亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水稻與稻瘟病菌相互作用研究進展

        2018-03-14 02:08:12韓藝娟魯國東
        生物技術通報 2018年2期
        關鍵詞:幾丁質抗病稻瘟病

        韓藝娟 魯國東

        (福建農(nóng)林大學 生物農(nóng)藥與化學生物學教育部重點實驗室,福州 350002)

        作為一種主要糧食作物,水稻面臨著多種病害的危害,如病原真菌引起的稻瘟病和紋枯病、細菌引起的白葉枯病、病毒引起的水稻黑條矮縮病和水稻條紋葉枯病、線蟲引起的稻根結線蟲病等。這其中,稻瘟病菌Magnaporthe oryzae(syn.Pyricularia oryzae)引起的稻瘟病為世界性水稻主要病害。除此之外,稻瘟病菌還可侵害其他多種禾本科作物,每年都造成大量損失[1-2]。稻瘟病菌作為一種重要的植物病原物,除了因經(jīng)濟重要性受重視外,還因易于開展遺傳分析,近年來逐漸成為研究絲狀真菌生長發(fā)育的重要模式生物之一[3-6]。同時,稻瘟病菌與水稻的互作也成為研究植物病原真菌-寄主互作較為理想的模式系統(tǒng)之一[4-7]。本文綜述了近年來水稻與稻瘟病菌相互作用的分子模式,以期為水稻抗稻瘟病育種研究提供借鑒。

        1 PMAPs介導的水稻PTI免疫反應

        植物在自然界中可為其他病原微生物提供營養(yǎng)來源,并受到一定的脅迫。在與病原微生物互作的進化過程中,植物不斷產(chǎn)生一些復雜的免疫應答反應來抵御病原微生物的侵害。植物體內(nèi)存在兩種層次防御反應,分別為病原菌相關模式(Pathogen associated molecular pattern,PAMP)誘發(fā)的免疫反應(PAMP-triggered immunity,PTI)和效應因子誘發(fā)的免疫反應(Effector-triggered immunity,ETI),二者在抵御病害過程中起重要作用。PAMP是一類具保守特征的小分子物質(如細菌的鞭毛蛋白短肽flg22、內(nèi)毒素脂多糖、真菌鞘脂及幾丁質等),可為植物模式受體(Pattern recognition receptor,PRR)(如FLS2和EFR蛋白)識別,引發(fā)PTI反應[8-9],如MAPK信號途徑的激活以及活性氧爆發(fā)、胼胝質積累等防御現(xiàn)象[10]。除了PAMPs之外,病菌編碼的一些分泌蛋白也能誘發(fā)PTI反應,即激發(fā)子(Elicitor)。傳統(tǒng)定義上來講,“激發(fā)子”是指能誘導植物產(chǎn)生植保素的一些分子。隨著科技的發(fā)展,這個名詞所適用的范圍更廣,如今多指能刺激植物防御的所有物質,包括來源于病原菌(外源性激發(fā)子)以及在侵染過程中植物自身產(chǎn)生的物質(內(nèi)源性激發(fā)子),最終提高植物抗病能力[11-13]。

        稻瘟病菌激發(fā)子類型多樣,有糖蛋白[14-15]和脂蛋白等[16]?,F(xiàn)已證實菌絲細胞壁、細胞膜、分生孢子及菌絲發(fā)酵液中均含有激發(fā)子[17-20]。細胞膜成分鞘脂類物質可誘導水稻合成植保素、細胞死亡[21-23]。菌絲發(fā)酵液中的 MoHrip1[24]和 MoHrip2蛋白[25]引起煙草細胞程序性死亡,并且增強水稻免疫力。稻瘟病菌壞死-乙烯誘導蛋白1(Necrosis and ethylene-inducing peptide 1,Nep1)[26]和類 Nep1(Nep1-like proteins,NLPs)蛋白 MoNLP1、MoNLP2、MoNLP4[27]能引起煙草細胞發(fā)生細胞壞死。在對稻瘟病菌侵染階段的轉錄分析中,Chen等[28]篩選到4個可誘導水稻和煙草組織產(chǎn)生細胞壞死的稻瘟分泌蛋白(MoCDIP1、MoCDIP2、MoCDIP3和MoCDIP4)。此外,Wang等[29]利用質外體流技術,在發(fā)病水稻質外體中分離出多個稻瘟病菌激發(fā)蛋白。其中,MSP1蛋白引發(fā)植物細胞壞死反應,并提高水稻抵抗稻瘟病能力。稻瘟病菌激發(fā)子基因在植物中的持續(xù)表達可增強廣譜抗病性,如MgSM1轉基因擬南芥、水稻對細菌和真菌病菌均有較好的抵抗能力[30-31]。

        細胞壁成分幾丁質所介導的PTI信號途徑研究得較為全面。作為經(jīng)典的PAMP,幾丁質可激發(fā)植物防御反應,如植保素的合成[32,33]、pH 變化[34]、細胞膜穩(wěn)定性[33-35]、防御基因誘導表達[36-37]等方面。然而,并不是所有類型的幾丁質都能激發(fā)宿主PTI反應。據(jù)報道,聚合度6-8的幾丁質對水稻細胞才有活性,而聚合度小于5的幾丁質短鏈不足以引起水稻防御反應,并且誘導效應隨著聚合度的提高而增強[35,37]。植物細胞膜上分布著不同的受體蛋白,各司其職,以識別不同的信號。蛋白結合實驗證明了水稻幾丁質受體OsCEBiP蛋白可特異結合幾丁質寡糖(GlcNAc)8[38-42]。OsCEBiP為水稻抗病反應所需,持續(xù)表達OsCEBiP基因可提高水稻抗稻瘟病和白葉枯病能力[43]。相反,OsCEBiP基因沉默后,水稻細胞無法識別幾丁質(GlcNAC)8,最終導致水稻PTI免疫反應受抑制,喪失了抗病力[44]。OsCEBiP蛋白編碼兩個LysM結構域和一個跨膜結構域[44],但單靠這兩種結構不足以將幾丁質信號由胞外往胞內(nèi)轉化。受體激酶OsCERK1則可協(xié)助OsCEBiP完成信號的轉換[45]。在擬南芥中,AtCERK1識別并結合幾丁質,在抵抗真菌病原菌過程中起關鍵作用[46-48]。 作 為 AtCERK1的 同 源 蛋 白, 雖 然OsCERK1編碼LysM和磷酸激酶結構域,但并不直接結合幾丁質[49-50]。然而激酶結構域的存在,使胞外幾丁質信號得以向胞內(nèi)轉換。OsCERK1為幾丁質信號通路所必需,水稻Oscerk1突變體中幾丁質信號傳導受阻,抗病能力下降[51-53]。

