亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鋰離子電池?zé)崾Э卦蚣皩Σ哐芯窟M展

        2018-01-31 06:59:55趙金星曹元成

        程 琦,蘭 倩,趙金星,劉 暢,曹元成

        (江漢大學(xué) 光電化學(xué)材料與器件教育部重點實驗室,化學(xué)與環(huán)境工程學(xué)院,柔性顯示材料與技術(shù)湖北省協(xié)同創(chuàng)新中心,湖北 武漢 430056)

        0 引言

        鋰離子電池因其低成本、高性能、大功率、綠環(huán)境等諸多優(yōu)勢,成為一種新型能源的典型代表,廣泛應(yīng)用于3C數(shù)碼產(chǎn)品、移動電源以及電動工具等領(lǐng)域。近年來,因環(huán)境污染加劇以及國家政策引導(dǎo),以電動汽車為主的電動交通工具市場對鋰離子電池的需求不斷加大,在發(fā)展大功率鋰離子電池體系過程中,電池安全問題引起了廣泛重視,存在的問題急需進一步解決[1]。

        電池體系的溫度變化是由熱量的產(chǎn)生與散發(fā)兩個因素決定的。鋰離子電池?zé)崃康漠a(chǎn)生主要是熱分解和電池材料之間的反應(yīng)所致。降低電池體系的熱量和提高體系的抗高溫性能,電池體系則安全。與小型便攜式設(shè)備如手機、筆記本電池容量一般小于2 Ah不同,電動汽車采用的功率型鋰離子電池容量一般大于10 Ah,其在正常工作時局部溫度常高于55℃,內(nèi)部溫度會達到300℃以上[2],在高溫或者大倍率充放電條件下,高能電極的放熱和可燃性有機溶劑溫度的上升將引起一系列副反應(yīng)的發(fā)生,最終導(dǎo)致熱失控和電池的燃燒或者爆炸[3]。除其自身化學(xué)反應(yīng)因素導(dǎo)致熱失控外,一些人為因素如過熱、過充、機械沖擊導(dǎo)致的短路同樣也會導(dǎo)致鋰離子電池的熱不穩(wěn)定從而造成安全事故的發(fā)生。因此研究并提高鋰離子電池的高溫性能具有重要的現(xiàn)實意義。

        1 熱失控原因分析

        鋰離子電池的熱失控主要是因電池內(nèi)部溫度上升而起。目前商業(yè)鋰離子電池中應(yīng)用最廣的電解液體系是LiPF6的混合碳酸酯溶液,此類溶劑揮發(fā)性高、閃點低、非常容易燃燒。當(dāng)沖撞或者變形引起的內(nèi)部短路,大倍率充放電和過充,就會產(chǎn)生大量的熱,導(dǎo)致電池溫度上升。當(dāng)達到一定溫度時,就會導(dǎo)致一系列分解反應(yīng),使電池的熱平衡受到破壞。當(dāng)這些化學(xué)反應(yīng)放出的熱量不能及時疏散,便會加劇反應(yīng)的進行,并引發(fā)一連串的自加熱副反應(yīng)。電池溫度急劇升高,也就是“熱失控”,最終導(dǎo)致電池的燃燒,嚴重時甚至發(fā)生爆炸[2-3]。

        總的來說,鋰離子電池?zé)崾Э卦蛑饕性陔娊庖旱臒岵环€(wěn)定性,以及電解液與正、負極共存體系的熱不穩(wěn)定性兩個大的方面[4]。

        目前從大的方面來看,安全型鋰離子電池主要從外部管理和內(nèi)部設(shè)計兩個方面來采取措施,控制內(nèi)部溫度、電壓、氣壓來達到安全目的。

        2 解決熱失控的策略

        2.1 外部管理

        1)PTC(正溫度系數(shù))元件:在鋰離子電池中安裝PTC元件,其綜合考慮了電池內(nèi)部的壓力和溫度,當(dāng)電池因過充而升溫時,電池內(nèi)阻迅速提高從而限制電流,使正負極之間的電壓降為安全電壓,實現(xiàn)對電池的自動保護功能[2,4]。

