周晴,魏慧麗,鄧華聰
近年來,糖尿病發(fā)病率在全世界范圍逐漸上升,糖尿病已成為繼心血管疾病及腫瘤之后的第三大非傳染性疾病。世界衛(wèi)生組織(WHO)的統(tǒng)計數(shù)據(jù)表明,2014年全球糖尿病患病人數(shù)達4.2億,其中絕大多數(shù)集中于人口眾多的發(fā)展中國家[1]。糖尿病是以高血糖為主要表現(xiàn)的眾多病理變化的總和,最終導致包括失明、腎功能衰竭、神經(jīng)病變等涉及全身多臟器的慢性并發(fā)癥[2]。眾所周知,胰島素抵抗及胰島β細胞功能進行性紊亂在2型糖尿病的發(fā)生發(fā)展過程中具有重要作用[3-5],其中胰島β細胞功能的紊亂在2型糖尿病前期已經(jīng)發(fā)生,并且在病程中逐漸惡化,早期則主要表現(xiàn)為第一時相胰島素分泌減少[6]。近年來研究發(fā)現(xiàn),DJ-1蛋白具有改善胰島β細胞功能并維持血糖穩(wěn)態(tài)的作用[7]。因此本文針對DJ-1與糖尿病的研究現(xiàn)況做一綜述。
DJ-1是1997年Nagakubo應(yīng)用雙酵母雜交系統(tǒng)時發(fā)現(xiàn)的一種新的蛋白,是一種絲裂原依賴性癌蛋白,廣泛表達于全身各組織。人類DJ-1含有189個氨基酸,具有α-螺旋、β-折疊結(jié)構(gòu),一般以二聚體的形式存在,又稱PARK-7,屬于DJ-1/ThiJ/PfpI超家族[8]。
既往研究主要集中于DJ-1與神經(jīng)退行性病變-帕金森病之間的關(guān)系。研究發(fā)現(xiàn),DJ-1的突變與早發(fā)型帕金森病的神經(jīng)自發(fā)性退行性變相關(guān)[9],同時DJ-1的水平下降促進了帕金森病的病理變化[10]。
研究發(fā)現(xiàn)DJ-1具有多種生理功能,其中抗氧化應(yīng)激是其突出而主要的作用。Taira等[11]研究發(fā)現(xiàn),沉默小鼠胚胎成纖維細胞中的DJ-1后,與對照組相比,實驗組細胞極易死亡。后續(xù)研究發(fā)現(xiàn)在氧化應(yīng)激條件下,細胞內(nèi)DJ-1向線粒體內(nèi)重分布,同時轉(zhuǎn)變?yōu)閜I5.8酸性亞型,第106位的半胱氨酸轉(zhuǎn)變?yōu)榘腚讈喕撬?,進而發(fā)揮抗氧化應(yīng)激作用[12]。在轉(zhuǎn)染DJ-1的RINm5F細胞中,Jo等[13]研究發(fā)現(xiàn)DJ-1可明顯抑制過氧化氫引起的絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPKs)及核轉(zhuǎn)錄因子-κB(nuclear factor of kappa B,NF-κB)信號通路的激活,同時可降低活性氧(reactive oxygen species,ROS)的產(chǎn)生及DNA的破壞,從而保護細胞免受氧化應(yīng)激導致的死亡。
Nrf2 [nuclear factor erythroid 2 (NFE2)-related factor 2]是轉(zhuǎn)錄因子家族成員之一,同時也是抗氧化應(yīng)激基因表達的主要調(diào)節(jié)因子[14]。生理條件下,Keap-1與Nfr2結(jié)合使得后者表現(xiàn)出生物效應(yīng),但當處于氧化應(yīng)激時,Nfr2向核內(nèi)移位,進而引發(fā)抗氧化基因的表達[15]。Clements等[16]研究發(fā)現(xiàn),DJ-1可阻止Nrf2與Keap1的結(jié)合,維持Nrf2的穩(wěn)定性,阻止其泛素化及降解,并且當DJ-1缺失時,Nrf2的表達及穩(wěn)定性下降。
