袁 琦,鄒正光,萬振東,韓世昌
(桂林理工大學(xué) 材料科學(xué)與工程學(xué)院 有色金屬及材料加工新技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣西 桂林 541004)
當(dāng)今,人類社會的發(fā)展面臨著傳統(tǒng)化石能源日益枯竭以及燃燒化石能源帶來了環(huán)境污染等問題;因此,人類迫切需要一種綠色可替代能源并且有效提高能源利用效率,從而維持經(jīng)濟(jì)和社會的可持續(xù)發(fā)展[1]。能量轉(zhuǎn)換和存儲技術(shù)可以有效利用能源、可持續(xù)開發(fā)能源和減少環(huán)境污染因此獲得廣泛關(guān)注和研究[2-3]。鋰離子電池是目前發(fā)展迅速且備受關(guān)注的一種能量轉(zhuǎn)換和存儲裝置。鋰離子電池具有平均輸出電壓高、能量密度高、輸出功率大、無記憶效應(yīng)、使用壽命長、自放電小、放電平穩(wěn)、對環(huán)境無污染[4]等優(yōu)點(diǎn),已經(jīng)成為二次電池的首選。
鋰離子電池的性能由正負(fù)極材料、電解液以及生產(chǎn)工藝等決定。其中,目前正極材料的容量遠(yuǎn)低于負(fù)極材料,因此鋰離子電池性能主要由正極材料決定[5]。目前使用的正極材料主要有LiCoO2,LiNiO2,LiMnO2,LiFePO4[6-8]等體系,但這些正極材料的理論容量不高,所以這些正極材料組裝的鋰離子電池容量多在150mAh·g-1左右;因此,鋰離子電池迫切需要一種高容量的正極材料。釩氧化合物具有非常高的嵌鋰比容量[9],VO2,V2O5,V3O8和V6O13等都具有很好的嵌鋰性能。其中,V6O13因具有極高的理論容量(420mAh·g-1)[10-12]而成為高比容量鋰離子電池一種有發(fā)展?jié)摿Φ恼龢O材料。但V6O13晶格中導(dǎo)電電子數(shù)目有限,且隨著鋰離子的嵌入,其電導(dǎo)率迅速下降,使其在高鋰狀態(tài)下正極材料的活性利用率降低;另外,V6O13隨著鋰離子的嵌入和脫出,體積變化大,晶體結(jié)構(gòu)不穩(wěn)定導(dǎo)致循環(huán)性能迅速下降。因此,研究開發(fā)該正極材料的關(guān)鍵在于如何有效提高LixV6O13正極材料在高鋰狀態(tài)下的電導(dǎo)率和改善循環(huán)性能。Barker等[13]通過對V6O13中Li+脫嵌過程的研究表明,V6O13充放電過程中的電阻變化與Li+脫嵌過程中電極材料晶格體積變化相對應(yīng),由此知道V6O13充放電過程中晶體內(nèi)部結(jié)構(gòu)的變化影響電化學(xué)性能。同時(shí),Thomas課題組[14-15]通過對V6O13中Li+嵌入過程的研究認(rèn)為,Li+嵌入V6O13層間形成LixV6O13,其中Li+占據(jù)雙八面體和單八面體之間的四方錐空位,因此提高LixV6O13化合物循環(huán)性能的關(guān)鍵在于降低從電解質(zhì)與LixV6O13的界面到LixV6O13晶體雙八面體和單八面體之間的內(nèi)阻,同時(shí)保持Li+脫嵌過程中晶體結(jié)構(gòu)的穩(wěn)定性。Pereira-Ramos課題組[16-17]將Cr3+用于V6O13的摻雜,制備出Cr0.36V6O13.5化合物,Cr0.36V6O13.5組裝的鋰離子電池首次放電比容量達(dá)到370mAh·g-1,35次循環(huán)衰減小于15%。He等[18]通過水熱反應(yīng)法合成MnxV6-xO13(x=0.01, 0.02, 0.03, 0.04),當(dāng)x=0.02時(shí)電化學(xué)性能最好,首次放電比容量為350.1mAh·g-1,且50次循環(huán)后放電比容量為282.7mAh·g-1。
本工作以草酸(C2H2O4·2H2O)、五氧化二釩(V2O5)和九水硝酸鐵(Fe(NO3)3·9H2O)為原料,通過先制備草酸氧釩前驅(qū)體再水熱法合成鐵摻雜V6O13,通過XRD,SEM和XPS等表征手段和電化學(xué)測試,考察不同量鐵摻雜對V6O13正極材料形貌和電化學(xué)性能的影響。