        2)防爆閥:當(dāng)電池由于異常導(dǎo)致內(nèi)壓過大時,防爆閥變形,將置于電池內(nèi)部用于連接的引線切斷,停止充電。

        3)電子線路:2~4節(jié)的電池組可以預(yù)埋電子線路設(shè)計鋰離子保護器,避免過充及過放電,從而避免安全事故發(fā)生,延長電池壽命[4]。

        當(dāng)然這些外部控制方法都有一定效果,但這些附加裝置增加了電池的復(fù)雜性和生產(chǎn)成本,也不能徹底解決電池安全性問題。因此,有必要建立一種內(nèi)在的安全保護機制。

        2.2 改進電解液體系

        電解液作為鋰離子電池的血液,電解液的性質(zhì)直接決定了電池的性能,對電池的容量、工作溫度范圍、循環(huán)性能及安全性能都有重要的作用[2-5]。目前商用鋰離子電池電解液體系,其應(yīng)用最廣泛的組成是LiPF6、碳酸乙烯酯和線性碳酸酯。前面兩個是不可或缺的成分,它們的使用也產(chǎn)生了電池性能方面某些局限,同時電解液中使用了大量低沸點、低閃點的碳酸酯類溶劑,在較低的溫度下即會閃燃,存在很大的安全隱患[5]。因此,許多研究者嘗試改進電解液體系以提高電解液的安全性能。在電池的主體材料(包括電極材料、隔膜材料和電解質(zhì)材料)在短時間內(nèi)不發(fā)生顛覆性改變的情況下,提高電解液的穩(wěn)定性是增強鋰離子電池安全性的一條重要途徑[4-5]。

        2.2.1 功能添加劑 功能添加劑具有用量少、針對性強的特點。即在不增加或基本不增加電池成本、不改變生產(chǎn)工藝的情況下能顯著改善電池的某些宏觀性能。因此,功能添加劑成為當(dāng)今鋰離子電池領(lǐng)域一個研究熱點,是解決目前鋰離子電池電解液易燃問題最有希望的途徑之一[5]。添加劑的基本作用就是阻止電池溫度過高和將電池電壓限定在可控范圍內(nèi)。因此,添加劑的設(shè)計也是從溫度和充電電位發(fā)揮作用的角度進行考慮的[4]。

        1)阻燃添加劑:阻燃添加劑又可以根據(jù)阻燃元素的不同分為有機磷系阻燃添加劑、含氮化合物阻燃添加劑、鹵代碳酸酯類阻燃添加劑、硅系阻燃添加劑以及復(fù)合阻燃添加劑5個主要類別[6]。

        有機磷化物阻燃劑:主要包括一些烷基磷酸酯、烷基亞磷酸酯、氟化磷酸酯以及磷腈類化合物。阻燃機理主要是阻燃分子干擾氫氧自由基的鏈?zhǔn)椒磻?yīng)也稱為自由基捕獲機制。添加劑氣化分解釋放出含磷自由基,該自由基具有捕獲體系中氫自由基終止鏈?zhǔn)椒磻?yīng)的能力[6]。

        磷酸酯類阻燃劑:主要有磷酸三甲酯、磷酸三乙酯(TEP)、磷酸三丁酯(TBP)等[7]。磷腈類化合物如六甲基磷腈(HMPN),烷基亞磷酸酯如亞磷酸三甲酯(TMPI)、三-(2,2,2-三氟乙基)、亞磷酸酯(TT?FP),氟化磷酸酯如三-(2,2,2-三氟乙基)磷酸酯(TFP)、二-(2,2,2-三氟乙基)-甲基磷酸酯(BMP)、(2,2,2-三氟乙基)-二乙基磷酸酯(TDP)、苯辛基磷酸鹽(DPOF)等都是良好的阻燃添加劑。磷酸酯類通常粘度比較大、電化學(xué)穩(wěn)定性差,阻燃劑的加入在提高電解液阻燃性的同時也對電解液的離子導(dǎo)電性和電池的循環(huán)可逆性造成了負面影響。其解決方法一般是:①增加烷基基團的碳含量;②芳香(苯基)基團部分取代烷基基團;③形成環(huán)狀結(jié)構(gòu)的磷酸酯。

