderness Ratio[J].Powder Metallurgy Technology, 2015, 33(3): 208—212.
[60]于洋, 張文叢. 大長(zhǎng)細(xì)比、高強(qiáng)韌鎂合金毛細(xì)管的制備方法: 中國(guó), ZL200910073269.1[P]. 2011-04-20.YU Yang, ZHANG Wen-cong. A Preparation Method of Capillary of Magnesium Alloy with Large Slenderness Ratio and High Strength and Ductility: China,ZL200910073269.1[P]. 2011-04-20.