所有化學(xué)藥品均為分析純且未進(jìn)行提純。純V6O13和鐵摻雜V6O13的制備依照如下的步驟進(jìn)行。通過磁力攪拌的方式將1.25g C2H2O4·2H2O和0.6g V2O5在20mL的去離子水中混合均勻。然后將溶液轉(zhuǎn)移到80℃磁力攪拌器中水浴加熱,持續(xù)攪拌直到形成藍(lán)色草酸氧釩(VO)(C2O4)溶液??赡艿姆磻?yīng)過程如下:
V2O5+3H2C2O4→2[(VO)(C2O4)](blue)+CO2+3H2O
(1)
將溶液取出并自然冷卻至室溫,過濾。將適量(摻雜量為0.00,0.02,0.04,0.06g和0.08g,分別記為樣品0.00,樣品0.02,樣品0.04,樣品0.06,樣品0.08)的九水硝酸鐵(Fe(NO3)3·9H2O) 溶解在15mL去離子水中,待其完全溶解,加入已經(jīng)制備好的草酸氧釩溶液(VOC2O4·5H2O)中。邊攪拌邊逐滴加入3mL過氧化氫溶液(H2O2,30%),形成紅色溶液。將溶液轉(zhuǎn)移到帶聚四氟乙烯內(nèi)襯的100mL不銹鋼反應(yīng)釜中,160℃下反應(yīng)24h,然后自然冷卻到室溫。將上清液倒掉加入適量去離子水離心5min(4000r/min),重復(fù)兩次,收集產(chǎn)物冷凍干燥24h。將干燥后的樣品研磨后置于氮?dú)獗Wo(hù)下以3℃/min的升溫速率在350℃下煅燒1h。
利用S-4800型場發(fā)射掃描電子顯微鏡觀察形貌;采用X射線衍射儀分析物相;使用ESCALAB 250Xi型X射線管電子能譜分析儀分析表面材料原子價(jià)態(tài);采用INCA IE 350型能譜儀定量分析化學(xué)組成;使用CT-3008 5V10mA-164型電池測試系統(tǒng)測試電池性能;采用CHI860D電化學(xué)工作站測試電極反應(yīng)的性質(zhì)和過程。
將活性材料、乙炔黑、聚偏氟乙烯(PVDF)按7∶2∶1的配比進(jìn)行稱量,然后加入適量N-甲基吡咯烷酮,適量研磨后均勻涂覆在鋁箔上,先在空氣氣氛下60℃干燥1h再90℃真空干燥12h。取出,將帶有活性材料的鋁箔壓成直徑16mm正極片,在手套箱中組裝成紐扣電池(CR2025)并在室溫下進(jìn)行循環(huán)性能測試和循環(huán)伏安測試等。
圖1為水熱法制備的純V6O13以及不同鐵摻雜V6O13的XRD圖譜??梢钥闯鰳悠?.00,0.02,0.04,0.06,0.08峰形與單斜晶系V6O13標(biāo)準(zhǔn)卡片(JCPDF NO.71-2235)[19]基本一致(圖1(a)),說明摻雜后樣品的物相是V6O13。與純相V6O13相比,摻雜樣品均出現(xiàn)了不同程度向低角度偏移,摻雜量越大偏移越大(圖1(b))。這是因?yàn)镕e3+的離子半徑為0.0645nm,大于V4+(0.058nm)和V5+(0.054nm)的離子半徑,摻雜造成晶格膨脹,使V6O13層間距增大,衍射峰向低角度偏移。與純相V6O13相比,鐵摻雜V6O13的衍射峰比較尖銳,這說明鐵摻雜V6O13的結(jié)晶度比較好。
表1是通過X射線能量色散譜(EDS)分析得到的樣品0.02,0.04,0.06,0.08中鐵釩含量的質(zhì)量比和摩爾比??梢钥闯?,隨著鐵摻雜量的增加,樣品中鐵釩含量的質(zhì)量比和摩爾比也隨之相應(yīng)增大。
圖1 樣品0.00,0.02,0.04,0.06,0.08的XRD圖譜(a)和32°到36°的局部放大XRD圖譜(b)Fig.1 XRD patterns (a) and enlarged peaks (b) at 2θ ranging from 32° to 36° of sample 0.00, 0.02, 0.04, 0.06 and 0.08
表1 樣品0.02,0.04,0.06,0.08中鐵釩含量的質(zhì)量比和摩爾比Table 1 Mass ratio and mole ratio of aluminum to vanadiumin of sample 0.02,0.04,0.06,0.08