        有機鹵代物類(鹵代溶劑):有機鹵代物阻燃劑主要是指氟代有機物。非水溶劑中的H被F取代后,其物理性質(zhì)會發(fā)生變化,如熔點降低、粘度降低、化學(xué)和電化學(xué)穩(wěn)定性提高等。有機鹵代物阻燃劑主要包括氟代環(huán)狀碳酸酯、氟代鏈狀碳酸酯和烷基-全氟代烷基醚等[8]。

        OHMI等[7]對比氟代醚、氟代酯類含氟化合物研究表明,添加33.3%(體積分數(shù))氟代化合物的0.67 mol/L LiClO4/EC+DEC+PC(體積比 1∶1∶1)電解質(zhì)具有較高的閃點,還原電位高于有機溶劑 EC、DEC和PC,能在天然石墨表面快速生成SEI膜,提高了首次充放電的庫倫效率和放電容量。

        氟代物本身并不具有像上文中所述阻燃劑的自由基捕獲功能,僅僅起到稀釋高揮發(fā)和易燃性共溶劑的作用,所以,只有當(dāng)其在電解液中的體積比占大部分(>70%)時,電解液才不可燃[6-8]。

        復(fù)合阻燃劑:目前用于電解液中的復(fù)合阻燃劑有P-F類化合物和N-P類化合物[8],代表性物質(zhì)主要有六甲基磷酰胺(HMPA),氟代磷酸酯等。阻燃劑通過兩種阻燃元素的協(xié)同作用發(fā)揮阻燃效果。

        FEI等[9]提出兩種N-P阻燃劑MEEP和MEE,其分子式如圖1所示。LiCF3SO3/MEEP∶PC=25∶75,電解質(zhì)可減少90%的可燃性,同時電導(dǎo)率可以達到2.5×10-3S/cm。

        圖1 MEEP和MEE的結(jié)構(gòu)式[9]Fig.1 Structure of MEEP and MEE

        2)過充添加劑:在鋰離子電池過度充電時,會發(fā)生一系列的反應(yīng)。電解液組分(主要是溶劑)在正極表面發(fā)生不可逆的氧化分解反應(yīng),產(chǎn)生氣體并釋放大量熱量,從而導(dǎo)致電池內(nèi)壓增加和溫度升高,給電池的安全性帶來嚴重影響[2,4,8]。從作用機理上,過充保護添加劑主要分為氧化還原穿梭電對型和電聚合型兩種。從添加劑類型上又可分為鋰的鹵化物、金屬茂化合物。目前進入規(guī)模應(yīng)用的過充添加劑主要有聯(lián)苯(BP)和環(huán)己基苯(CHB)[2,10-11]。

        對于氧化還原類防過充添加劑,其原理是當(dāng)充電電壓超過電池正常的截止電壓時,添加劑開始在正極發(fā)生氧化反應(yīng),氧化產(chǎn)物擴散到負極,發(fā)生還原反應(yīng)[2,4,10]。氧化還原對就在正負極之間穿梭,吸收多余的電荷。其代表性的物質(zhì)有二茂鐵及其衍生物,亞鐵離子的2,2-吡啶和1,10-鄰菲咯啉的絡(luò)合物,噻蒽衍生物[2,10]。

        聚合阻斷類防過充添加劑。代表性物質(zhì)有環(huán)己基苯、聯(lián)苯等物質(zhì)。使用聯(lián)苯作為防過充添加劑時,當(dāng)電壓達到4.5~4.7 V時,添加的聯(lián)苯發(fā)生電化學(xué)聚合,在正極表面形成一層導(dǎo)電膜,增大了電池內(nèi)阻,從而限制充電電流保護電池[2,10-11]。