        OsRac編碼鳥苷酸三磷酶(GTPase),屬于Rho-GTPase家族,在水稻抵御病原菌過程中起重要作用。OsRacGTPase在信號轉導途徑中充當分子開關,調(diào)控多種細胞生命活動。水稻基因組編碼7個OsRac蛋白,其中OsRac1為關鍵調(diào)控因子。OsRac1響應PAMPs并參與PTI反應。當幾丁質或真菌鞘脂后處理水稻原生質體之后,OsRac1快速聚集到細胞膜上[54-55]。持續(xù)表達型激活態(tài)(Constitutive active,CA)-OsRac1基因,可誘發(fā)水稻細胞內(nèi)ROS的爆發(fā)、細胞凋亡、植保素合成以及相關防御基因表達,最終提高了水稻對稻瘟病的抵抗能力。反之,在水稻中持續(xù)表達該基因的失活態(tài)(Dominant negative,DN),使OsRac1喪失活性,則抑制了上述的防御反應,抵消了水稻抗稻瘟病能力[54]。進一步研究發(fā)現(xiàn),OsRac1通過兩種途徑來調(diào)控胞內(nèi)活性氧(Reactive oxygen species,ROS)的水平。一方面,CA-OsRac1正調(diào)控OsRbohB,與之發(fā)生相互作用后,細胞內(nèi)Ca2+水平迅速提高。累積的Ca2+激活了NADPH氧化酶,使后者不斷產(chǎn)生活性氧ROS[56]。另一方面,OsRac1負調(diào)控ROS清除相關基因(比如OsMT2b)的表達以保證ROS的積累[56-57],可見OsRac1在調(diào)節(jié)水稻細胞ROS爆發(fā)以及細胞死亡過程中起重要作用。此外,水稻與稻瘟病菌非親和互作中,OsRac1為水稻NB-LRR抗病蛋白Pit直接激活[58],這說明了OsRac1在水稻PTI和ETI反應中均起到重要作用。

        與Rho家族成員一樣,OsRac1的失活型(GDP結合型)和激活態(tài)(GTP結合型)構象之間的轉換由鳥苷酸交換因子(Guaninenucleotide Exchanging Factors,GEFs)催化。據(jù)報道,兩類鳥苷酸交換因子(OsSWAP70A和OsRacGEF1)參與OsRac1蛋白的激活[59-60]。水稻OsSWAP70A和OsRacGEF1分別編碼 Db1(diffuse B-cell lymphoma)-homology(DH)和PRONE(Plant-specific Rac/Rop)類型GEF。這兩個基因的過表達均加劇了OsRac1介導的活性氧爆發(fā),增強了幾丁質介導的PTI反應和水稻抗稻瘟病菌能力[59-60]。

        水稻進化出多個蛋白復合體來識別并轉化PAMP信號[59-65],以實現(xiàn)幾丁質信號自外向內(nèi)的轉導??偟膩碇v,這些復合體主要由以下蛋白組成:OsCEBiP-OsCERK1、OsRac1、OsRacGEF1、熱激蛋白Hsp90和Hsp70、分子伴侶Hop/Sti1、支架蛋白OsRACK1、級聯(lián)反應相關OsMAPK3/OsMAPK6、轉錄因子RAI1/Rap2.6等[64-67]。OsRac1參與多個復合體的構成,在熱激蛋白Hsp90、分子伴侶輔助因子Hop/Sti1和支架蛋白OsRACK1的協(xié)助下,OsRac1與OsRAR1、Hsp90、Hsp70組成復合體[64-67]。后續(xù)研究發(fā)現(xiàn),在幾丁質介導的PTI反應中,OsCERK1、Hop/Sti1a、Hsp90、Hsp70和OsRac1以復合體的形式在內(nèi)質網(wǎng)和細胞膜上執(zhí)行功能。分子伴侶和支架蛋白的存在則有助于承接OsCERK1與OsRac1之間的信號傳導。

        OsRac1和OsCERK1復合體成員在水稻免疫反應中起重要作用。在功能上,OsRAR1與OsRac1相互影響。植物RAR1(for required forMla12resistance)為多個R基因調(diào)控的抗病反應所需,如Mla、RPM1、RPS2、RPS5[68-75]。OsRAR1參 與 水稻抗稻瘟病菌過程,在水稻基礎抗性中也起了重要作用。進一步研究發(fā)現(xiàn),OsRAR1和Hsp90共同協(xié)助OsRac1調(diào)控稻瘟病菌鞘脂介導的PTI反應。持續(xù)表達CA-OsRac1基因可轉錄上調(diào)OsRAR1和OsSGT1(for suppressor of the G2 allele of skp1),引起水稻細胞ROS爆發(fā),激活抗病反應;OsRac1基因的沉默則抑制了OsRAR1基因的表達,這說明了OsRac1正向調(diào)控OsRAR1。OsRAR1也可影響OsRac1的功能發(fā)揮,OsRAR1基因的沉默削弱了CA-OsRac1轉基因水稻的抗病力??梢姡@兩個基因之間存在某種程度的相互調(diào)控作用[64]。另外,分子伴侶輔助因子Hop/Sti1a也參與了幾丁質介導的水稻抗病反應。過表達Hop/Sti1a基因明顯提高了水稻對稻瘟病菌的抵抗能力;該基因的沉默則降低了水稻的抗病能力[63]。作為復合體中的支架蛋白,OsRACK1同樣參與調(diào)控ROS爆發(fā)和PTI反應。過表達OsRACK1基因明顯提高了水稻對稻瘟病菌的抗性[67,76]。

        絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)級聯(lián)反應參與水稻生長發(fā)育與基礎抗病過程。作為MAPK的激酶,活性態(tài)OsMKK4(即OsMKK4-dd)可激活OsMAPK3/OsMAPK6,并且這3個蛋白均響應幾丁質處理[77-78]。據(jù)報道,OsRac1正向調(diào)控OsMAPK3、OsMAPK6與轉錄因子OsRAI1。OsRAI1(bHLH transcription factor Rac Immunity 1)參與水稻抵抗稻瘟?。?2]。OsRAI1和OsRac1均可與OsMAPK3、OsMAPK6發(fā)生直接互作,但尚未文章報道OsRAI1和OsRac1是否發(fā)生互作。在水稻原生質體細胞持續(xù)表達OsMKK4-dd與OsMAPK3/6后,防御相關基因OsPAL1、OsWRKY19轉錄水平明顯提高[62]。因此OsRac1可能通過OsMAPK3、OsMAPK6來激活OsRAI1,而磷酸化的OsRAI1結合靶標基因的啟動子區(qū)域,以啟動相關防御基因的表達[26,62]。