圖2(a)是樣品0.02的X射線光電子能譜圖(XPS)??梢钥闯鰳悠?.02中存在V,O,C,Fe等元素,其中C是由草酸與五氧化二釩反應(yīng)生成草酸氧釩溶液的過程引入。圖2(b)是樣品0.02的V 2p窄譜X射線光電子能譜圖,解析組分可以得出,鐵摻雜V 2p3/2對應(yīng)+5和+4價(jià)釩離子的峰位為514.83eV和516.16eV,含量分別為37.21%和62.79%,這與V6O13中V+5∶V+4=1∶2基本一致。另外,V 2p3/2通常對應(yīng)+5和+4價(jià)釩離子的峰位為514.9eV和516.3eV[20-21]與實(shí)驗(yàn)結(jié)果有一定偏差,產(chǎn)生偏差的原因可能是鐵的摻入使得釩氧間的相互作用減弱[22]。圖2(c)為樣品0.02的Fe 2p窄譜X射線光電子能譜圖,摻雜鐵離子Fe 2p3/2的峰位為710.36eV,這說明摻雜的鐵離子為Fe3+[23]。
圖3是樣品0.00,0.02,0.04,0.06,0.08的場發(fā)射掃描電鏡圖(SEM)??梢钥闯?,樣品形貌均為由納米片堆垛而成的單元,未摻雜樣品的堆垛單元排列無序,有團(tuán)聚現(xiàn)象;摻雜樣品的堆垛單元排列有序,納米片之間大空隙。納米片厚度隨著摻雜量的增加逐漸減小。樣品0.02的納米片最大(厚度600~900nm),堆垛納米片之間的空隙最大,這可能是因?yàn)?.02樣品的有序堆垛納米片在表面應(yīng)力的作用下發(fā)生卷曲因而產(chǎn)生大空隙,空隙大有利于存儲更多的鋰離子并且有利于鋰離子的嵌入/脫出。
圖4為樣品0.00,0.02,0.04,0.06,0.08組裝的紐扣電池的放電性能,放電倍率為0.1C,放電電壓為1.5~4.0V??梢钥闯?,樣品0.00,0.02,0.04,0.06,0.08的首次放電比容量分別為241,433,324,310,350mAh·g-1,摻雜樣品的首次放電比容量均高于純V6O13。樣品0.00,0.02,0.04,0.06,0.08的100次循環(huán)后的容量保存率分別為32.0%,47.1%,34.8%,47.4%,36.9%,摻雜樣品的容量保存率均好于純V6O13。其中,樣品0.02的首次放電比容量最高(433mAh·g-1),容量保存率高(47.1%),電化學(xué)性能最好。容量保存率高說明鋰離子嵌入/脫出過程對晶體結(jié)構(gòu)破壞小而過多的摻雜在充放電過程中容易導(dǎo)致V6O13晶體結(jié)構(gòu)破壞造成循環(huán)性能下降。
圖2 樣品0.02的X射線光電子能譜圖(a)、V 2p窄譜X射線光電子能譜圖(b)和Fe 2p窄譜X射線光電子能譜圖(c)Fig.2 XPS spectra of sample 0.02(a), narrow-scan spectra in the V 2p region(b) and narrow-scan spectra in the Fe 2p region(c)
圖3 樣品的掃描電鏡圖 (a)樣品0.00;(b)樣品0.02;(c)樣品0.04;(d)樣品0.06;(e)樣品0.08;(1)未放大的圖片;(2)局部放大圖Fig.3 SEM images of samples (a)sample 0.00;(b)sample 0.02;(c)sample 0.04;(d)sample 0.06; (e)sample 0.08;(1)low-power image;(2)partial enlarged image
圖4 電流密度為42mA·g-1,充放電電壓為1.5~4.0V時(shí)樣品0.00,0.02,0.04,0.06,0.08的放電性能Fig.4 Cyclic performance of sample 0.00,0.02,0.04,0.06 and 0.08, at the current density of 42mA·g-1 and charge discharge voltage of 1.5-4.0V