        2.2.2 離子液體 離子液體電解質(zhì)完全是由陰陽離子組成。由于陰離子或者陽離子體積較大陰陽離子之間的相互作用力較弱,電子分布不均勻,陰陽離子在室溫下能夠自由移動,呈液體狀態(tài)[11]。大體上可以分為咪唑類、吡唑與吡啶類、季銨鹽類等。相比于鋰離子電池普通有機溶劑,離子液體主要具有5個優(yōu)勢[12]:①熱穩(wěn)定性高,200℃可以不分解;②蒸氣壓幾乎為0,不必擔(dān)心電池會出現(xiàn)氣脹;③離子液體不易燃,無腐蝕性;④具有較高的電導(dǎo)率;⑤化學(xué)或電化學(xué)穩(wěn)定性好。

        AN等[13]將PP13TFSI與1 mol LiPF6EC/DEC(1∶1)配制成電解液,可以達到完全不燃的效果,在該體系中加入2wt%LiBOB添加劑還能夠明顯改善界面兼容性。

        目前唯一有待解決的問題就是離子在電解液體系中的傳導(dǎo)能力。

        2.2.3 選擇熱穩(wěn)定性好的鋰鹽 六氟磷酸鋰(LiPF6)是目前商品鋰離子電池中廣泛使用的電解質(zhì)鋰鹽。雖然它單一的性質(zhì)并不是最優(yōu)的,但是其綜合性能是最有優(yōu)勢的。但是LiPF6也有其缺點,例如,LiPF6是化學(xué)和熱力學(xué)不穩(wěn)定的,會發(fā)生如下反應(yīng):

        該反應(yīng)生成的PF5很容易進攻有機溶劑中氧原子上的孤對電子,導(dǎo)致溶劑的開環(huán)聚合和醚鍵裂解,這種反應(yīng)在高溫下分解尤其嚴重[2,12,14]。

        目前關(guān)于高溫電解質(zhì)鹽的研究多集中在有機鋰鹽領(lǐng)域。代表性物質(zhì)主要有硼基鋰鹽、亞胺基鋰鹽。LiB(C2O4)2(LiBOB)是近幾年新合成的一種電解質(zhì)鹽,它具有很多優(yōu)良性質(zhì),分解溫度302℃,可以在負極形成穩(wěn)定的SEI膜。改善石墨在PC基電解液中的性能,但其黏度大,形成的SEI膜的阻抗較大[14]。

        LiN(SO2CF3)2(LiTFSI)的分解溫度在360℃以上,常溫時的離子電導(dǎo)率略低于LiPF6,電化學(xué)穩(wěn)定性好,氧化電位約為5.0 V,是研究最多的有機鋰鹽,但它對Al基集流體的腐蝕嚴重[14]。

        2.2.4 聚合物電解質(zhì) 許多商品鋰離子電池使用易燃易揮發(fā)的碳酸酯溶劑,若出現(xiàn)漏液很可能引起火災(zāi)。大容量、高能量密度的動力型鋰離子電池尤為如此。而使用不可燃的聚合物電解質(zhì)代替易燃的有機液態(tài)電解質(zhì),能夠明顯提高鋰離子電池的安全性。

        聚合物電解質(zhì),尤其是凝膠型聚合物電解質(zhì)的研究已經(jīng)取得了很大的進展。目前已經(jīng)成功用于商品化鋰離子電池中,按照聚合物主體分類,凝膠聚合物電解質(zhì)主要有以下3類:PAN基聚合物電解質(zhì),PMMA聚合物電解質(zhì),PVDF基聚合物電解質(zhì)[15-16]。

        但是凝膠型聚合物電解質(zhì)其實是干態(tài)聚合物電解質(zhì)和液態(tài)電解質(zhì)妥協(xié)的結(jié)果,凝膠型聚合物電池仍然有許多工作要做。

