亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Theoretical and Experimental Studies on the Crystal Morphologyof Transition-Metal Carbohydrazide Perchlorate Complexes

        2018-01-15 09:52:53YANGLiZHANGGuoYingLIUYingZHANGTongLai
        物理化學學報 2017年12期
        關鍵詞:北京理工大學高氯酸國家自然科學基金

        YANG Li ZHANG Guo-Ying LIU Ying ZHANG Tong-Lai

        ?

        Theoretical and Experimental Studies on the Crystal Morphologyof Transition-Metal Carbohydrazide Perchlorate Complexes

        YANG Li*ZHANG Guo-Ying LIU Ying ZHANG Tong-Lai

        ()

        Crystal morphology; Prediction; Attachment energy; Growth rate

        1 Introduction

        The shape or morphology of a crystal is extremely important to the energetic materials. It can have enormous impact on the physical and chemical properties, such as fluidity, apparent density, electrostatic accumulation, pressure resistance, stability, and so on1,2. These properties can directly affect initiating ability, sensitivity and other explosive performance. For example, it is well known that the acicular crystal of lead azide (LA) is poorer for fluidity and stability, but higher sensitivity than the columnar crystal3. The excellent crystal morphology can improve the safety and stability of the energetic materials, which is also helpful to industrial production and safe application4–6. Therefore, the study on the crystal morphology is vital to energetic materials.

        Metal carbohydrazide complexes with strong oxidizing acid radical ions, used as initiating explosives, ignition composition, gas generator and burning rate modifier to propellants, have been extensively studied experimentally and theoretically7–15. Structures of metal carbohydrazide derivatives with sulfate, perchlorate, chloride and polymeric nitrogen were successively reported16–18using infrared spectrum analysis and X-ray single crystal diffraction analysis methods. It is found that metal carbohydrazide derivatives have excellent properties, such as appropriate sensitivity, good safety performance and strong initiating ability. Zhang.19–22carried out an in-depth research on the complexes. They found that cadmium carbohydrazide perchlorate and zinc carbohydrazide perchlorate had excellent properties and they were widely used as green initiating explosives, without using toxic and hazardous raw materials and eliminating waste in the manufacture and application processes.

        In this work, we predicted the crystal morphology of manganese carbohydrazide perchlorate ([Mn(CHZ)3](ClO4)2), iron carbohydrazide perchlorate ([Fe(CHZ)3](ClO4)2), cobalt carbohydrazide perchlorate ([Co(CHZ)3](ClO4)2), nickel carbohydrazide perchlorate ([Ni(CHZ)3](ClO4)2) and cadmium carbohydrazide perchlorate ([Cd(CHZ)3](ClO4)2) by Bravais- Freidel-Donnay-Harker (BFDH) and growth morphology method. The crystal-morphologies of them are studied experimentally without crystal-control reagent.

        2 Experimental and computational section

        2.1 Computational method

        The calculation was performed using the Universal force field (UFF)23,24, which was successfully applied to model a wide range of complexes metal complexes25–27, DNA28, and other organic systems. It is set based on the element, its hybridization and connectivity29.

        The initial configurations of transition-metal carbohydrazide perchlorate complexes were obtained from the experimental data by X-ray single crystal diffraction method. Then the crystal structures were optimized by the density functional theory (DFT) using the CASTEP package30. We found that the GGA (PW91) proposed by Perdew and Wang31,32was more reliable to predict the structures. Therefore GGA (PW91) was used in all calculations. For the calculation, the cutoff energy was 300.0 eV on the plane wave. The-point grid is set as 2 × 2 × 1 in the Brillouin zone by using the Monkhost-Pack scheme. The convergence of total energies is less 0.01% under the selected kinetic energy and the-point grid. During the self-consistent field (SCF) calculations, the convergence tolerance of energy was set to 2.0 × 10?6eV, the maximum of residual force was 0.005 eV?nm, the maximum of displacement of atoms was 0.02 nm and the maximum of residual bulk stress was 0.1 GPa. The optimized crystal structures were used as the starting point for the morphology calculations.

        The morphology of the crystal structure of these complexes was studied using MORPHOLOGY code. BFDH and growth morphology method were used to predict the crystal growth in vacuum. BFDH method was based on the interplanar spacings of different crystal faces and took into account the crystal symmetry33. The growth morphology (AE model) was based on the intermolecular forces in crystallization by Hartman and Perdok34.

