黃亞林,張晨新,張小寬,孫銘才
(空軍工程大學(xué)防空反導(dǎo)學(xué)院,陜西 西安 710051)
隨著科技的不斷進(jìn)步,現(xiàn)代戰(zhàn)機(jī)集隱身性能、高靈敏度、高精確度以及實(shí)時態(tài)勢感知于一身,可以在不同的戰(zhàn)斗形勢下迅速作出對應(yīng)的復(fù)雜機(jī)動。尤其是以F-22,F(xiàn)-35為代表的第五代戰(zhàn)機(jī)給世界各國的防空領(lǐng)域帶來了巨大的挑戰(zhàn),如何提高防空雷達(dá)對先進(jìn)戰(zhàn)機(jī)的探測能力成了世界性的研究難題。
目前,目標(biāo)探測概率計算所采用的RCS數(shù)據(jù)主要是依靠已有的RCS統(tǒng)計模型直接生成或直接將RCS視為定值[1-3]。對于運(yùn)動目標(biāo)而言,這兩種做法都存在相應(yīng)的局限性,不能客觀反應(yīng)目標(biāo)RCS同飛行姿態(tài)變化之間的關(guān)系。在飛機(jī)實(shí)際飛行過程中,其飛行軌跡具有高度的任意性,隨飛行員瞬時的操作意圖而變化。同時,RCS又是姿態(tài)敏感函數(shù),姿態(tài)角的微小變化都可能引起RCS的劇烈起伏[4-5]。因此,基于動態(tài)RCS數(shù)據(jù)的運(yùn)動目標(biāo)探測研究更加貼近實(shí)際,相關(guān)領(lǐng)域也取得了許多成果。陳世春等[6]從探測概率角度對飛機(jī)的隱身性能進(jìn)行了分析,研究了4種典型隱身飛機(jī)RCS起伏數(shù)據(jù)與探測概率的關(guān)系。戴崇等[7]利用動態(tài)RCS數(shù)據(jù)分析了卡方分布在一定發(fā)現(xiàn)概率下自由度與信噪比的關(guān)系。晏青等[8]綜合了動態(tài)RCS數(shù)據(jù)與雷達(dá)距離的探測概率模型,對無人機(jī)的航跡規(guī)劃進(jìn)行了研究。本文綜合考慮影響隱身目標(biāo)探測的主要方面,基于隱身目標(biāo)的精確模型和目標(biāo)航跡的精確建模提出了一種基于動態(tài)RCS數(shù)據(jù)的探測概率計算方法。
用于航跡建模的目標(biāo)模型通常分為3自由度和6自由度模型。其中3自由度模型將目標(biāo)視為質(zhì)點(diǎn),只包含飛行的力方程和質(zhì)心方程,能夠較好地反映飛機(jī)的航跡特性。在側(cè)重飛行航跡特性和飛行性能時可用作簡化模型。6自由度模型將目標(biāo)視為剛體,不僅涵蓋了力方程和質(zhì)心方程,還包含了力矩方程和姿態(tài)角方程,能夠更加全面地反映飛機(jī)運(yùn)動機(jī)理,更加貼近實(shí)際飛行效果。6自由度模型的動力學(xué)方程為[9-10]:
(1)
式中,m,G分別為飛機(jī)質(zhì)量和飛機(jī)重量;Vx,Vy,Vz為速度矢量在各坐標(biāo)軸上的投影;Fx,F(xiàn)y,F(xiàn)z為除重力以外其余力的合力在各坐標(biāo)軸上的投影;wx,wy,wz為旋轉(zhuǎn)角速度在各坐標(biāo)軸上的投影;θ,γ分別為俯仰角和滾轉(zhuǎn)角。
質(zhì)心運(yùn)動方程:
(2)
其中,
(3)
式中,θ,ψ,γ分別為飛機(jī)的俯仰角,偏航角和滾轉(zhuǎn)角,統(tǒng)稱歐拉角[11]。(x,y,z)為飛機(jī)在地面雷達(dá)坐標(biāo)系下的直角坐標(biāo)。
1.2.1平飛
平飛是一種最基本的飛行方式,速度恒定,無傾斜,航跡偏轉(zhuǎn)角恒定,滾轉(zhuǎn)角恒為0,升力等于重力,推力等于阻力。將速度取值400 m/s,航路捷徑取為10 km,平飛航跡的三維顯示如圖1。
1.2.2俯沖