        2.3 正極材料

        可以確定正極材料在充電狀態(tài)電壓高于4 V時不穩(wěn)定,易于在高溫下發(fā)生熱分解放出氧氣,氧氣與有機溶劑繼續(xù)反應(yīng)產(chǎn)生大量的熱及其他氣體,降低電池的安全性[2,17-19]。因此,正極與電解液反應(yīng)被認為是熱失控主要原因。對于正極材料,提高其安全性的常見方法為包覆修飾。如用MgO、A12O3、SiO2、TiO2、ZnO、SnO2、ZrO2等物質(zhì)對正極材料進行表面包覆,可以降低脫Li+后正極與電解液的反應(yīng),同時減少正極的釋氧,抑制正極物質(zhì)發(fā)生相變,提高其結(jié)構(gòu)穩(wěn)定性,降低晶格中陽離子的無序性,從而降低循環(huán)過程中的副反應(yīng)產(chǎn)熱[17-19]。

        2.4 碳材料

        目前對安全性要求更高的動力電池中通常使用具有較低的比表面積,較高的充放電平臺,充電態(tài)活性較小,熱穩(wěn)定性相對較好安全性高的球形碳材料,如中間相碳微球(MCMB)[19],或者尖晶石結(jié)構(gòu)的Li9Ti5O12,其較層狀石墨的結(jié)構(gòu)穩(wěn)定性更好[20]。

        目前提高碳材料性能的方法主要包括表面處理(表面氧化、表面鹵化、碳包覆、包覆金屬及金屬氧化物、聚合物包覆)或者引入金屬或者非金屬進行摻雜[20]。

        2.5 隔膜

        目前在商業(yè)鋰離子電池中應(yīng)用最廣泛的隔膜依然是聚烯烴材料,其主要缺點就是高溫下熱縮以及電解液浸潤性差。為了克服這些缺陷,研究人員嘗試了很多辦法,如尋找熱穩(wěn)定性材料代替,或者添加少量Al2O3或SiO2納米粉的隔膜,其不但具有普通隔膜的作用外,還具有提高正極材料的熱穩(wěn)定性的作用[21-22]。

        MIAO等[23]采用靜電紡絲法制備的聚酰亞胺納米無紡布隔膜。DSC和TGA等表征手段顯示其不但能夠在500℃下保持熱穩(wěn)定,還相對Celgard隔膜具有更好的電解液浸潤性。

        WANG等[24]制備出Al2O3-PVDF納米級復(fù)合微孔膜,該復(fù)合微孔膜表現(xiàn)出良好的電化學(xué)性能和熱穩(wěn)定性能,滿足鋰離子電池隔膜的使用要求。

        3 總結(jié)及展望

        電動汽車和能源存儲用的鋰離子電池,其容量遠大于小型電子設(shè)備,且使用環(huán)境更為復(fù)雜。綜上所述,我們可以看出其安全性能遠遠還沒解決,已經(jīng)成為目前應(yīng)用的技術(shù)瓶頸。后續(xù)工作需要深入到電池在非正常運行后可能導(dǎo)致的熱效應(yīng),探求提高鋰離子電池安全性能的有效途徑。目前使用含氟溶劑和阻燃添加劑是開發(fā)安全型鋰離子電池的主要方向,如何兼顧電化學(xué)性能和高溫安全性將是未來研究重點。例如開發(fā)集P、N、F、Cl于一體的高性能復(fù)合阻燃劑,開發(fā)高沸點、高閃點的有機溶劑,進而制備高安全性能的電解液[25-26]。復(fù)合阻燃劑,雙功能添加劑也會成為今后發(fā)展趨勢。對于鋰離子電池電極材料,因材料的表面化學(xué)性質(zhì)不一,電極材料對充放電電位的敏感程度也不一致,不可能用一種或有限的幾種電極/電解液/添加劑對所有電池結(jié)構(gòu)設(shè)計[27]。因此,今后應(yīng)著力研究開發(fā)針對特定電極材料的不同電池體系。同時開發(fā)構(gòu)建具有高安全性的聚合物鋰離子電池體系或者開發(fā)具有單一陽離子導(dǎo)電和快離子輸運以及高度熱穩(wěn)定性的無機固體電解質(zhì)[28-30]。此外,提高離子液體性能、開發(fā)簡單廉價的合成工藝也是今后研究的重要內(nèi)容。

        (References)

        [1]王偉東,仇衛(wèi)華,丁倩倩.鋰離子電池三元材料—工藝技術(shù)及生產(chǎn)應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2015.