        總的來講,當水稻細胞尚未感知幾丁質時(即非激活狀態(tài)下),OsCEKR1由內(nèi)質網(wǎng)經(jīng)囊泡運輸至細胞膜,與伴侶蛋白、OsRacGEF1、Hop/Sti1和失活態(tài)的OsRac1組合成一個蛋白復合體。當膜受體OsCEBiP識別幾丁質之后,OsCERK1立即與之形成二聚體。隨后,OsRacGEF1-OsCERK1-分子伴侶形成的復合體從內(nèi)質網(wǎng)轉運到細胞膜。OsCERK1結合OsRacGEF1并對其進行磷酸化,后者則進一步識別并激活OsRac1。通過MAPK級聯(lián)放大反應,OsRac1將信號逐步傳到細胞核中,激活防御基因表達,誘導免疫反應(圖 1)[79]。

        為了維持胞內(nèi)穩(wěn)態(tài),植物進化出一些負調(diào)控因子,來抑制細胞的過激反應。水稻U-box E3連接酶OsSPL11(Spotted leaf11)負調(diào)控細胞程序性死亡和免疫反應。spl11突變體水稻廣譜抗菌、體內(nèi)防御基因轉錄水平和ROS含量偏高[80-82]。后續(xù)實驗發(fā)現(xiàn)OsSPL11與GTP酶激活蛋白(GTPaseactivating proteins,GAPs)RhoGAP SPIN6發(fā)生相互作用并將后者進行泛素化降解。SPIN6催化小GTP酶OsRac1由GTP結合態(tài)向GDP結合態(tài)轉變,使其失活。SPIN6基因的沉默導致了活性態(tài)OsRac1的積累,激活了OsRac1復合體中其他基因(如OsSGT1和OsRAR1)轉錄表達,使得胞內(nèi)活性氧水平劇增,引起細胞程序性死亡,對PAMPs(flg22和幾丁質)更加敏感,最終提高了水稻對稻瘟病菌和白葉枯病菌的抵抗力[83]。OsRac1 GEF1催化OsRac1由失活態(tài)向激活態(tài)轉化,正向調(diào)控OsRac1介導的水稻免疫反應[60]。相比之下,SPIN6則控制活性OsRac1的積累,防止過度免疫事件的發(fā)生,維持細胞內(nèi)環(huán)境的穩(wěn)定(圖1)。SPIN6對水稻PTI的影響則助于完善OsRac1復合體的功能,如SPIN6是否與OsRac1、OsRac1 GEF1相互作用,SPIN6是否與OsCERK1存在功能上的關聯(lián)等。

        圖1 幾丁質介導的水稻PTI信號傳導

        2 稻瘟病菌效應蛋白的分泌

        在由幾丁質介導的PTI反應中,幾丁質短鏈并未進入水稻細胞中,而是通過細胞膜外受體識別,進而將幾丁質信號由胞外往胞內(nèi)轉換。在與宿主相互作用過程中,稻瘟病菌往往通過分泌一系列效應蛋白來促進在水稻體內(nèi)的增殖。稻瘟病菌的效應因子編碼序列呈現(xiàn)多樣化,但是根據(jù)其分泌途徑的差異,效應因子可分為兩類[84]:可進入植物細胞的胞質型效應蛋白(Cytoplasmic effector)[85-87]、不進入植物細胞的質外體效應蛋白(Apoplastic effectors)[86]。胞質型效應蛋白主要通過Biotropic Interfacial Complex(BIC)[88]進入水稻細胞中。BIC是一種源自植物細胞膜的多層膜結構,與初級侵染菌絲毗鄰。隨著侵染菌絲的擴展,BIC結構又轉移到接近侵染菌絲頂端的位置。胞質型效應效應蛋白在BIC積累到一定程度后,轉運到Extrainvasive Hyphal Membrane(EIHM)[88]后再進入植物細胞。這個過程則需要植物細胞囊泡運輸系統(tǒng)(如Sso1 t-SNARE 和 exocyst 復合體中的 Exo70、Sec5[84,89])協(xié)助完成。胞質型效應蛋白一般在侵染菌絲破壞植物細胞膜之前就分泌到植物細胞中,為后續(xù)侵染做準備,如抑制宿主免疫反應。效應因子PWL2[88]和AvrPiz-t[90]為典型的胞質型分泌蛋白,均可經(jīng)過BIC結構分泌到水稻細胞中。

        與胞質型效應蛋白相比,質外體效應蛋白不進入宿主細胞,而是停留或是分散在EIHM膜中,并包圍整個侵染菌絲。EIHM也是一種源于植物細胞膜的膜結構[86,88-89]。在侵染早期,這種膜結構可將整個腫脹侵染菌絲包圍住。這期間質外體效應蛋白經(jīng)過內(nèi)質網(wǎng)-高爾基體這一傳統(tǒng)分泌途徑進入胞外間隔層中[91,88-89]。效應因子 BAS4[86,92]和 Slp1[92]為質外體型分泌蛋白,并未進入水稻細胞中。

        3 稻瘟病菌致病因子介導的水稻抗性反應

        3.1 效應因子介導的水稻ETI、ETS反應

        幾乎所有的病原菌都帶有PAMPs,然而植物仍然遭受侵染,這說明某些病原菌可以克服植物的PTI。病原菌通過分泌一些效應蛋白,繞過宿主的抵御防線,抑制PTI的產(chǎn)生,這個過程稱為效應因子引發(fā)的感病反應(Effector Triggered Susceptible reaction,ETS)[93-95]。與此同時,植物也進化出基于R蛋白的第二道防線,直接和間接識別并結合病原菌的無毒蛋白(Avr),即效應因子激發(fā)的免疫反應(Effector-triggered immunity,ETI),主要表現(xiàn)出植物組織強烈的過敏性反應[93-95]。ETI反應模式符合基因-基因假說[95],當與含相應R蛋白的宿主發(fā)生反應,由無毒基因編碼或是加工的效應蛋白才顯示出無毒的表型,即非親和反應。近20年,水稻抗稻瘟病基因和稻瘟病菌無毒基因的克隆工作并駕齊驅。已克隆的水稻抗病基因普遍含有NBS-LRR結構 域[96], 如Pib、Pita、Pi-kh(Pi54)、Pid2、Pi9、Piz-t、Pi2、Pi36、Pi37、Pi-km、Pi5、Pi21、Pit、Pid3、Pish、Pik、Pik-p、Pia、Pi25、Pil[97]以及 Pi-CO39[98]、Pi41[99]、Pi55(t)[100]、Pi50(t)[101]等。目前超過10個稻瘟病菌無毒基因得到克隆與鑒定,如PWL2、AvrPita、Avr-CO39、AvrPiz-t、AVR-Pii、Avr-Pia、AVR-Pik/km/kp[97]和ACE1[102]、AVR-Pikm[103]、AvrPi9[104]、AvrPib[105]。 在 水 稻 與 稻 瘟 病菌的互作過程中,抗病基因與無毒基因之間可產(chǎn)生直接、間接物理相互作用,以啟動高級防御反應。據(jù)報道,Pita/AvrPita、Pik/AvrPik、Pi-CO39/Avr1-CO-39、Pia/AvrPia[93,106-107]等基因組合可發(fā)生直接互作。以Pita/AvrPita為例,稻瘟病菌無毒基因Avr-Pita編碼的依賴于鋅的金屬蛋白酶,該蛋白的C端亮氨酸富集區(qū)可結合水稻Pi-ta,并參與稻瘟病菌整個致病過程。Pi-ta蛋白催化區(qū)域的突變會減弱二者之間的相互作用,說明Pi-ta很可能是Avr-Pita蛋白的一個底物[108-109]。相比之下,無毒基因AVR-Pii與水稻抗性基因Pii[91,110]、AvrPiz-t與Piz-t[90,111-113]不直接發(fā)生互作,而是需借助其他蛋白來完成互作。