谷胱甘肽(glutathione,GSH)在維持細胞氧化還原平衡狀態(tài)及保護細胞免受氧化應(yīng)激損傷中發(fā)揮著重要作用,Zhou等[17]研究發(fā)現(xiàn),氧化應(yīng)激條件下,DJ-1可通過增加GSH合成途徑中限速-谷氨酸半胱氨酸連接酶的活性促進GSH的合成,從而降低細胞內(nèi)ROS及氧化應(yīng)激引起的蛋白氧化水平,進一步發(fā)揮其抗氧化應(yīng)激作用。亦有研究表明,DJ-1可與分子伴侶結(jié)合促進其抗氧化作用[18]。
研究發(fā)現(xiàn),除上述抗氧化應(yīng)激作用外,DJ-1亦具有神經(jīng)保護[19]、調(diào)控雄激素受體[20]并參與多種癌癥的發(fā)生[21-22]等作用。近年來發(fā)現(xiàn),DJ-1可通過調(diào)節(jié)細胞凋亡相關(guān)因子的表達發(fā)揮抗胰島β細胞凋亡的作用,并可呈劑量依賴性地增加胰島素分泌[23]。
Waanders等[24]在使用高糖(16.7mmol/L)及低糖(5.6mmol/L)分別處理胰島后發(fā)現(xiàn),高糖處理下的DJ-1水平升高了2倍;同時,高脂飲食后小鼠胰島內(nèi)DJ-1的表達升高了1.7倍。Inberg等[25]在研究MINI6細胞在不同葡萄糖濃度下的生理變化時發(fā)現(xiàn),高糖狀態(tài)(25mmol/L)下的細胞表達較高水平的DJ-1,進一步使用RNA干擾技術(shù)抑制細胞內(nèi)DJ-1表達后MINI6及小鼠胰島在H2O2或毒胡蘿卜素引起的氧化應(yīng)激狀態(tài)下極易死亡,同時該研究發(fā)現(xiàn)在氧化應(yīng)激及內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)下DJ-1可呈劑量依賴性地增加胰島素的分泌。
除抗氧化應(yīng)激外,DJ-1還可保護胰島β細胞免受凋亡。Jain等[23]使用低劑量鏈脲佐菌素(STZ)處理DJ-1敲除小鼠后發(fā)現(xiàn),與對照組相比,其胰島素水平明顯下降而血糖水平明顯升高,且DJ-1敲除的胰島β細胞的凋亡速度及炎癥因子水平為對照組的2倍,進而提示DJ-1在氧化應(yīng)激及炎癥狀態(tài)下具有保護胰島β細胞的作用。內(nèi)質(zhì)網(wǎng)應(yīng)激通過引起未折疊蛋白反應(yīng)(unfolded protein response,UPR)而與胰島β細胞凋亡密切相關(guān)[26]。Inberg等[25]發(fā)現(xiàn),在胰島β細胞系及小鼠胰島中使用小干擾RNA沉默DJ-1的表達后,細胞加速死亡,而通過腺病毒載體提高DJ-1的表達水平可緩解細胞死亡;進一步研究發(fā)現(xiàn),DJ-1可通過降低氧化應(yīng)激條件下細胞內(nèi)BiP(亦即GRP78/HSPA5,內(nèi)質(zhì)網(wǎng)中蛋白質(zhì)輸入、折疊及組裝過程中的重要成員,是UPR的標志)水平而減少細胞凋亡。凋亡因子在細胞凋亡過程中發(fā)揮著重要作用。Jo等[13]在使用白細胞介素-1β(IL-1β)、腫瘤壞死因子-α(TNF-α)及γ干擾素(IFN-γ)處理的RINm5F細胞中發(fā)現(xiàn),轉(zhuǎn)染DJ-1可降低細胞內(nèi)毒性,抑制抑制細胞色素C的釋放及caspase-3的活化,降低Bax的表達,增加Bcl-1的表達,進而對抗細胞因子誘導的RINm5F細胞死亡。相關(guān)研究亦表明,DJ-1可通過與死亡結(jié)構(gòu)域相關(guān)蛋白(death domain associated protein,Daxx)結(jié)合阻止其向細胞質(zhì)的轉(zhuǎn)位,進而抑制細胞凋亡信號調(diào)節(jié)激酶1(apoptosis signal-regulating kinase 1,ASK1)的激活,從而阻止細胞死亡[27];同時,DJ-1可抑制絲裂素活化蛋白激酶/ERK激酶激酶(mitogen-activated protein kinase/ERK kinase kinase 1,MEKK1)的激活,從而阻止MEKK1介導的細胞死亡[28]。