典型俯沖航跡可分為三段:進(jìn)入俯沖段,俯沖段,退出俯沖段。目標(biāo)俯沖時,隨著高度逐漸下降,速度不斷增大,到達(dá)某一高度時,迎面阻力等于推力與重力在速度方向的分量之和時,速度達(dá)到最大,該速度稱為極限速度。俯沖段航跡與水平面的夾角λ稱為俯沖角。λ的變化范圍通常在20°~60°之間[12]。取俯沖角為45°,速度為400 m/s,合理設(shè)置進(jìn)入俯沖段與俯沖段及俯沖段與退出俯沖段之間的銜接時間,使轉(zhuǎn)換過程平滑,所得俯沖航跡的三維顯示如圖2。
1.2.3特定軍事背景下的航跡建模
實(shí)際軍事作戰(zhàn)和訓(xùn)練中,飛機(jī)機(jī)動往往是幾組簡單的靈活組合,以達(dá)到某種軍事目的。圖3給出了一種戰(zhàn)斗機(jī)執(zhí)行完轟炸任務(wù)后迅速脫離險境的機(jī)動航跡,它是集俯沖、拐彎、平飛于一體的一種實(shí)用性戰(zhàn)術(shù)機(jī)動動作。
動態(tài)RCS計算的前提是目標(biāo)機(jī)動姿態(tài)變化的提取,目標(biāo)在預(yù)定航跡中飛行時,由雷達(dá)方給出的RCS是隨時間連續(xù)變化的,這是雷達(dá)視線在目標(biāo)坐標(biāo)系中隨時間變化和目標(biāo)自身姿態(tài)變化所致。因此,還需根據(jù)目標(biāo)在雷達(dá)坐標(biāo)系航跡和姿態(tài)變化,進(jìn)行坐標(biāo)變換,求出雷達(dá)視線在目標(biāo)坐標(biāo)系中隨時間變化的方位角和俯仰角。
1.3.1目標(biāo)坐標(biāo)系定義及坐標(biāo)轉(zhuǎn)換
目標(biāo)坐標(biāo)系OXYZ如圖4,坐標(biāo)原點(diǎn)位于目標(biāo)中心,X軸平行于機(jī)身軸線指向前方,Z軸位于目標(biāo)對稱平面內(nèi),垂直于X軸指向上方,Y軸垂直于目標(biāo)對稱平面,指向由右手法則確定[13]。
從雷達(dá)坐標(biāo)系到目標(biāo)坐標(biāo)系的變換過程可由式(4)表示:
(4)
式中,(x(t),y(t),z(t))為雷達(dá)坐標(biāo)系中任意一點(diǎn)坐標(biāo),(xT(t),yT(t),zT(t))為該點(diǎn)在目標(biāo)坐標(biāo)系中的坐標(biāo),(xR(t),yR(t),zR(t))為目標(biāo)點(diǎn)跡在雷達(dá)坐標(biāo)系中的坐標(biāo),P為雷達(dá)坐標(biāo)系到目標(biāo)坐標(biāo)系的變換矩陣,詳細(xì)定義見文獻(xiàn)[13]。
為了將目標(biāo)運(yùn)動相對雷達(dá)運(yùn)動等價為雷達(dá)視線在目標(biāo)坐標(biāo)系中的姿態(tài)角變化,還需將上述直角坐標(biāo)轉(zhuǎn)化為極坐標(biāo)形式,即
(5)
其中:
(6)
將三種航跡進(jìn)行姿態(tài)解算,即按照上述過程先獲取目標(biāo)機(jī)動的直角坐標(biāo),再依據(jù)式(5)進(jìn)行轉(zhuǎn)換,可得三種航跡的方位角和俯仰角隨時間變化情況分別如圖5。
1.3.2動態(tài)RCS計算
本文借助電磁仿真軟件FEKO對目標(biāo)動態(tài)RCS進(jìn)行計算,通過其中的EditFEKO環(huán)節(jié)編程可對解算姿態(tài)角進(jìn)行實(shí)時仿真,具體操作如圖6。
圖6 動態(tài)RCS計算流程
Fig.6 Path of dynamic RCS calculation
