莫與琳,楊亞軍,崔 燎
( 廣東醫(yī)科大學(xué)藥理學(xué)教研室,廣東天然藥物研究與開(kāi)發(fā)重點(diǎn)實(shí)驗(yàn)室,廣東 湛江 524023)
活性氧簇(reactive oxygen species,ROS)對(duì)維持正常的細(xì)胞代謝與信號(hào)傳導(dǎo)起著有益的作用。當(dāng)細(xì)胞在受到物理、化學(xué)、生物等刺激時(shí),為了適應(yīng)或抵抗刺激,細(xì)胞產(chǎn)生高水平、高活性物質(zhì)的ROS。當(dāng)ROS的積累超出了機(jī)體的抗氧化能力時(shí),可誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體應(yīng)激。在氧化應(yīng)激狀態(tài)下,線粒體大量產(chǎn)生ROS[1-2],當(dāng)其進(jìn)入細(xì)胞質(zhì)后,作用于內(nèi)質(zhì)網(wǎng)上的鈣離子通道,可誘導(dǎo)產(chǎn)生更多的Ca2+,從內(nèi)質(zhì)網(wǎng)釋放到細(xì)胞質(zhì)中,再進(jìn)入線粒體,并集中在線粒體內(nèi)基質(zhì),干擾電子呼吸鏈,導(dǎo)致更多的ROS產(chǎn)生[3]。如此反復(fù),惡性循環(huán),誘發(fā)和加重內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體氧化應(yīng)激,從而誘發(fā)炎癥或細(xì)胞凋亡。越來(lái)越多的證據(jù)表明,ROS能夠促使硫氧還蛋白相互作用蛋白(thioredoxin-interacting protein,TXNIP)從細(xì)胞核內(nèi)轉(zhuǎn)位進(jìn)入細(xì)胞質(zhì),并激活或誘導(dǎo)凋亡信號(hào)調(diào)節(jié)激酶1(apoptosis signal-regulating kinase 1,ASK-1)、NLRP3炎性小體、天冬氨酸特異的半胱氨酸蛋白酶-1(cysteinyl aspartate specific proteinase 1,caspase-1)、白細(xì)胞介素1-β(interleukin-1β,IL-1β)等與炎癥或凋亡相關(guān)的分子[4]。
目前,TXNIP作為氧化應(yīng)激效應(yīng)途徑中的一個(gè)關(guān)鍵的調(diào)控蛋白,已成為評(píng)價(jià)糖尿病及其并發(fā)癥、動(dòng)脈粥樣硬化、肝細(xì)胞缺血/再灌注損傷等疾病的藥物療效的重要靶蛋白。本課題組新近研究表明,氧化應(yīng)激可通過(guò)Wnt/FoxO信號(hào)通路,誘發(fā)或加劇骨質(zhì)疏松的形成與發(fā)展[5-6]。TXNIP作為調(diào)節(jié)氧化還原平衡的重要蛋白,在氧化應(yīng)激狀態(tài)下,其表達(dá)失衡是否會(huì)對(duì)骨質(zhì)疏松的形成與發(fā)展產(chǎn)生影響,如果產(chǎn)生影響,又是通過(guò)什么信號(hào)途徑產(chǎn)生作用的,目前尚不明確。本文將綜述TXNIP介導(dǎo)的氧化應(yīng)激在相關(guān)疾病中的作用及機(jī)制,以探究TXNIP介導(dǎo)的氧化應(yīng)激是否對(duì)骨質(zhì)疏松也會(huì)產(chǎn)生作用。
在糖尿病患者體內(nèi)及慢性高血糖環(huán)境下,TXNIP 的表達(dá)明顯增加,提示TXNIP水平的升高與糖尿病的發(fā)生、發(fā)展有密切相關(guān)[7]。在正常情況下,線粒體中的硫氧還蛋白(thioredoxin,Trx)與ASK-1結(jié)合,并抑制其活性,而在高血糖環(huán)境下產(chǎn)生氧化應(yīng)激時(shí),TXNIP與Trx結(jié)合后會(huì)釋放ASK-1,后者可激活p38絲裂原活化的蛋白激酶(p38 mitogen activated protein kinase,p38 MAPK)信號(hào)通路,進(jìn)而刺激激活蛋白因子1(activator protein 1,AP-1),激活c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK),最終通過(guò)線粒體內(nèi)在途徑誘導(dǎo)胰島細(xì)胞凋亡[8-9]。此外,TXNIP亦可與NLRP3炎性體結(jié)合[10],通過(guò)依賴于NLRP3-ASC-caspase-1途徑刺激IL-1β的分泌,誘導(dǎo)炎癥的產(chǎn)生或胰島細(xì)胞凋亡[11]。