既往研究發(fā)現(xiàn),2型糖尿病患者胰島內(nèi)DJ-1的mRNA及蛋白質(zhì)水平均明顯降低[7],提示2型糖尿病患者胰島內(nèi)清除ROS及促進其他抗氧化物表達的能力降低,在糖脂毒性對胰島β細胞損傷的基礎(chǔ)上DJ-1水平的降低進一步加重了其損傷,導致胰島β細胞功能持續(xù)下降。
隨后的臨床研究更提示了DJ-1與糖尿病發(fā)生發(fā)展的密切關(guān)系。一項對代謝綜合征患者進行12周生活方式干預(yù)的研究發(fā)現(xiàn),干預(yù)組患者血清DJ-1水平升高,并且DJ-1水平的增加與血糖及血壓的改善相關(guān)[29]。Cheng等[30]發(fā)現(xiàn),妊娠糖尿病患者胎兒臍靜脈內(nèi)皮細胞中DJ-1的含量降低,提示DJ-1含量的降低可能與后代糖尿病發(fā)病率增加相關(guān)。
2型糖尿病是以進行性的胰島素分泌障礙及胰島素抵抗為特征、以高血糖為主要表現(xiàn)的慢性進展性疾病。UKPDS研究[31]發(fā)現(xiàn)新診斷的2型糖尿病患者中胰島β細胞功能已下降50%,而隨著病情的進展,胰島β細胞功能持續(xù)下降,直至出現(xiàn)胰島β細胞功能衰竭。因此恢復(fù)胰島β細胞功能是治療2型糖尿病的重中之重。
既往研究發(fā)現(xiàn),氧化應(yīng)激與胰島β細胞功能密切相關(guān)。體內(nèi)生理水平的ROS對于維持糖代謝穩(wěn)態(tài)具有重要意義,但長期暴露于高水平的ROS使機體處于氧化應(yīng)激狀態(tài)并進而引起糖代謝的紊亂[32];反之,在長期高糖高脂作用下,脂質(zhì)過氧化物及晚期糖基化終末產(chǎn)物生成增加,進而導致ROS大量產(chǎn)生[33]。高糖高脂與氧化應(yīng)激相互促進、相互發(fā)展,形成惡性循環(huán)。研究發(fā)現(xiàn),糖尿病患者體內(nèi)氧化應(yīng)激標記物如8-羥基脫氧鳥苷(8-OHdG)、4-羥基-2-壬烯醛(4-HNE)等明顯增加[34],而抗氧化應(yīng)激物質(zhì)GSH水平明顯降低[35],提示糖尿病患者處于氧化應(yīng)激狀態(tài)。同時相關(guān)研究發(fā)現(xiàn),胰島內(nèi)抗氧化系統(tǒng)的表達水平較低,使得胰島β細胞在氧化應(yīng)激狀態(tài)下極易受損,胰島素生成基因轉(zhuǎn)錄水平及胰島β細胞功能下降[36-37],最終導致胰島β細胞死亡。
綜上所述,DJ-1作為廣泛表達于機體各個組織的蛋白,可通過抗氧化應(yīng)激及抗凋亡等途徑保護胰島β細胞,因而具有廣闊的研究前景,以DJ-1作為靶點開展治療或可為糖尿病患者帶來諸多受益。目前DJ-1與糖尿病的研究多局限于基礎(chǔ)實驗,仍缺乏大樣本的人群研究對基礎(chǔ)研究結(jié)果進行驗證,且其在2型糖尿病發(fā)生發(fā)展中的作用機制仍需明確。因此,深入探討DJ-1在糖尿病發(fā)病和干預(yù)中的機制及臨床應(yīng)用前景是今后的重要研究方向。
[1] World Health Organization. Global report on diabetes[EB/OL].Working Papers, 2016. http://apps.who.int/iris/bitstream/hand le/10665/204871/9789241565257_eng.pdf;jsessionid=2AE4C A4276E1624E19B6E15E5D2931D0?sequence=1.