        在AVR-Pii與Pii的互作模式中,二者的成功識別需要其他水稻基因的參與,如囊泡運輸相關蛋白、氧化還原相關的酶。AVR-Pii與水稻胞吐相關蛋白OsExo70-F2、OsExo70-F3發(fā)生直接的物理互作[91,110]。在Pii背景水稻下,對OsExo70-F3基因進行沉默,轉基因水稻則喪失了對AVR-Pii菌株的抵抗能力,但仍對親和菌株的表現(xiàn)出感病性,這說明了OsExo70-F3特異參與Pii介導的抗病反應[91]。此外,蘋果酸酶(NADP-ME 2-3)與AVR-Pii蛋白發(fā)生特異相互作用[110]。NADP-MEs催化氧化脫羧反應,將蘋果酸可逆轉變成丙酮酸,并伴隨著NADP向NADPH的轉化。NADPH是NADPH氧化還原酶的的電子供體,為細胞防御性氧爆發(fā)的一個重要源泉[114-115]。在非Pii水稻中,AVR Pii蛋白專一性地抑制OsNADP-ME 2-3的酶活力,阻止水稻細胞氧爆發(fā),進而抑制水稻免疫防御反應[110]。在Pii水稻中,OsNADP-ME 2-3基因的沉默則導致了Pii水稻喪失了對AVR-Pii稻瘟病菌的抵抗力[110]。綜上,OsExo70-F3和OsNADP-ME 2-3均參與AVR-Pii與Pii介導的稻瘟病菌-水稻的相互作用過程。然而OsExo70-F3和OsNADP-ME 2-3是否與Pii蛋白發(fā)生互作或是形成復合體則有待于進一步研究。

        無毒基因AvrPiz-t與抗病基因Piz-t的作用模式需要E3連接酶、轉錄因子以及核孔蛋白的參與[90,111-113]。當侵染非Piz-t水稻的時候,稻瘟病菌無毒基因AvrPiz-t執(zhí)行有毒效應因子的功能,抑制宿主免疫反應。AvrPiz-t轉基因水稻中的PTI反應受到不同程度的抑制,最終削弱了水稻的抗病性。AvrPiz-t蛋白不與Piz-t直接互作,而是與水稻蛋白APIP6、APIP10、APIP5和 APIP12相互作用(互作模式如圖 2 所示)[90,111-113]。在非Piz-t水稻中,AvrPiz-t通過誘導E3連接酶APIP6、APIP10泛素化降解來阻斷信號傳導,以抑制水稻PTI免疫反應,達到感病的目的[90,111]。反之,APIP6/10亦可泛素化降解AvrPiz-t。在Piz-t水稻中,APIP10負調(diào)控Piz-t基因的表達,使其蛋白產(chǎn)物維持在較低的水平。當含有AvrPiz-t的稻瘟病菌侵染水稻后,AvrPiz-t蛋白進入水稻細胞,結合APIP10蛋白,解除了APIP10對Piz-t的抑制。隨后,Piz-t蛋白迅速積累,導致HR爆發(fā),引發(fā)下游抗病反應。APIP10基因的沉默導致水稻出現(xiàn)細胞程序性死亡,同時誘導Piz-t大量積累,可見AvrPiz-t蛋白通過抑制APIP10來穩(wěn)定Piz-t表達[111]。

        圖2 稻瘟病菌AvrPiz-t與水稻Piz-t介導的ETI信號轉導

        APIP5編碼一個bZIP轉錄因子,與AvrPiz-t、Piz-t發(fā)生直接相互作用[112]。APIP5以二聚體的形式進入細胞核中,負調(diào)控細胞壞死相關基因表達,抑制細胞程序性死亡。APIP5基因沉默導致了水稻自發(fā)細胞壞死癥狀,而AvrPiz-t的存在則加劇了壞死癥狀的發(fā)生。在非Piz-t水稻中,AvrPiz-t蛋白可在細胞質中結合并降解APIP5,進而解除了APIP5對細胞壞死的抑制,最終誘導稻瘟病菌侵染病斑的形成。在Piz-t水稻中,Piz-t蛋白的存在有利于維持APIP5蛋白的穩(wěn)定性,抑制稻瘟病菌侵染后期壞死斑的形成。反過來,APIP5蛋白亦促進Piz-t蛋白的積累,最終激活ETI抗病反應[112]。

        AvrPiz-t與APIP12的作用模式不同于上述3個水稻蛋白[113]。APIP12編碼一個核孔蛋白,與Nup98同源。APIP12蛋白與AvrPiz-t、APIP6發(fā)生直接相互作用。在非Piz-t水稻背景下,APIP12基因的沉默或敲除均抑制了防御相關基因的表達,進而降低了水稻對稻瘟病菌的抵抗力。然而,在Piz-t水稻中對APIP12進行過表達或沉默,由Piz-t介導的ETI反應卻不受影響,可見APIP12主要參與水稻基礎免疫反應,該蛋白與AvrPiz-t的互作獨立于ETI反應[113]。