首先對目標(biāo)進(jìn)行CAD建模,常用的建模方式有CADFEKO,XPATCH等。再將模型導(dǎo)入FEKO進(jìn)行求解設(shè)置,主要包括頻率、極化方式、算法選擇等。最后再借助EitFEKO腳本編輯器讀取所解算的姿態(tài)角信息,運(yùn)行FEKO進(jìn)行計算。
利用EitFEKO腳本編輯器讀取時變姿態(tài)角可用以下6行語句表述[14]:
!! for #i =1 to #numangle step num
#theta=FILEREAD("data.txt",#i,1)
#phi=FILEREAD("data.txt",#i,2)
A0:0:0:1:1:0:1:0 #theta:#phi:0
FF:-2
!! Next
其中,#i表示計數(shù)變量,#numangle表示姿態(tài)角總組數(shù),step num表示設(shè)置的步長,#theta表示時變俯仰角,#phi表示時變方位角。??!for與!!Next組合表示循環(huán)設(shè)置,fileread是讀取函數(shù);A0為線極化平面波入射設(shè)置函數(shù),F(xiàn)F為計算遠(yuǎn)場散射函數(shù)。
依據(jù)上述三種航跡所解算的姿態(tài)角對其動態(tài)RCS進(jìn)行計算,所得結(jié)果如圖7。
為建立目標(biāo)RCS與回波幅度之間的聯(lián)系,需先對接收機(jī)的基本原理進(jìn)行分析。圖7中,LNA(Low Noise Amplifier)為低噪聲高頻放大器,Pr為接收回波功率,Si為進(jìn)入匹配濾波環(huán)節(jié)的信號功率,So匹配濾波之后的輸出功率。匹配濾波后進(jìn)行包絡(luò)檢波和門限判別,判斷是否存在目標(biāo)[15]。
圖8 接收機(jī)基本原理
Fig.8 Principle of receiver
設(shè)雷達(dá)發(fā)射功率為Pt,雷達(dá)天線增益為G,目標(biāo)雷達(dá)散射截面σ,λ為波長,L為損耗因子,可得回波功率表達(dá)式為
(7)
取LNA的增益為GL,則經(jīng)過低噪聲高頻放大器后的信號功率為:
Si=PrGL
(8)
此外,Si還可表示為:
(9)
其中,k為波爾茲曼常數(shù),取值為1.38×10-23J/K,T0為標(biāo)準(zhǔn)室溫,取值為290 K,Bn為噪聲帶寬,F(xiàn)n為噪聲系數(shù),No為匹配濾波之后的輸出噪聲功率。
而匹配濾波后輸出的信號噪聲功率比可表示為:
(10)
依據(jù)文獻(xiàn)[6]的歸一化定義式,設(shè)定A為目標(biāo)信號與噪聲混合信號的幅度,則
(11)
結(jié)合上式可得幅度A滿足式
(12)
當(dāng)雷達(dá)體制確定后,將雷達(dá)固有參數(shù)視為常量可將上式簡化為:
(13)
(14)
為了計算發(fā)現(xiàn)概率,必須統(tǒng)籌分析信號加噪聲通過接收機(jī)的情況,也就是計算信號加噪聲電壓超過檢測門限的概率。下面就幅度為A的正弦信號加高斯白噪聲一起輸入到中頻濾波器時的情況進(jìn)行分析:
設(shè)信號的頻率為中頻濾波器的中心頻率f0,r為信號加噪聲的包絡(luò),A為回波幅度電壓,σ0為噪聲方差,包絡(luò)檢波器輸出包絡(luò)的概率密度函數(shù)表示為[16]:
(15)
其中,I0(z)是宗量為z的零階修正貝塞爾函數(shù),可用式(16)表示:
(16)
設(shè)門限電平為UT,噪聲包絡(luò)電壓超過門限的概率就是虛警概率Pfa,可由式(17)表示:
(17)
當(dāng)噪聲為高斯白噪聲時,由上式可得:
(18)
綜上可得發(fā)現(xiàn)概率Pd可表示為:
(19)
結(jié)合式(19)和式(13)可得:
(20)