        [2]黃可龍,王兆翔,劉素琴.鋰離子電池原理與關(guān)鍵技術(shù)[M].北京:化學(xué)工業(yè)出版社,2008.

        [3]DELP S A,BORODIN O,OLGUIN M,et al.Importance of reduction and oxidation stability of high voltage electrolytes and ad?ditives[J].Electrochimica Acta,2016,29(10):498-510.

        [4]ASPERN N V,ROSER S T,RAD B R,et al.Phosphorus additives for improving high voltage stability and safety of lithium ion batteries[J].Journal of Fluorine Chemistry,2017,198:24-33.

        [5]LI Y C,VEITH G M,BROWNIN K L,et al.Lithium malonatoborate additives enabled stable cycling of 5V lithium metal and lithium ion batteries[J].Nano Energy,2017,40:9-19.

        [6]SPINNER N S,F(xiàn)IELD C R,HAMMOND M H,et al.Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber[J].Journal of Power Sources,2015,279:713-721.

        [7]OHMI N,NAKAJIMA T,OHZAWA Y,et al.Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries[J].Journal of Power Sources,2013,221:6-13.

        [8]FENG X N,OUYANG M G,LIU X,et al.Thermal runaway mechanism of lithium ion battery for electric vehicles:a review[J].Energy Storage Materials,https://doi.org/10.1016/j.ensm.2017.05.013.

        [9]FEI S T,ALLCOCK H R.Methoxyethoxy phosphazenes as ionic conductive fire retardant additives for lithium battery system[J].Journal of Power Sources,2010,195(7):2082-2088.

        [10]ABRAHAM D P,F(xiàn)URCZON M M,KANG S H,et al.Effect of electrolyte composition on initial cycling and impedance charac?teristics of lithium-ion cells[J].Journal of Power sources,2008,180(1):612-620.

        [11]WU B B,PEI F,WU Y,et al.An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion bat?teries[J].Journal of Power Souces,2013,227:106-110.

        [12]YOU D J,YIN Z X,AHN Y K,et al.A high-performance polymer composite electrolyte embedded with ionic liquid for all sol?id lithium based batteries operating at ambient temperature[J].Journal of Industrial and Engineering Chemistry,2017,52(25):1-6.

        [13]AN Y X,ZUO P J,CHENG Q Y,et al.The effects of LiBOB additive for stable SEI formation of PP13TFS1-organic mixed elec?trolyte in lithium ion batteries[J].Electrochimica Acta,2011,56(13):4841-4848.

        [14]KAWAGUCHI T,LASSILA L V J,TOKUE A,et al.Influence of molecular weight of polymethyl(methacrylate)beads on the properties and structure of cross-linked denturebase polymer[J].Journal of the Mechanical Behavior of Biomedical Materials,2011,4(8):1846-1851.

        [15]KENNEDY T,BRANDON M,LAFFIR F,et al.Understanding the influence of electrolyte additives on the electrochemical per?formance and morphology evolution of silicon nanowire based lithium-ion battery anodes[J].Journal of Power Sources,2017,359(15):601-610.

        [16]BILLAUD J,BOUVILLE F,MAGRINI T.Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J].Nature Energy,2016(1):97.

        [17]DANG J X,F(xiàn)ENG X,GUN Y,et al.Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries[J].Journal of Power Sources,2013,243(1):33-39.

        [18]CHO J Y,JUNG Y C,LEE Y S,et al.High performance separator coated with amino-functionalized SiO2particles for safety en?hanced lithium-ion batteries[J].Journal of Membrane Science,2017,535:151-157.