        除了無毒基因對宿主免疫相關基因進行修飾之外,病原菌還存在一類非無毒基因的效應因子,通過干擾PTI反應來抑制宿主抗病能力。植物病原菌編碼的一些核心效應因子含LysM結構域效應蛋白,在致病過程中起重要作用。幾丁質結合蛋白番茄葉霉病菌(Cladosporiu fluvum)ECP6[116-117]、稻瘟病菌 Slp1[92]、油菜炭疽病菌(Colletotrichum higginsianum)ChELP1 和 ChELP2[118]蛋白結構保守,功能相似,均可抑制宿主PTI反應。稻瘟病菌Slp1與水稻細胞膜幾丁質受體CEBiP蛋白競爭結合幾丁質,以切斷幾丁質信號轉導,最終抑制宿主防御反應(圖1)[92]。深入研究發(fā)現(xiàn),Slp1受多個稻瘟病菌蛋白調(diào)控。首先內(nèi)質網(wǎng)膜轉運蛋白MoSec62決定了 Slp1的正常分泌[119]。其次,α-1,3-甘露糖轉移酶ALG3催化Slp1的糖基化修飾過程,糖基化的Slp1才能抑制宿主PTI反應[120]。MoSec62或ALG3基因缺失突變體菌體均可快速激活水稻防御相關基因的轉錄、活性氧爆發(fā),導致無法順利侵染水稻細胞,喪失致病能力[119-120]。與Slp1類似,稻瘟病菌分泌蛋白MC69基因的缺失則限制了侵染菌絲的擴展,導致稻瘟病菌對感病水稻和大麥的致病力下降[121]。同樣,西瓜炭疽病菌(Colletotrichum orbiculare)中該同源基因CoMC69的敲除,則削弱了該菌對黃瓜和本氏煙草的致病力[121],這說明MC69基因可能在單、雙子葉病原菌中都起著致病的功能。

        3.2 非效應因子型蛋白介導的水稻感病反應

        為保證順利侵染水稻,稻瘟病菌通過加固侵染菌絲細胞壁來避開宿主細胞的識別。據(jù)研究,稻瘟病菌細胞壁成分α-1,3-葡聚糖可干擾水稻防御反應,并為病程所需[122]。當α-1,3-葡聚糖合成基因MgAGS1發(fā)生缺失或α-1,3-葡聚糖的合成受到抑制,稻瘟病菌絲對植物幾丁質酶的敏感性則明顯提高。MgAGS1的缺失激活了水稻防御相關基因表達,導致稻瘟病菌致病力下降。α-1,3-葡聚糖酶可水解α-1,3-葡聚糖,然而水稻基因組尚無該酶的編碼基因。異源表達細菌α-1,3-葡聚糖酶編碼基因可激活水稻防御相關基因表達,增強水稻廣譜抗病能力。由此可見,α-1,3-葡聚糖可保護稻瘟病菌細胞壁,防止被水稻相關水解酶所降解,以阻止PAMP物質的釋放,進而抑制宿主PTI的發(fā)生[122]。

        PTI和ETI介導的宿主免疫防御反應常常伴隨著活性氧的爆發(fā),稻瘟病菌還可通過調(diào)節(jié)宿主細胞氧化還原環(huán)境來加速侵染過程。稻瘟病菌DES1編碼一個富含絲氨酸的蛋白,該基因的缺失提高了稻瘟病菌對過氧化物脅迫的敏感性,并抑制了過氧化物酶和漆酶編碼基因的正常轉錄活動。在侵染感病水稻初期,DES1缺失突變體可引起水稻細胞ROS爆發(fā),同時也激活了PR防御基因的表達,使得侵染菌絲擴展受限,最終降低了稻瘟病菌的致病性。進一步研究發(fā)現(xiàn),NADPH氧化還原酶抑制劑DPI可回補des1突變體的致病性[123]。與之類似,谷胱甘肽過氧化物酶編碼基因MoHYR1參與清除體內(nèi)活性氧,維持穩(wěn)定的氧化還原環(huán)境,促進稻瘟病菌成功侵染水稻[124]。

        除此之外,稻瘟病菌還面臨另外一種脅迫,即一氧化氮(NO)介導的植物氧化反應。NO是植物免疫反應中的一個組成部分,與ROS一類化合物相互作用,并衍生出具有高度氧化活性的硝基類化合物,即活性氮(Reactive nitrogen species,RNS)[125]?;钚匝鹾突钚缘勺柚共≡倪M一步侵染。然而,稻瘟病菌的一些酶可清除活性氮積累,如氮酸酯單加氧酶NMO。在稻瘟病菌營養(yǎng)生長過程中,NMO2催化硝基烷的脫硝基化反應,緩解硝基氧化脅迫給菌體細胞帶來的脂質硝化。NMO2基因的缺失抑制了侵染菌絲的擴展,并且引起水稻細胞氧爆發(fā)。NMO2基因對水稻氧化還原環(huán)境的調(diào)節(jié)也影響了稻瘟病菌效應蛋白的分泌,這種情況下效應蛋白無法抑制宿主PTI反應[126]。然而,提前用DPI處理水稻組織,使水稻細胞處于還原狀態(tài),阻止氧爆發(fā),mno2突變體則可正常地侵染水稻組織。這從側面反映了,當水稻失去活性氧這一抵御防線后,其自身產(chǎn)生的活性氮或是由NO介導的信號傳導不足以抵抗稻瘟病菌的侵染。在對抗稻瘟病菌的侵染,水稻細胞內(nèi)氧化環(huán)境的變化影響到抗病進程。以活性氧引起的ROS爆發(fā)起主導作用,而以活性氮引起的RNS起輔助作用,但二者均在水稻抗病過程中起重要作用,缺一不可。稻瘟病菌則通過釋放一系列效應蛋白,調(diào)控水稻相關基因的表達,阻止抗病信號的傳導,抑制ROS或是RNS的爆發(fā),保證菌絲的成功增殖。

        4 展望

        水稻與稻瘟病菌之間的相互作用是一項持久的“軍事裝備戰(zhàn)”。為抵抗稻瘟病菌的侵害,在自然或是人工選育的條件下,水稻基因組進化出一些抗性相關基因,然而隨著種植年限的延長或其他的氣候因素,稻瘟病菌小種不斷發(fā)生突變以攻克水稻防御體系。這些如此往復的相互進化事件推動了水稻-稻瘟病菌相互作用的發(fā)展。近20年來,水稻抗病基因、稻瘟病菌無毒基因的克隆為二者相互作用機理的解析提供了大量的實驗基礎。但從水稻PTI基礎免疫反應到ETI高級防御體系,這中間包含極其復雜的互作網(wǎng)絡,目前的研究只是掀開了該互作網(wǎng)絡的一角。為了進一步揭示水稻與稻瘟病菌互作的機理,今后可以從以下幾個方面開展研究:(1)新型水稻PRR受體的鑒定以及與PAMP的識別機制;(2)新型PAMP的發(fā)現(xiàn),明確它們激發(fā)水稻免疫反應的途徑;(3)新的效應蛋白和無毒蛋白基因的克隆,解析它們介導水稻感病和抗病反應的作用機理;(4)通過各種組學技術,進一步尋找水稻與稻瘟病菌互作網(wǎng)絡中的關鍵節(jié)點蛋白,明確它們的功能。

        [1]Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393):186-194.

        [2]Wilson RA, Talbot NJ. Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009, 7(3):185-195.