依據(jù)上述所建探測模型,設(shè)置雷達(dá)參數(shù),對平飛和俯沖兩種典型航跡下雷達(dá)對隱身目標(biāo)的探測概率進(jìn)行仿真。具體參數(shù)設(shè)置為:利用FEKO計算動態(tài)RCS時將雷達(dá)頻率f設(shè)為1 GHz,發(fā)射功率Pt取為400 kW,天線增益G取為30 dB,LNA增益GL取值30 dB,損耗因子L和匹配濾波器噪聲系數(shù)Fn均取為5 dB,噪聲帶寬Bn可認(rèn)為是脈寬的倒數(shù)取值1 MHz。當(dāng)虛警概率為10-6時,兩種典型航跡的實(shí)時探測概率仿真結(jié)果如下。
由圖9可以看出,飛機(jī)沿著雷達(dá)方向平飛時,雷達(dá)對飛機(jī)目標(biāo)的探測概率隨時間逐漸變大,并從某一時刻起出現(xiàn)明顯起伏。這是因?yàn)槔走_(dá)對目標(biāo)的探測受距離和RCS共同影響。起初飛機(jī)距離雷達(dá)較遠(yuǎn),同時雷達(dá)面對的是飛機(jī)機(jī)頭等隱身區(qū)域,所以探測概率較小。而當(dāng)飛機(jī)逐漸接近雷達(dá)時,機(jī)腹等區(qū)域暴露,探測概率增大并且隨RCS的起伏而出現(xiàn)起伏。
飛機(jī)俯沖過程分為三段,如圖10所示,本文所設(shè)置為0~90 s為進(jìn)入俯沖段,90~120 s為俯沖階段,120 s以后退出俯沖。進(jìn)入俯沖前和退出俯沖后飛機(jī)均處于平飛狀態(tài),進(jìn)入俯沖段探測概率不斷增大并逐漸出現(xiàn)起伏,退出俯沖段探測概率在起伏中不斷減小,分析原理同上。而在俯沖階段,探測概率起伏劇烈并且出現(xiàn)峰值,這是因?yàn)闄C(jī)背和機(jī)腹等非隱身區(qū)域暴露,RCS劇烈起伏,導(dǎo)致探測概率增大出現(xiàn)峰值并隨RCS起伏而劇烈起伏。
實(shí)際作戰(zhàn)環(huán)境下目標(biāo)機(jī)動復(fù)雜多變,該航跡以戰(zhàn)斗機(jī)執(zhí)行轟炸任務(wù)為背景,具體機(jī)動動作變換時間點(diǎn)為:0~120 s俯沖機(jī)動,120 s以后拐彎折返。由圖11可以看出,機(jī)動動作的組合導(dǎo)致結(jié)果出現(xiàn)了多個相對峰值,發(fā)現(xiàn)概率較大的時間段不在集中,而是分散在很長的一個時間段(50~150 s),即進(jìn)行俯沖與拐彎的階段。同時,仿真結(jié)果的起伏也能得出與單獨(dú)的平飛與俯沖相同的結(jié)論。
本文綜合考慮影響機(jī)動目標(biāo)探測的主要因素,并以隱身目標(biāo)為對象,提出了基于目標(biāo)航跡精確建模及目標(biāo)動態(tài)RCS電磁計算的機(jī)動目標(biāo)探測概率計算方法。該方法克服了傳統(tǒng)檢測方法對于RCS使用的局限性,在考慮真實(shí)目標(biāo)特性的基礎(chǔ)上建立了綜合距離量與RCS隨機(jī)量的機(jī)動目標(biāo)檢測模型,相比于傳統(tǒng)方法更具合理性。仿真結(jié)果表明機(jī)動目標(biāo)探測概率隨RCS的起伏而起伏,因此雷達(dá)可以利用這種起伏性提高某一瞬時的發(fā)現(xiàn)概率而一擊命中。但是,由于未對目標(biāo)滾轉(zhuǎn)機(jī)動進(jìn)行考慮,仿真方法在工程中的應(yīng)用存在部分局限,因此目標(biāo)機(jī)動的精確模擬是接下來的重點(diǎn)研究方向。
[1]Swerling P. Radar probability of detection for some additional fluctuating target cases[J]. IEEE Transaction on Aerospace and Electronic System, 1997, 33(2):698-709.