圖5分別是樣品0.00(a),0.02(b),0.04(c),0.06(d),0.08(e)的首次、50次和100次循環(huán)時(shí)的充放電曲線,電流密度為42mA·g-1,電壓范圍是1.5~4.0V??梢钥闯?,所有摻雜樣品的充放電曲線與純V6O13的充放電曲線相似,都有著3個(gè)明顯的充放電平臺,大約在2.0,2.3, 2.7V,平臺表示化學(xué)和結(jié)構(gòu)變化對應(yīng)鋰離子嵌入V6O13過程發(fā)生的一系列相變[24-25],這說明在充放電過程中,鐵摻雜V6O13保持了V6O13的晶體結(jié)構(gòu)。這與循環(huán)伏安曲線的結(jié)果是一致的[26]。同時(shí),注意到隨著充放電次數(shù)的增加,充放電平臺逐漸縮小,這是因?yàn)樵谘h(huán)過程中,鋰離子嵌入/脫出導(dǎo)致鐵摻雜V6O13的晶體結(jié)構(gòu)坍塌破壞因而能容納的鋰離子數(shù)量減少。其中,樣品0.02的充放電平臺最大,故所能容納的鋰離子數(shù)量最多,電化學(xué)性能最好,這與電池充放電曲線圖的結(jié)果是一致的。
圖5 樣品0.00(a),0.02(b),0.04(c),0.06(d),0.08(e)的首次、50次和100次循環(huán)時(shí)的充放電曲線Fig.5 Initial,fiftieth and hundredth charge-discharge curves of sample 0.00 (a), 0.02 (b), 0.04 (c), 0.06 (d) and 0.08(e)
圖6 樣品0.00(a),0.02(b),0.04(c),0.06(d),0.08(e)的第3次循環(huán)后循環(huán)伏安曲線圖Fig.6 Cyclic voltammetry curves of sample 0.00 (a), 0.02 (b), 0.04 (c), 0.06 (d) and 0.08(e) after three cycles
圖6是樣品0.00(a),0.02(b),0.04(c),0.06(d),0.08(e)第3次循環(huán)后的循環(huán)伏安曲線圖,掃描電壓為1.5~3.5V,掃描速率為0.1mV/s。純V6O13循環(huán)伏安曲線圖上存在2.35,2.68,2.84,3.31V 4個(gè)氧化峰,2.04,2.44,2.71V 3個(gè)還原峰。氧化還原峰表明發(fā)生相變,相變過程表示為:V6O13→ Li3.6V6O13→ Li7V6O13→ Li2V6O13→ V6O13。摻雜不同數(shù)量鐵后,其氧化峰和還原峰的位置均出現(xiàn)不同的改變,說明鐵的摻入改變了釩氧化物中釩離子的費(fèi)米能級。其中,0.02樣品的還原峰最小(1.92V),氧化峰最大(2.94V),說明0.02樣品的可逆性稍差,這也是0.02樣品在充放電循環(huán)初期放電比容量下降較快的原因。與其他的樣品相比,0.08樣品的循環(huán)伏安曲線圖峰位平緩且峰的數(shù)量少,說明摻雜量高時(shí),能級改變過大影響材料結(jié)構(gòu)導(dǎo)致循環(huán)性能變差。
圖7為樣品0.00,0.02,0.04,0.06,0.08經(jīng)過3次循環(huán)后的交流阻抗圖。經(jīng)過擬合,純V6O13(0.00)經(jīng)過3次循環(huán)后的電荷移動電阻為151.6Ω,而樣品0.02,0.04,0.06,0.08經(jīng)過3次循環(huán)后的電荷移動電阻分別為461,436.3,565,639Ω。鐵摻雜V6O13的電荷移動電阻均大于純V6O13,并且隨著摻雜量的增加,電荷移動電阻逐漸增大,這可能是隨著摻雜量的增加V6O13層間距增大,同時(shí)Fe3+取代部分鋰的位置,從而阻礙鋰離子的插入[27]。
圖7 樣品0.00,0.02,0.04,0.06,0.08的3次循環(huán)后交流阻抗圖Fig.7 Electrochemical impedance spectroscopy of sample 0.00,0.02,0.04,0.06 and 0.08 after three cycles