當(dāng)小鼠敲除TXNIP基因后,其血糖濃度、胰島素分泌、胰島素敏感性以及脂肪酸的利用明顯得到改善,小鼠顯示低血糖的表型[12-13]。在糖尿病模型ob/ob小鼠的骨骼肌細(xì)胞中,TXNIP基因下調(diào)能夠明顯增加胰島素的敏感性及葡萄糖刺激引起的胰島素分泌[14]。在體外β細(xì)胞中,胰島素可引起TXNIP的表達(dá)下調(diào)。據(jù)報(bào)道,TXINP過(guò)表達(dá)會(huì)抑制胰島素的分泌及葡萄糖攝取能力[7],而TXNIP通過(guò)小干擾RNA(small interfering RNA,siRNA)產(chǎn)生與前者相反的作用[15],這說(shuō)明TXNIP負(fù)性調(diào)控胰島素的功能。
另有研究表明,TXNIP通過(guò)調(diào)節(jié)三羧酸循環(huán)與糖酵解途徑調(diào)控ROS的生成[16-17]。在C3H-MC細(xì)胞株的線粒體中,高濃度葡萄糖能夠促進(jìn)ROS的生成與NADPH氧化酶4(NADPH oxidase 4,Nox4)的表達(dá)。TXNIP基因敲除可激活NADPH氧化酶,進(jìn)而促進(jìn)Nox4的表達(dá),也不會(huì)增加ROS的產(chǎn)生。同樣,在TXNIP缺陷的Hcb-19 MC細(xì)胞株中,ROS和Nox4的生成明顯下降,但過(guò)表達(dá)TXNIP又可增加線粒體ROS和Nox4的生成[16]。這表明TXINP是ROS、Nox4生成過(guò)程中一個(gè)關(guān)鍵的調(diào)控基因。
總之,慢性高血糖環(huán)境會(huì)導(dǎo)致氧化應(yīng)激的產(chǎn)生,引起TXNIP表達(dá)增加,最終導(dǎo)致炎癥產(chǎn)生或胰島細(xì)胞的凋亡,進(jìn)而擾亂了血糖的調(diào)節(jié)功能。
血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)功能障礙的主要特點(diǎn)是炎癥導(dǎo)致的依賴于內(nèi)皮的血管舒張功能受損,VSMC的炎癥與動(dòng)脈粥樣硬化及其它血管炎癥性疾病密切聯(lián)系。體外培養(yǎng)VSMC的研究表明,阻斷TXNIP的表達(dá)可以減少細(xì)胞內(nèi)氧化應(yīng)激,同時(shí)增強(qiáng)保護(hù)蛋白質(zhì)的作用。在TXNIP基因敲除小鼠的VSMC和巨噬細(xì)胞中,炎癥標(biāo)志物的表達(dá)下調(diào),且黏附分子生成減少。此外,人臍靜脈內(nèi)皮細(xì)胞株(EA.hy-926細(xì)胞株)在棕櫚酸鹽刺激后產(chǎn)生更多的ROS,同時(shí),TXNIP的生成與NLRP3的表達(dá)明顯增加,而大量的線粒體遭到破壞[18-19]。這些研究表明,炎癥導(dǎo)致的心血管內(nèi)皮細(xì)胞功能障礙或細(xì)胞受損的機(jī)制中,TXNIP起到負(fù)性調(diào)控作用。
缺血/再灌注損傷常見(jiàn)于心肌梗死、腦梗死、肝腎缺血等疾病,其主要病理機(jī)制是缺血組織重新充血后,產(chǎn)生大量的ROS,導(dǎo)致細(xì)胞損傷[17]。研究表明,♂ SD大鼠肝臟缺血/再灌注后會(huì)產(chǎn)生大量的ROS,并可出現(xiàn)細(xì)胞間質(zhì)水腫、血管收縮以及炎性細(xì)胞浸潤(rùn)與壞死,同時(shí),TXNIP表達(dá)明顯增加,而Trx的活性下降[20]。