[2] Viner R, White B, Christie D. Type 2 diabetes in adolescents:a severe phenotype posing major clinical challenges and public health burden[J]. Lancet, 2017, 389(10085): 2252-2260.
[3] Cao HZ, Ha XQ, Li XY, et al. Molecular mechanism of free fatty acids-induced insulin resistance[J]. Med J Chin PLA, 2017,42(1): 81-85. [曹薈哲, 哈小琴, 李雪雁, 等. 游離脂肪酸致胰島素抵抗的分子機制[J]. 解放軍醫(yī)學雜志, 2017, 42(1): 81-85.]
[4] Lang LX, Xin YP, Feng SH, et al. Detection of expressions of GRP78,TRAF2,and Caspase-12 in pancreatic tissue of gestational diabetes mellitus rats[J]. J Zhengzhou Univ (Med Sci), 2016, 51(4): 458-462. [郎麗翔, 辛雅萍, 豐樹煥, 等. 妊娠期糖尿病大鼠胰腺組織中GRP78、TRAF2、Caspase-12蛋白的表達[J]. 鄭州大學學報(醫(yī)學版), 2016, 51(4): 458-462.]
[5] Li C, Wei J, Zhen YZ, et al. Improvement effect of rhein lysinate on insulin resistance of KK/HlJ diabetic mice and its mechanism[J]. J Jilin Univ (Med Ed), 2017, 43(6): 1074-1079,11. [李彩, 魏潔, 甄永占, 等. 賴氨大黃酸對KK/HlJ糖尿病小鼠胰島素抵抗的改善作用及其機制[J]. 吉林大學學報(醫(yī)學版), 2017, 43(6): 1074-1079, 11.]
[6] Cheng K, Andrikopoulos S, Gunton JE. First phase insulin secretion and type 2 diabetes[J]. Cur Mol Med, 2013, 13(1):126-139.
[7] Jain D, Jain R, Eberhard D, et al. Age- and diet-dependent requirement of DJ-1 for glucose homeostasis in mice with implications for human type 2 diabetes[J]. J Mol Cell Biol, 2012,4(4): 221-230.
[8] Tao X, Tong L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease[J]. J Biol Chem,2003, 278(33): 31372-31379.
[9] Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian vs. non-Mendelian inheritance[J]. J Neurochem, 2016, 139(S1): 59-74.
[10] Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson's disease: current progress and future prospects[J]. Acta Neurol Scand, 2016, 134(5): 314-326.
[11] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death[J]. Emb Rep, 2004, 5(2): 213-218.
[12] Canet-Avilés RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization[J]. Proc Natl Acad Sci U S A, 2004, 101(24): 9103-9108.
[13] Jo HS, Cha HJ, Sang JK, et al. Tat-DJ-1 inhibits oxidative stressmediated RINm5F cell death through suppression of NF-κB and MAPK activation[J]. Med Chem Res, 2016, 25(11): 2589-2598.
[14] Ma Q. Role of Nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53(1): 401-426.
[15] Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer[J]. Genes Dev, 2013, 27(20): 2179-2191.
