王寬程, 楊英鐘
(閩南理工學(xué)院 信息管理學(xué)院, 福建 泉州 362700)
AANA序列是一類廣泛的負(fù)相依序列,文獻(xiàn)[1]介紹了AANA序列的定義并指出NA(相關(guān)定義可見文獻(xiàn)[2])序列是AANA序列,其混合系數(shù)滿足(q(n)=0,n≥1),文中還舉出了一些例子.因此研究AANA陣列的收斂性質(zhì)是有意義的.文獻(xiàn)[3]研究AANA序列的Hajek-Renyi型極大值不等式及其應(yīng)用,文獻(xiàn)[4]建立了AANA序列的Rosenthal型不等式;文獻(xiàn)[5]研究了AANA序列極大不等式和強(qiáng)大數(shù)定律.有關(guān)更多AANA序列的研究成果,可以參見文獻(xiàn)[6-9].本文利用截尾方法和矩不等式,研究AANA陣列在h-可積下的Lp收斂性和完全收斂性.由于AANA列比NA列更弱,因此本文所得的結(jié)論對(duì)NA隨機(jī)變量序列仍然成立.
由于r階Cesaro一致可積嚴(yán)格弱于r階一致可積.而h-可積是比Cesaro一致可積更弱的條件[10]]. 本文研究了AANA陣列在h-可積條件下Lr收斂性和完全收斂性 ,因此本文所得結(jié)論推廣了Cesaro一致可積條件下的相應(yīng)結(jié)論.
定義1[1]稱{Xn;n∈N}為漸近幾乎負(fù)相依(簡(jiǎn)稱AANA)隨機(jī)變量序列,如果存在非負(fù)序列q(n)→0(n→0),對(duì)任意的n,k≥1都有
Cov(f(Xn),g(Xn+1,…,Xn+k))≤q(n)(Var(f(Xn))Var(g(Xn+1,…,Xn+k)))1/2.
式中:f和g是任何兩個(gè)使上述方差存在且對(duì)每個(gè)變?cè)鶠榉墙档倪B續(xù)函數(shù).稱{q(n);n∈N}為該序列的混合系數(shù).
稱隨機(jī)陣列{Xnk;1≤k≤n,n∈N}是行為AANA陣列,固定n,假設(shè)每一行內(nèi)的隨機(jī)變量列{Xnk}是AANA的.
定義2[10]稱陣列{Xnk;1≤k≤n,n∈N}關(guān)于常數(shù)陣列{ank;1≤k≤n,n∈N}h-可積的,若滿足下列條件:
引理1[6]設(shè){Xn;n∈N}為AANA序列,并且混合系數(shù)是{q(n);n∈N},若{fn;n∈N}皆是單調(diào)非降(或者單調(diào)非增)連續(xù)函數(shù),那么{fn(xn);n∈N}仍然是AANA序列,其混合系數(shù)仍然是{q(n);n∈N}.
定理1 設(shè){Xnk,1≤k≤n,n≥1}是行為兩兩AANA陣列,{ank,1≤k≤n,n≥1}是常數(shù)陣列,{h(n),n≥1}是單調(diào)不減序列,且h(n)→∞(n→∞),1≤p<2,若滿足以下條件:
證明 對(duì)每個(gè)1≤k≤n(n≥1)令
由引理1可知Ynk及Znk仍為AANA陣列,且有|Ynk|≤h(n)和|Znk|≤|Xnk|I(|Xnk|>h(n)).由引理2及Jessen不等式、Cr不等式可知
由條件(1),(2)可得
定理1證畢.
定理2 設(shè){Xnk;1≤k≤n,n≥1}為零均值且E|Xnk|<∞的行為AANA的陣列,{ank}是常數(shù)陣列,{h(n)}是單調(diào)不減序列,且h(n)→∞(n→∞).設(shè)α>0,αp>1,0<δ<1,q>0,t>0為實(shí)數(shù),滿足:αp-α-q<0及α-q+1<0.如果下面3個(gè)條件成立:
(ⅰ) {Xnk}是關(guān)于常數(shù)陣列{ank}的h-可積,且max|ank|=O(n-q);
?ε>0,有
(1)
證明 對(duì)每個(gè)1≤k≤n(n≥1),令
Ynk=XnkI(|Xnk|≤
h(n))-h(n)I(Xnk<-h(n))+
h(n)I(Xnk>h(n)),
由引理1可知{Ynk;1≤k≤n,n≥1}仍為AANA陣列.
先證
因?yàn)?ω∈Dn,有
且?1≤i
若記a=#{i:1≤i≤n,Xni(ω)>h(n)},b=#{i:1≤i≤n,Xni(ω)<-h(n)}.
則易知a≤1,b≤1.
當(dāng)a=0,b=0時(shí),有?j(1≤j≤n),|anjXnj(ω)|≤|anj|h(n),所以|anjXnj(ω)|=|anjYnj(ω)|,從而
當(dāng)a=1,b=0時(shí),僅有某個(gè)i0,使得Xni0(ω)>h(n),但仍有|ani0Xni0(ω)|<εnα,而其余的i,都有aniXni(ω)=aniYni(ω).若1≤k≤i0-1,則Sk(ω)=Uk(ω);若i0≤k≤n,則
Yi0(ω)=h(n) 從而 同理可證當(dāng)a=0,b=1時(shí)及當(dāng)a=1,b=1時(shí)的情況,故式(2)成立.因此,有 所以要證式(1),只需證明: 先證式(3), 再證式(4), 要證式(5)成立,只需證 由引理2及條件(ⅱ)可得 定理2證畢. [ 1 ] CHANDRA T K,GHOSAL S. Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables[J]. Acta Mathematica Hungarica, 1996,71(4):327-336. [ 2 ] JOAG-DEV K,PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983,11(1):286-295. [ 3 ] KO M H,KIM T S,LIN Z. The Hjek-Rényi inequality for the AANA random variables and its applications[J]. Taiwanese Journal of Mathematics, 2005,9(1):111-122. [ 4 ] YUAN D M,AN J. Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J]. Science in China, 2009,52(9):1887-1904. [ 5 ] WANG X,HU S,LI X,et al. Maximal inequalities and strong law of large numbers for AANA sequences[J]. Communications of the Korean Mathematical Society, 2011(26):151-161. [ 6 ] CHANDRA T K,GHOSAL S. The strong law of large numbers for weighted averages under dependence assumptions[J]. Journal of Theoretical Probability, 1996,9(3):797-809. [ 7 ] ZHANG L,WANG X. Convergence rates in the strong laws of asymptotically negatively associated randomfields[J]. Applied Mathematics: A Journal of Chinese Universities, 1999,14(4):406-416. [ 8 ] WANG X,HU S,YANG W. Convergence properties for asymptotically almost negatively associated sequence[J]. Discrete Dynamics in Nature and Society, 2010(1):179-186. [ 9 ] WANG X,HU S,YANG W. Complete convergence for arrays of row wise asymptotically almost negatively associated random variables[J]. Discrete Dynamics in Nature and Society, 2011(1):309-323. [10] CABRERA M,VOLODIN A. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability[J]. Journal of Mathematical Analysis & Applications, 2005,305(2):644-658.