        [3]Wang GL, Valent B. Advances in genetics, genomics and control of rice blast disease[M]. New York:Springer Science and Business Media, 2009.

        [4]Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annu Rev Phytopathol, 2007, 45 :437-456.

        [5]Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea[J]. Annu Rev Phytopathol, 1991,29:443-467.

        [6]Talbot NJ. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J]. Annual Review of Microbiology, 2003,57:177-202.

        [7]Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036):980-986.

        [8]Chinchilla D, Bauer Z, Regenass M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.

        [9]Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4):749-760.

        [10]Nürnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals:striking similarities and obvious differences[J]. Immunological Reviews, 2004, 198 :249-266.

        [11]Ebel J, Cosio EG. Elicitors of plant defense responses[J].International Review of Cytology, 1994, 148:1-36.

        [12]Ebel J. Oligoglucoside elicitor-mediated activation of plant defense[J]. BioEssays, 1998, 20(7):569-576.

        [13]Boller T. Chemoperception of microbial signals in Plant Cells[J].Annual Review of Plant Biology, 1995, 46:189-214.

        [14]Schaffrath U, Scheinpflug H, Rersendr HJ. An elicitor from Pyricularia oryzae induces resistance responses in rice:isolation,characterization and phsiological properties[J]. Physiological and Mol Plant Pathol, 1995, 46:293-309.

        [15]Kanoh H, Hega M, Sekizawa Y. Transmemberane signaling operated at rice blade cells stimulated by blast fungus elicitors I:Operation of the phospholipase C system[J]. Pesticides Science,1993, 18:299-308.

        [16]Koga J, Yamauchi T, Shimura M, et al. Cerebosides A and C sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants[J]. Journal of Biological Chemistry,1998, 273(48):31985-31991.

        [17]Sekizawa Y, Hega M, Hirabayashi E, et al. Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substance[J]. Agricultural and Biological Chemistry, 1995, 51(3):763-770.

        [18]畢詠梅, 歐陽光察. 稻瘟病菌誘導物對水稻苯丙烷類途徑酶系和綠原酸的誘導作用[J]. 植物生理學通訊, 1990, (3):18-20.

        [19]肖拴鎖, 王鈞. 水稻中超氧誘導與稻瘟菌抗性及苯丙氨酸解氨酶、幾丁酶、β-1, 3-葡聚糖酶活性誘導的關系[J]. 中國水稻科學, 1997, 11(2):93-102.

        [20]李云峰, 王振中, 賈顯祿. 稻瘟菌細胞壁激發(fā)子活性物質的提取與性質[J]. 華中農(nóng)業(yè)大學學報, 2004, 23(3):285-289.

        [21]Umemura K, Ogawa N, Yamauchi T, et al. Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants[J]. Plant and Cell Physiology, 2000, 41(6):676-683.

        [22]Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2002, 99(20):13307-13312.

        [23]Lieberherr D, Thao NP, Nakashima A, et al. A sphingolipid elicitorinducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[J]. Plant Physiology, 2005, 138(3):1644-1652.

        [24]Chen M, Zeng H, Qiu D, et al. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice[J]. PLoS One, 2012,7(5):e37654.

        [25]Chen M, Zhang C, Zi Q, et al. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice[J]. Plant Cell Reports, 2014, 33(11):1865-1879.

        [26]Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogenactivated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)- triggered plant responses[J]. Molecular Plant-Microbe Interactions, 2012, 25(12):1639-1653.

        [27]Mogga V, Delventhal R, Weidenbach D, et al. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco[J]. Plant Cell Reports, 2016, 35(5):1169-1185.

        [28]Chen S, Songkumarn P, Venu RC, et al. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice[J].Molecular Plant-Microbe Interactions, 2013, 26(2):191-202.

        [29]Wang Y, Wu J, Kim SG, et al. Magnaporthe oryzae-secreted protein MSP1 induces dell death and elicits defense responses in rice[J]. Molecular Plant-Microbe Interactions, 2016, 29(4):299-312.

        [30]Yang Y, Zhang H, Li G, et al. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis[J]. Plant Biotechnology Journal, 2009, 7(8):763-777.

        [31]Hong Y, Yang Y, Zhang H, et al. Overexpression of MoSM1,encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad- spectrum resistance against fungal and bacterial diseases[J]. Sci Rep, 2017, 7:41037.

        [32]Yamada A, Shibuya N, Kodama O, et al. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosa ccharides[J]. Bioscience Biotechnology, and Biochemistry, 1993,57(3):405-409.

        [33] Kuchitsu K, Kikuyama M, Shibuya N. N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells[J].Protoplasma, 1993, 174:79-81.

        [34]Kuchitsu K, Yazaki Y, Sakano K, et al. Transient cytoplasmic pH change and ion fluxes through the plasma membrane in suspensioncultured rice cells triggered by N-Acetylchitooligosaccharide elicitor[J]. Plant and Cell Physiology, 1997, 38(9):1012-1018.

        [35]Kikuyama M, Kuchitsu K, Shibuya N. Membrane depolarization induced by N-Acetylchitooligosaccharide elicitor in suspensioncultured rice cells[J]. Plant and Cell Physiology, 1997, 38(8):902-909.

        [36]Minami E, Kuchitsu K, He DY, et al. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production[J]. Plant Cell Physiol, 1996, 37(4):563-567.

        [37]Tanabe S, Okada M, Jikumaru Y, et al. Induction of resistance against rice blast fungus in rice plants treated with a potent elicitor,N-Acetylchitiooligosaccharide[J]. Bioscience, Biotechnology,and Biochemistry, 2006, 70(7):1599-1605.

        [38]Shibuya N, Kaku H, Kuchitsu K, et al. Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells[J].FEBS Letters, 1993, 329(1-2):75-78.

        [39]Shibuya N, Ebisu N, Kamada Y, et al. Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface[J]. Plant and Cell Physiology,1996, 37(6):894-898.

        [40]Ito Y, Kaku H, Shibuya N. Identification of a high-affinity binding protein for N-Acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling[J]. The Plant Journal, 1997, 12(2):347-356.

        [41]Shinya T, Osada T, Desaki Y, et al. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands[J].Plant and Cell Physiology, 2010, 51(2):262-270.

        [42]Kouzai Y, Nakajima K, Hayafune M, et al. CEBiP is the major chitin oligomer- binding protein in rice and plays a main role in the perception of chitin oligomers[J]. Plant Mol Biol, 2014, 84(4-5):519-528.

        [43]Kouzai Y, Kaku H, Shibuya N, et al. Expression of the chimeric receptor between the chitin elicitor receptor CEBiP and the receptor-like protein kinase Pi-d2 leads to enhanced responses to the chitin elicitor and disease resistance against Magnaporthe oryzae in rice[J]. Plant Mol Biol, 2013, 81(3):287-295.