[16] Clements CM, Mcnally RS, Conti BJ, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2[J]. Proc Natl Acad Sci U S A, 2006, 103(41): 15091-15096.
[17] Zhou W, Freed CR. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T α-synuclein toxicity[J]. J Bio Chem, 2005, 280(52): 43150-43158.
[18] Shadrach KG, Rayborn ME, Hollyfield JG, et al. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium(RPE)[J]. PLoS One, 2013, 8(7): e67983.
[19] Yang RX, Lei J, Wang BD, et al. Pretreatment with sodium phenylbutyrate alleviates cerebral ischemia/reperfusion injury by upregulating DJ-1 protein[J]. Front Neurol, 2017, 8: 256.
[20] Osman WM, Abd EI Atti RM, Abou Gabal HH. DJ-1 and androgen receptor immunohistochemical expression in prostatic carcinoma: a possible role in carcinogenesis[J]. J Egypt National Canc Inst, 2013, 25(4): 223-230.
[21] Bonifati V, Rizzu P, Baren MJV, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism[J].Science, 2003, 299(5604): 256-259.
[22] He XY, Liu BY, Yao WY, et al. Serum DJ-1 as a diagnostic marker and prognostic factor for pancreatic cancer[J]. J Dig Dis, 2011,12(2): 131-137.
[23] Jain D, Weber G, Eberhard D, et al. DJ-1 protects pancreatic beta cells from cytokine- and streptozotocin-mediated cell death[J].PLoS One, 2015, 10(9): e0138535.
[24] Waanders LF, Chwalek K, Monetti M, et al. Quantitative proteomic analysis of single pancreatic islets[J]. Proc Natl Acad Sci U S A, 2009, 106(45): 18902-18907.
[25] Inberg A, Linial M. Protection of pancreatic β-cells from various stress conditions is mediated by DJ-1[J]. J Biol Chem, 2010,285(33): 25686-25698.
[26] Papa FR. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes[J]. Cold Spring Harb Perspect Med,2012, 2(9): a007666.
[27] Junn E, Taniguchi H, Jeong BS, et al. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death[J]. Proc Natl Acad Sci U S A, 2005, 102(27): 9691-9696.
[28] Mo JS, Kim MY, Ann EJ, et al. DJ-1 modulates UV-induced oxidative stress signaling through the suppression of MEKK1 and cell death[J]. Cell Death Differ, 2008, 15(6): 1030-1041.
[29] Yamane T, Murao S, Kozuka M, et al. Serum DJ-1 level is positively associated with improvements in some aspects of metabolic syndrome in Japanese women through lifestyle intervention[J]. Nutr Res, 2014, 34(10): 851-855.
[30] Cheng X, Chapple SJ, Patel B, et al. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero[J]. Diabetes, 2013,62(12): 4088-4097.
[31] Listed N. United Kingdom Prospective Diabetes Study 24: a 6-year, randomized, controlled trial comparing sulfonylurea,insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy.United Kingdom Pros[J]. Ann Intern Med, 1998, 128(3): 165-175.
[32] Wang X, Hai CX. ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: is Nrf2 a potential target for the treatment?[J]. Mini Rev Med Chem, 2011, 11(12):1082-1092.
[33] Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus[J]. Exp Diabetes Res, 2012,2012: 703538.
[34] Tatsch E, De Carvalho JA, Hausen BS, et al. Oxidative DNA damage is associated with inflammatory response, insulin resistance and microvascular complications in type 2 diabetes[J].Mutat Res, 2015, 782: 17-22.
[35] Adeshara KA, Diwan AG, Jagtap TR, et al. Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications[J]. J Diabetes Complications, 2017,31(2): 439-448.
[36] Kopprasch S, Srirangan D, Bergmann S, et al. Association between systemic oxidative stress and insulin resistance/sensitivity indices - the PREDIAS study[J]. Clini Endocrinol(Oxf), 2016, 84(1): 48-54.
[37] Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic β-cell death[J]. Trends Endocrinol Metab, 2011,22(7): 266-274.