在♂ ICR小鼠及♂ SD大鼠的大腦缺血/再灌注損傷模型中,大腦海馬部位中的ROS、TXNIP、NLRP3的表達(dá)水平在再灌注后明顯增多,這與SH-SY5Y細(xì)胞(人神經(jīng)母細(xì)胞瘤細(xì)胞株)模擬缺血/再灌注損傷模型的研究結(jié)果基本一致[21]。此外,在小鼠心肌微血管內(nèi)皮細(xì)胞(CMECs)缺氧/復(fù)氧(H/R)損傷模型中,復(fù)氧后TXNIP、NLRP3、caspase-3的表達(dá)水平與活性均明顯增加,而TXNIP siRNA干擾可明顯阻止前述變化,提示TXNIP在H/R損傷中起關(guān)鍵的調(diào)節(jié)作用[22]??梢?jiàn),在缺血/再灌注損傷的病理機(jī)制中,TXNIP扮演著重要的角色。
一般而言,腫瘤組織處于高代謝狀態(tài),需要大量的氧與營(yíng)養(yǎng)物質(zhì),并釋放出大量的ROS,呈現(xiàn)高氧化應(yīng)激的狀態(tài)。在高氧化應(yīng)激的狀態(tài)下,ROS可以誘導(dǎo)TXNIP與Trx結(jié)合,而把ASK1從Trx釋放出來(lái),ASK1激活后,通過(guò)MAPKK通路,激活JNK,JNK調(diào)控凋亡相關(guān)蛋白Bcl-2磷酸化(BIM、BMF)及重新分布在線粒體膜上的Bax/Bak蛋白,進(jìn)而抑制細(xì)胞增殖,甚至誘導(dǎo)細(xì)胞凋亡。目前,從體內(nèi)、體外及臨床研究可以看出,肝細(xì)胞癌、乳腺癌、膀胱癌等實(shí)體癌及白血病,均不同程度地引起TXNIP的表達(dá)下降;在提高TXNIP的表達(dá)之后,癌細(xì)胞的增殖明顯受到抑制,甚至誘導(dǎo)癌細(xì)胞的凋亡[23]。由此可見(jiàn),癌細(xì)胞內(nèi)TXNIP的表達(dá)是受到抑制的,當(dāng)增加TXNIP的表達(dá)后,可誘導(dǎo)癌細(xì)胞的凋亡,達(dá)到抗癌的作用。
在正常狀態(tài)下,TXNIP位于細(xì)胞核內(nèi),當(dāng)細(xì)胞內(nèi)ROS蓄積增多時(shí),會(huì)誘導(dǎo)TXNIP穿梭到細(xì)胞質(zhì)或線粒體中,通過(guò)與Trx結(jié)合,抑制Trx的抗氧化能力,有利于ROS的進(jìn)一步蓄積。當(dāng)ROS蓄積到毒性濃度時(shí),可誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激與線粒體應(yīng)激,同時(shí)激活NLRP3、ASK1等信號(hào)蛋白,最終誘導(dǎo)炎癥的產(chǎn)生或細(xì)胞凋亡(Fig 1)。本課題組新近研究證實(shí),氧化應(yīng)激是骨質(zhì)疏松發(fā)病的重要原因[6]。研究表明,庫(kù)欣綜合癥患者組織中TXNIP升高與骨形成下降密切相關(guān),其病理機(jī)制尚不清楚。在SOD2基因敲除后,小鼠軟骨細(xì)胞線粒體的形態(tài)改變[24]。尼古丁等環(huán)境刺激引起線粒體應(yīng)激,與成骨細(xì)胞活性下降相關(guān)[25]。由于線粒體是ROS產(chǎn)生的重要場(chǎng)所,而TXNIP介導(dǎo)的線粒體應(yīng)激受到越來(lái)越多的重視,其對(duì)骨質(zhì)疏松的作用還需進(jìn)一步的研究。因此,若以TXNIP為抗氧化靶點(diǎn),進(jìn)行相關(guān)天然抗氧化藥物的研發(fā),或?yàn)榭构琴|(zhì)疏松治療提供新思路。
Fig 1 Models for role of TXNIP-mediated oxidative stress in diseases
[1] 龔晴麗, 李 雪, 魯 嚴(yán). 氧化應(yīng)激相關(guān)性疾病中線粒體機(jī)制的研究進(jìn)展[J]. 中國(guó)細(xì)胞生物學(xué)學(xué)報(bào), 2013,35(10):1540-5.
[1] Gong Q L, Li X, Lu Y. Update of mitochondrial mechanism under the diseases related to oxidative stress[J].ChinJCellBiol, 2013,35(10):1540-5.