[2]楊英科, 李宏, 李文城,等. 目標(biāo)起伏特性對雷達(dá)檢飛的試驗(yàn)的影響及應(yīng)用[J]. 現(xiàn)代雷達(dá), 2013, 35(2): 22-25.
[3]Shnidman D A. Radar detection probability and their calculation[J]. IEEE Transaction on Aerospace and Electronic System, 1995, 31(3): 928-950.
[4]Zhuang Yaqiang, Zhang Chenxin, Zhang Xiaokuan. A novel simulation approach of aircraft dynamic RCS[J]. Progress In Electromagnetics Research M, 2014, 36: 85-91.
[5]Liu J, Fang N, Wang B F, et al. A novel dynamic RCS simulation and analysis method considering attitude perturbation[J]. Journal of Electromagnetic Waves and Application, 2015, 29(14): 1841-1858.
[6]陳世春, 黃沛霖, 姬金祖. 從探測概率的角度評價飛機(jī)的隱身性能[J]. 航空學(xué)報, 2015, 36(4): 1150-1161.
[7]戴崇, 徐振海, 肖順平. 非合作目標(biāo)動態(tài)RCS仿真方法[J]. 航空學(xué)報, 2014, 35(5): 1374-1384.
[8]晏青, 熊峻江, 游思明. 基于動態(tài)RCS的無人機(jī)航跡實(shí)時規(guī)劃[J]. 北京航空航天大學(xué)學(xué)報, 2011, 37(9): 1115-1121.
[9]簡康. 無人機(jī)航跡規(guī)劃算法研究[D]. 西安:西安電子科技大學(xué),2014: 28-31.
[10]繆永飛. 軍用飛行器航跡規(guī)劃與顯示技術(shù)研究[D]. 長沙:國防科技大學(xué), 2006: 35-38.
[11]姬金祖, 束長勇, 黃沛霖. 歐拉角在飛行航跡仿真中的應(yīng)用[J]. 南京航空航天大學(xué)學(xué)報, 2014, 46(2): 218-224.
[12]婁壽春. 地空導(dǎo)彈射擊指揮控制模型[M]. 北京:國防工業(yè)出版社, 2009: 73-75.
[13]黃培康,殷紅成,許小劍. 雷達(dá)目標(biāo)特性[M].北京:電子工業(yè)出版社, 2005.
[14]戴崇. 雷達(dá)目標(biāo)動態(tài)RCS特性建模方法研究[D]. 長沙:國防科技大學(xué), 2013: 39-41.
[15]丁鷺飛, 耿富錄, 陳建春. 雷達(dá)原理[M]. 北京:電子工業(yè)出版社, 2013: 219-229.
[16]周品. MATLAB概率論與數(shù)理統(tǒng)計[M]. 北京:清華大學(xué)出版社, 2012: 2018-220.