        [44]Kishimoto K, Kouzai Y, Kaku H, et al. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice[J]. The Plant Journal, 2010, 64(2):343-354.

        [45]Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.

        [46]Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase,is essential for chitin elicitor signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(49):19613-19618.

        [47]Wan J, Zhang XC, Neece D, et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J]. Plant Cell, 2008, 20(2):471-481.

        [48]Petutschnig EK, Jones AM, Serazetdinova L, et al. The lysin motif receptor-like kinase(LysM-RLK)CERK1 is a major chitinbinding protein in Arabidopsis thaliana and subject to chitininduced phosphorylation[J]. Journal of Biological Chemistry,2010, 285(37):28902-28911.

        [49]Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant Cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proc Natl Acad Sci USA, 2006, 103(29):11086-11091.

        [50]Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.

        [51]Kouzai Y, Mochizuki S, Nakajima K, et al. Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J]. Molecular Plant-Microbe Interactions, 2014, 27(9):975-982.

        [52]Ao Y, Li Z, Feng D, et al. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity[J]. The Plant Journal, 2014, 80(6):1072-1084.

        [53]Miyata K, Kozaki T, Kouzai Y, et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice[J]. Plant and Cell Physiology, 2014, 55(11):1864-1872.

        [54]Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2001, 98(2):759-64.

        [55]Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proceedings of Academy of Sciences of the United States of America, 2002, 99(20):13307-13312.

        [56]Kawasaki T, Henmi K, Ono E, et al. The small GTP-binding protein Rac is a regulator of cell death in plants[J]. Proceedings of Academy of Sciences of the United States of America, 1999, 96(19):10922-10926.

        [57]Wong HL, Sakamoto T, Kawasaki T, et al. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice[J]. Plant Physiology, 2004, 135(3):1447-1456.

        [58]Kawano Y, Akamatsu A, Hayashi K, et al. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J]. Cell Host & Microbe,2010, 7(5):362-375.

        [59]Yamaguchi K, Imai K, Akamatsu A, et al. SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice[J]. The Plant Journal, 2012, 70(3):389-397.

        [60]Akamatsu A, Wong HL, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476.

        [61]Lieberherr D, Thao NP, Nakashima A, et al. A sphingolipid elicitorinducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice[J]. Plant Physiology, 2005, 138(3):1644-1652.

        [62]Kim SH, Oikawa T, Kyozuka J, et al. The bHLH Rac Immunity1(RAI1)Is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity[J]. Plant and Cell Physiology, 2012, 53(4):740-754.

        [63]Chen L, Hamada S, Fujiwara M, et al. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J]. Cell Host &Microbe, 2010, 7(3):185-196.

        [64]Thao NP, Chen L, Nakashima A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. Plant Cell, 2007, 19(12):4035-4045.

        [65]Akamatsu A, Uno K, Kato M, et al. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice[J]. Plant Signaling & Behavior, 2015,10(7):e 1044702.

        [66]Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery[J].Exp Biol Med (Maywood), 2003, 228(2):111-133.

        [67]Nakashima A, Chen L, Thao NP, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. Plant Cell, 2008, 20(8):2265-2279.

        [68]Shirasu K, Lahaye T, Tan MW, et al. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans[J]. Cell, 1999, 99(4):355-366.

        [69]Shen QH, Zhou F, Bieri S, et al. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus[J]. Plant Cell, 2003, 15(3):732-744.

        [70]Tornero P, Merritt P, Sadanandom A, et al. RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis,and their relative contributions are dependent on the R gene assayed[J]. Plant Cell, 2002, 14(5):1005-1015.

        [71]Muskett PR, Kahn K, Austin MJ, et al. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens[J]. Plant Cell, 2002, 14(5):979-992.

        [72]Austin MJ, Muskett P, Kahn K, et al. Regulatory role of SGT1 in early R gene-mediated plant defenses[J]. Science, 2002, 295(5562):2077-2080.

        [73]Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance[J]. Science, 2002, 295(5562):2073-2076.

        [74]Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus[J]. The Plant Journal, 2002, 30(4):415-429.

        [75]Holt BF 3rd, Belkhadir Y, Dangl JL. Antagonistic control of disease resistance protein stability in the plant immune system[J].Science, 2005, 309(5736):929-932.

        [76]Liu H, Dong S, Sun D, et al. CONSTANS-Like 9(OsCOL9)interacts with receptor for activated C-Kinase 1(OsRACK1)to regulate blast resistance through aalicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249.

        [77]Liu S, Hua L, Dong S, et al. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production[J].The Plant Journal, 2015, 84(4):672-681.

        [78]Kishi-Kaboshi M, Takahashi A, Hirochika H. MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis[J]. Plant Signaling & Behavior, 2010, 5(12):1653-1656.

        [79]Akamatsu A, Wong HL, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476.

        [80]Zeng LR, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of Plant Cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J].Plant Cell, 2004, 16(10):2795-2808.

        [81]Yin Z, Chen J, Zeng L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8):869-876.

        [82]Kojo K, Yaeno T, Kusumi K, et al. Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]Plant and Cell Physiology, 2006, 47(8):1035-1044.

        [83]Liu J, Park CH, He F, et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens, 2015, 11(2):e1004629.

        [84]Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nat Commun, 2013, 4 :1996.

        [85]Valent B, Khang CH. Recent advances in rice blast effector research[J]. Curr Opin Plant Biol, 2010, 13:434-441.

        [86]Mosquera G, Giraldo MC, Khang CH, et al. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease[J].Plant Cell, 2009, 21:1273-1290.

        [87]Sweigard JA, Carroll AM, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus[J]. Plant Cell, 1995, 7(8):1221-1233.

        [88]Khang CH, Berruyer R, Giraldo MC, et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. Plant Cell, 2010, 22(4):1388-1403.

        [89]Read ND. Exocytosis and growth do not occur only at hyphal tips[J]. Mol Microbiol, 2011, 81(1):4-7.

        [90]Park CH, Chen S, Shirsekar G, et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. Plant Cell, 2012, 24(11):4748-4762.

        [91] Fujisaki K, Abe Y, Ito A, et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity[J]. The Plant Journal, 2015, 83(5):875-887.

        [92]Mentlak TA, Kombrink A, Shinya T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. Plant Cell, 2012, 24(1):322-335.

        [93]Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection[J]. Nature, 2001, 411:826-833.

        [94]Jones JD, Dangl JL. The plant immune system[J]. Nature, 2006,444:323-329.

        [95]Macros M. Pathogen derived elicitors:searching for receptors in plants[J]. Mol Plant Pathol, 2003, 4(1):73-79.

        [96]Leung H, Raghavan C, Zhou B, et al. Allele mining and enhanced genetic recombination for rice breeding[J]. Rice(N Y), 2015,8:34.