(1)通過水熱法制備鐵摻雜V6O13,得到樣品形貌均為由納米片堆垛而成的單元,但未摻雜樣品的堆垛單元無序且團(tuán)聚嚴(yán)重,摻雜樣品的堆垛單元有序且納米片之間的空隙大。納米片隨著摻雜量的增加逐漸減小。其中,樣品0.02的納米片最大(厚度600~900nm),堆垛納米片之間的空隙最大。
(2)電化學(xué)性能測試表明,鐵摻雜V6O13樣品的電化學(xué)性能好于純V6O13。其中,0.02樣品的電化學(xué)性能最好,首次放電比容量為433mAh·g-1,100次循環(huán)后的容量保存率為47.1%。
(3)有序堆垛及空隙有利于存儲更多的鋰離子并且有利于鋰離子的嵌入/脫出。適量鐵的摻入有利于保持V6O13的晶體結(jié)構(gòu)。
[1] 張曉清,趙智敏. 基于清潔發(fā)展機(jī)制的能源可持續(xù)發(fā)展影響分析[J]. 煤炭技術(shù),2010,29(9):9-10.
ZHANG X Q, ZHAO Z M. Analysis of influence of energy for sustainable development based on clean development mechanism [J]. Coal Technology, 2010, 29(9): 9-10.
[2] 萬婷,穆道斌,薛歡,等. 鋰離子電池錫基負(fù)極材料的研究進(jìn)展[J]. 材料導(dǎo)報(bào),2010,24(9):117-120.
WAN T, MU D B, XUE H, et al. Research progress in tin-based negative electrode materials for Li-ion batteries [J]. Materials Review, 2010, 24(9): 117-120.
[3] 杜萍,高俊奎. 鋰離子電池Si基負(fù)極研究進(jìn)展[J]. 電源技術(shù),2010,4(34):409-412.
DU P, GAO J K. Research progress of Si based anode material for Li-ion battery [J]. Chinese Journal of Power Sources, 2010, 4(34): 409-412.
[4] 吳宇平,戴曉兵,馬軍旗,等. 鋰離子電池:應(yīng)用與實(shí)踐[M]. 北京:化學(xué)工業(yè)出版社,2004.
WU Y P, DAI X B, MA J Q, et al. Lithium-ion batteries: application and practice [M]. Beijing: Chemical Industry Press, 2004.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] ATIL A, PATIL V, SHIN W V, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8): 1913-1942.
[7] LIU H K, WANG G X, GUO Z, et al. Nanomaterials for lithium-ion rechargeable batteries[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(1): 1-15.
[8] MANTHIRAM A, MURUGAN A V, SARKAR A, et al. Nanostructured electrode materials for electrochemical energy storage and conversion [J]. Energy & Environmental Science, 2008, 1(6): 621-638.
[9] SAIDI Y M, KOKSBANG R, SAIDI S E, et al. Rocking-chair batteries based on LiMnO4and V6O13[J]. Journal of Power Sources, 1997, 68(2): 726-729.