[2] Devi T S, Hosoya K, Terasaki T, et al. Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: Implications for diabetic retinopathy[J].ExpCellRes, 2013,319(7):1001-12.
[3] Deniaud A, Sharaf El Dein O, Maillier E, et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis[J].Oncogene, 2008,27:285-99.
[4] Mohamed I N, Hafez S S, Fairaq A, et al. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet[J].Diabetologia, 2014,57:413-23.
[5] 楊亞軍, 崔 燎. FoxO/Wnt通路在氧化應(yīng)激介導(dǎo)的骨質(zhì)疏松中的調(diào)控機(jī)制[J]. 中國(guó)藥理學(xué)通報(bào), 2013,29(1):27-30.
[5] Yang Y J, Cui L. Regulation mechanisum of FoxO/Wnt pathway in osteoporosis mediated by oxidative stress[J].ChinPharmacolBull, 2013,29(1):27-30.
[6] Yang Y, Su Y, Wang D, et al. Tanshinol attenuates the deleterious effects of oxidative stress on osteoblastic differentiation via Wnt/FoxO3a signaling.[J].OxidMedCellLongev, 2013,2013(6):351895.
[7] Parikh H, Carlsson E, Chutkow W A, et al. TXNIP regulates peripheral glucose metabolism in humans[J].PLoSMed, 2007,5(4):e158.
[8] Fujino G, Noguchi T, Matsuzawa A, et al. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1[J].MolCellBiol, 2007,27:8152-63.
[9] Lv Z M, Wang Q, Wan Q, et al. The role of the p38 MAPK signaling pathway in high glucose induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells[J].PLoSOne, 2011,6:e22806.
[10] Gokulakrishnan K, Mohanavalli K T, Monickaraj F, et al. Subclinical inflammation/oxidation as revealed by altered gene expression profles in subjects with impaired glucose tolerance and type 2 diabetes patients[J].MolCellBiochem, 2009(324):173-81.
[11] Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].NatureImmunol, 2010,11(2):136-40.
[12] Chen J, Hui S, Couto F, et al. Thioredoxin-interacting protein defciency induces Akt/Bcl-xL signaling and pancreatic β-cell mass and protects against diabetes[J].FASEBJ, 2008(22):3581-94.
[13] Oka S, Yoshihara E, Bizen-Abe A, et al. Thioredoxin binding protein-2 (TBP-2)/Txnip is a critical regulator of insulin secretion and PPAR function[J].Endocrinology, 2009,150(3):1225-34.
[14] Yoshihara E, Fujimoto S, Inagaki N, et al. Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity[J].NatCommun, 2010,1:127.
[15] Patwari P, Chutkow W A, Cummings K, et al. Thioredoxin-independent regulation of metabolism by the α-arrestin proteins[J].JBiolChem, 2009,37(284):24996-5003.
[16] Shah A, Xia L, Goldberg H, et al. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells[J].JBiolChem, 2013,288(10):6835-48.
[17] Yoshioka J, Chutkow W A, Lee S K, et al. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury[J].JClinInvest, 2012,122:267-79.
[18] Byon C H, Han T, Wu J, et al. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice[J].Atherosclerosis, 2015,241(2):313-21.
[19] Li Y, Yang J, Chen M, et al. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner[J].PharmacolRes, 2015,99:101-15.
[20] Jaeschke H. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions[J].AmJPhysiolGastrointestLiverPhysiol, 2006,290:G1083-8.
[21] Li Y, Li J, Li S, et al. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK[J].ToxicolApplPharmacol, 2015,286(1):53-63.
[22] 許倡濤, 劉 毅, 朱 迪, 等. TXNIP介導(dǎo)的NLRP3炎癥小體激活在心肌微血管內(nèi)皮細(xì)胞缺氧/復(fù)氧損傷中的作用[J]. 心臟雜志, 2015,(5):510-3.
[22] Xu C T, Liu Y, Zhu D, et al. Effect of TXNIP mediated NLRP3 inflammasome activation on cardiac microvascular endothelial cells during hypoxia /reoxygenation injury[J].ChinHeartJ, 2015,(5):510-3.
[23] Zhou J, Chng W. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer[J].Mitochondrion, 2013,13(3):163-9.
[24] Koike M, Nojiri H, Ozawa Y, et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration[J].SciRep, 2015,5(9148):1-11.
[25] Li Y, Yu C, Shen G, et al. Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts[J].ActaBiochimBiophysSin(Shanghai), 2015,4(47):306-12.