        [97]Azizi P, Rafii MY, Abdullah SN, et al. Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2016, 36(1):165-174.

        [98]Chauhan RS, Farman ML, Zhang HB, et al. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics, 2002, 267(5):603-612.

        [99]Yang Q, Lin F, Wang L, et al. Identification and mapping of Pi41,a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11[J]. Theoretical and Applied Genetics, 2009, 118(6):1027-1034.

        [100] He X, Liu X, Wang L, et al. Identification of the novel recessive gene Pi55(t)conferring resistance to Magnaporthe oryzae[J]. Science China Life Sciences, 2012, 55(2):141-149.

        [101] Zhu X, Chen S, Yang J, et al. The identification of, a new member Pi50(t)of the rice blast resistance Pi2/Pi9 multigene family[J]. Theor Appl Genet, 2012, 24(7):1295-1304.

        [102] B?hnert HU, Fudal I, Dioh W, et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 2004, 16(9):2499-2513.

        [103] Ashikawa I, Wu J, Matsumoto T, et al. Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance[J]. Journal of General Plant Pathology, 2010, 76:37-42.

        [104] Wu J, Kou Y, Bao J, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015,206:1463-1475.

        [105] Zhang S, Wang L, Wu W, et al. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J]. Sci Rep, 2015, 5:11642.

        [106] Cesari S, Thilliez G, Ribot C, et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding[J]. Plant Cell,2013, 25:1463-1481.

        [107] Kanzaki H, Yoshida K, Saitoh H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions[J]. Plant J, 2012, 72 :894-907.

        [108] Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19:4004-4014.

        [109] Li J, Lu L, Jia Y, et al. Effectiveness and durability of the rice Pi-ta gene in Yunnan province of China[J]. Phytopathology,2014, 9:PHYTO11130016.

        [110] Singh R, Dangol S, Chen Y, et al. Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting indisruption of oxidative burst and host innate immunity[J]. Mol Cells, 2016, 39(5):426-438.

        [111] Park CH, Shirsekar G, Bellizzi M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice[J]. PLoS Pathogens, 2016, 12(3):e1005529.

        [112] Wang R, Ning Y, Shi X, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Curr Biol, 2016,26(18):2399-2411.

        [113] Tang M, Ning Y, Shu X, et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae[J]. Rice(N Y),2017, 10(1):5.

        [114] Edwards GE, Andreo CS. NADP-malic enzyme from plants[J].Phytochemistry, 1992, 31(6):1845-1857.

        [115] Parker D, Beckmann M, Zubair H, et al. Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea[J].The Plant Journal, 2009, 59(5):723-737.

        [116] Bolton MD, van Esse HP, Vossen JH, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species[J]. Mol Microbiol, 2008, 69(1):119-136.

        [117] de Jonge R, van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010, 329(5994):953-955.

        [118] Takahara H, Hacquard S, Kombrink A, et al. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity[J]. New Phytologist, 2016, 211(4):1323-1337.

        [119] Zhou Z, Pang Z, Li G, et al. Endoplasmic reticulum membranebound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae[J]. Mol Plant Pathol, 2016, 17(8):1211-1222.

        [120] Chen XL, Shi T, Yang J, et al. N-glycosylation of effector proteins by an α-1, 3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity[J]. Plant Cell, 2014, 26(3):1360-1376.

        [121] Saitoh H, Fujisawa S, Mitsuoka C, et al. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens[J]. PLoS Pathogens, 2012, 8(5):e1002711.

        [122] Fujikawa T, Sakaguchi A, Nishizawa Y, et al. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants[J]. PLoS Pathogens, 2012, 8(8):e1002882.

        [123] Chi MH, Park SY, Kim S, et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host[J]. PLoS Pathogens, 2009, 5(4):e1000401.

        [124] Huang K, Czymmek KJ, Caplan JL, et al. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus[J]. PLoS Pathogens, 2011, 7(4):e1001335.

        [125] Bellin D, Asai S, Delledonne M, et al. Nitric oxide as a mediator for defense responses[J]. Molecular Plant-Microbe Interactions, 2013, 26(3):271-277.

        [126] Marroquin-Guzman M, Hartline D, Wright JD, et al. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease[J]. Nature Microbiology,2017, 2:17054.

        猜你喜歡
        幾丁質抗病稻瘟病
        我國小麥基因組編輯抗病育種取得突破
        基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候選基因
        作物學報(2022年6期)2022-04-08 01:26:44
        產(chǎn)幾丁質酶的無色桿菌ZWW8的發(fā)酵產(chǎn)酶及酶學性質研究
        微生物幾丁質酶的研究進展及應用現(xiàn)狀
        中國釀造(2017年8期)2017-09-03 06:20:01
        bZIP轉錄因子在植物激素介導的抗病抗逆途徑中的作用
        不同藥劑防治苗稻瘟病、葉稻瘟病效果試驗研究
        葡萄新品種 優(yōu)質又抗病
        生物綠肥在稻瘟病防治中的應用與示范
        幾種藥劑防治水稻稻瘟病穗瘟效果試驗
        番茄果實感染灰霉病過程中H2O2的抗病作用
        食品科學(2013年8期)2013-03-11 18:21:32
        日本道免费一区二区三区日韩精品 | 久久一区二区国产精品| 欧美牲交a欧美牲交| 99久久超碰中文字幕伊人| 国产suv精品一区二人妻| 全部免费国产潢色一级| 久久久亚洲女精品aa| 国产激情一区二区三区成人 | 亚洲精品久久激情国产片| 国产美女在线精品免费观看| 风流少妇又紧又爽又丰满| 日本精品一区二区在线看| 成人av资源在线观看| 国产欧美日韩一区二区加勒比 | 国产激情艳情在线看视频 | 无码午夜人妻一区二区三区不卡视频 | 亚洲av综合av成人小说| 亚洲欧洲偷自拍图片区| 亚洲一区区| 国产精品日本一区二区三区在线| 蜜桃视频网站在线观看一区| 猫咪av成人永久网站在线观看| 国产成人一区二区三区在线观看| 第十色丰满无码| 久久99免费精品国产| 中文字幕亚洲精品一区二区三区| 少妇仑乱a毛片| 精品无码AⅤ片| 久久国产精品国产精品久久| 国产成人av一区二区三| 人妻免费一区二区三区免费| 99久久精品午夜一区二区| 国产精品 视频一区 二区三区| 亚洲福利第一页在线观看| 亚洲av熟女中文字幕| 免费女人高潮流视频在线观看| 亚洲国产精品sss在线观看av| 在线你懂| 国产精品一区久久综合| 日本va欧美va精品发布| 亚洲国产人在线播放首页|