[10] PERS N, LING Y, DEWULF D, et al. V6O13films by control of the oxidation state from aqueous precursor to crystalline phase [J]. Dalton Transactions, 2013, 42(4): 959-968.
[11] XIA Y Y, FUJIEDA T, TATSUMI K, et al. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte [J]. Journal of Power Sources, 2001, 92(1): 234-243.
[12] BARKER J, KOKSBANG R. The interfacial impedance variation of V6O13composite electrodes during lithium insertion and extraction [J]. Electrochimica Acta, 1995, 40(6): 673-679.
[13] BARKER J, SAIDI E S, SAUDI M Y. An investigation into the discharge capacity loss for composite insertion electrodes based on LixV6O13[J]. Electrochimica Acta, 1995, 40(8): 949-952.
[14] BJ?RK H, LIDIN S, GUSTAFSSON T, et al. Superlattice formation in the lithiated vanadium oxide phases Li0.67V6O13and LiV6O13[J]. Acta Crystallographica Section B, 2001, 57(6): 759-765.
[15] H?WING J, GUSTAFSSON T, THOMAS O J. Low-temperature structure of V6O13[J]. Acta Crystallographica Section B, 2003, 59(6): 747-752.
[16] SOUDAN P, PEREIRA-RAMOS P J, FARCY J, et al. Sol-gel chromium-vanadium mixed oxides as lithium insertion compounds [J]. Solid State Ionics, 2000, 135(1): 291-295.
[17] LEGER C, BACH S, PEREIRA-RAMOS P J. The sol-gel chromium-modified V6O13as a cathode material for lithium batteries [J]. Journal of Solid State Electrochemistry, 2007, 11(1): 71-76.
[18] HE J Y, LONG F, ZOU Z G. Hydrothermal synthesis and electrochemical performance of Mn-doped V6O13as cathode material for lithium-ion battery [J]. Ionics, 2015, 21(4): 995-1001.
[19] ZHAN S Y, WANG C Z, NIKOLOWSKI K, et al. Electrochemical properties of Cr doped V2O5between 3.8 V and 2.0 V [J]. Solid State Ionics, 2009, 180(20): 1198-1203.
[20] SHI Q W, HUANG W X, ZHANG Y X, et al. Giant phase transition properties at terahertz range in VO2films deposited by sol-gel method [J]. Applied Materials & Interfaces, 2011, 3 (9): 3523-3527.
[21] NETHRAVATHI C, RAJAMATHI R C, RAJAMATHI M, et al. N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery [J]. Applied Materials & Interfaces, 2013, 5(7): 2708-2714.
[22] WU X F, WU Z M, JI C H, et al. THz transmittance and electrical properties tuning across IMT in vanadium dioxide films by Al doping [J]. Applied Materials & Interfaces, 2016, 8(18):11842-11850.
[23] WANG Y X, LIANG W Z, HUANG W, et al. Structural and optical properties of the Fe-doped BaTiO3thin films grown on LaAlO3by polymer-assisted deposition technique [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6382-6388.
[24] HOWING J, GUSTAFSSON T, THOMAS J O. Li3+δV6O13: a short-range-ordered lithium insertion mechanism [J]. Acta Crystallographica Section B, 2004, 60(4): 382-387.
[25] BJORK H, LIDIN S, GUSTAFSSON T, et al. Superlattice formation in the lithiated vanadium oxide phases Li0.67V6O13and LiV6O13[J]. Acta Crystallographica Section B, 2001, 57(6): 7591765.
[26] BERGSTROEM O, GUSTAFSSON T, THOMAS J O. Lithium insertion into V6O13studied by deformation electron density refinement of single-crystal X-ray data [J]. Solid State Ionics, 1998, 110(3): 179-186.
[27] 陳學(xué)記. 納米VOx的溶劑熱制備及電化學(xué)性能的研究[D]. 合肥:合肥工業(yè)大學(xué),2008.
CHEN X J. Slovothermal synthesis and electrchemical properties of nano vanadium oxides [D]. Hefei: Hefei University of Technology, 2008.