        [19]REZQITA A,SAUER M,F(xiàn)OELSKE A,et al.The effect of electrolyte additives on electrochemical performance of silicon/meso?porous carbon(Si/MC)for anode materials for lithium-ion batteries[J].Electrochimica Acta,2017,247:600-609.

        [20]QIN L F,XIA Y G,CHEN L P,et al.Reseach status and application prospects of LiMnPO4 as a new generation cathode materi?al for lithium-ion battery[J].Journal of Electrochemistry,2015,21(3):253-267.

        [21]NANINI-M E,SWIATOWSKA J,CHAGNES A,et al.Electrochemical behavior of sebaconitrile as a cosolvent in the formula?tion of electrolytes at high potentials for lithium-ion batteries[J].Electrochimica Acta,2014,115(1):223-233.

        [22]QIANG J E,LONG Y P,HU X F.Thermal analysis of a dynamic lithium-ion battery during charge[J].Advanced Materials Research,2012(516/517):489-493.

        [23]MIAO Y E,ZHU G N,HOU H,et al.Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries[J].Journal of Power Sources,2013,226:82-86.

        [24]WANG H,LI H,YU L,et al.Synthesis of porous Al2O3-PVDF composite separators and their application in lithium-ion batter?ies[J].Journal of Applied Polymer Science,2013,130(4):2886-2890.

        [25]BAE S Y,SHIM E G,KIM D W.Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries[J].Journal of Power Sources,2013,244:266-271.

        [26]NAM N D,PARK I J,KI J G,et al.Effect of flame-retarding additives on surface chemistry in Li-ion batteries[J].Materials Research Bulletin,2012,47(10):2811-2814.

        [27]FENG J K,LU L.A novel bifunctional additive for safer lithium ion batteries[J].Journal of Power Sources,2013,243:29-32.

        [28]FENG J K,MA P,YANG H X,et al.Understanding the interactions of phosphonate-based flame-retarding additives with gra?phitic anode for lithium ion batteries[J].Electrochimica Acta,2013,30:688-692.

        [29]GOODENOUGH J B.Evolution of strategies for modern rechargeable batteries[J].Accounts of Chemical Research,2013,46(5):1053-1061.

        [30]LI W D,SONG B H,MANTHIRAM A.High-voltage positive electrode materials for lithium-ion batteries[J].Chemical Soci?ety Reviews,2017,46(10):3006-3059.

        中文字幕隔壁人妻欲求不满| 日本激情网址| 日韩在线精品视频观看| 国产精品国产三级国产专区不| 久久性爱视频| 老头巨大挺进莹莹的体内免费视频| av少妇偷窃癖在线观看| 国产一区二区视频在线看| 狠狠色欧美亚洲狠狠色www| 亚洲丁香五月天缴情综合| 人伦片无码中文字幕| 黄色中文字幕视频网站| 婷婷亚洲岛国热超碰中文字幕| 国产97色在线 | 日韩| 久久久久久亚洲AV成人无码国产| 国产自产在线视频一区| 中国一级特黄真人片久久| 边做边流奶水的人妻| 久热香蕉av在线爽青青| 中文字幕亚洲高清精品一区在线| 中文亚洲av片不卡在线观看| 久久久久亚洲av无码专区网站| 无码一区二区三区人| 在线人妻va中文字幕| 色爱av综合网站| 玩弄放荡人妻一区二区三区| aa视频在线观看播放免费| 精品视频在线观看日韩| 亚洲国产精品第一区二区| 亚洲AV无码乱码1区久久| 国产精品后入内射日本在线观看 | 蜜桃视频在线免费观看一区二区| 国产精品美女久久久网站三级| 久久er99热精品一区二区| 久久亚洲AV无码精品色午夜| 亚洲av极品尤物不卡在线观看| 大地资源在线影视播放| 天天影视色香欲综合久久 | 国产a∨天天免费观看美女| 欧美成人看片黄a免费看| 狠狠亚洲超碰狼人久久老人|