        The attachment energy (att) is defined as the energy per molecule released when a new slice of depthdis attached to the crystal face35. It is the sum of the interaction energy per molecule (E()) between a slice of thicknessdand theth underlying slice.

        (1)

        The relationship between the lattice energy of the crystal (latt) and the energy of a growth slice of thicknessd(slice) is given by

        Eatt = Elatt–Eslice(2)

        The relative growth rate (R) of the crystal face is proportional of its attachment energy (att)36. The face with the lowest attachment energies are the slowest growing, and the most important to morphology.

        Rij = Ri/Rj = Eatt,i/Eatt,j(3)

        2.2 Experimental

        [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2used in the experiment were synthesized, purified and dried according to the literature. The purities of products were more than 99.5%. In order to obtain the single crystal, the products of them were dissolved in deionized water (6.25 × 10?8S·cm?1), and kept the solution in the cups for 15 d. The crystal morphology of them was performed using BX51 microscope (Olympus Corp., Japan). The actual parameters of the equipment are as follow: Built-in kohler illuminator, voltage 12 V, and zoom magnification ×4 to ×100.

        Fig.1 Molecular structure of transition carbohydrazide perchlorate complexes.

        Fig.2 Morphology of [Mn(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

        3 Results and discussion

        3.1 Prediction of the crystal morphology

        The molecular structures of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2are shown in Fig.1 The crystal structures of them in the solid state are in space group21/with= 4 in the unit cell. Crystal cell dimensions and cell angles are listed in Table 1.

        According to the Arrhenius and Gibbs Thomson equations (equation (4)), the crystal nucleus formation is obtained37.

        (4)

        ,,,,: lattice parameters,: the volume of the cell.

        It can be seen that the big cell volume can decrease the nucleation rate from the equation (4). That means the order of nucleation rate for the complexes is in the following sequence: [Cd(CHZ)3](ClO4)2<[Mn(CHZ)3](ClO4)2<[Co(CHZ)3](ClO4)2<[Ni(CHZ)3](ClO4)2<[Fe(CHZ)3](ClO4)2when,,, andare certain.

        The morphology of transition-metal carbohydrazide perchlorate complexes predicted using the BFDH and AE models in vacuum was shown in Fig.2–Fig.6. It can be seen that the morphology of them are close to oblong block shapes. The similar shapes may be attributed to the same the ligand and the outer ion of ClO4?. While the contribution of metal cation contribute to morphology is very little. The regular crystal shapes and the smooth surfaces of them are beneficial to improve the free-running property and safety.

        (5)

        Fig.4 Morphology of [Co(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

        Fig.5 Morphology of [Ni(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

        Fig.6 Morphology of [Cd(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b).

        Table 2 Predicted Morphologies of the BDFH and AE models for transition carbohydrazide perchlorate complexes.

        ComplexFaceBDFH/%AE/%Total facet areaEatt/(kcal?mol?1)Rij [Ni(CHZ)3](ClO4)236.03130.3757247.670?27.8281.00 29.96019.6574690.440?33.2881.20 (011)30.71527.5706578.443?44.0851.58 0.5285.6891357.419?38.6741.39 (101)–12.0832883.167?33.2961.20 2.6354.2871022.946?48.2301.73 0.1300.11627.720?51.7361.86 (110)–0.22353.194?50.6641.82 Sum10010023860.999?327.801 [Cd(CHZ)3](ClO4)225.07033.974786.511?7.9481.00 24.05523.097534.700?10.6251.34 (011)34.22126.635616.606?13.1991.66 11.6849.879228.703?12.1241.53 4.2232.65961.565?16.0502.02 0.7463.75086.824?15.4831.95 –0.0050.116?16.6722.10 Sum1001002315.025?92.101

        1 kcal?mol?1= 4.187 kJ?mol?1.

        From the equation (5), the bigger crystal surface area can improve the crystal growth rate. In Table 2, the order of sum facet area is [Fe(CHZ)3](ClO4)2> [Co(CHZ)3](ClO4)2> [Ni(CHZ)3](ClO4)2> [Mn(CHZ)3](ClO4)2> [Cd(CHZ)3](ClO4)2. Therefore the order of crystal growth rate keeps the same sequence with sum facet area when,andare same.

        Fig.7 Cleaved main crystal faces of [Mn(CHZ)3](ClO4)2.

        Fig.8 Cleaved main crystal faces of [Fe(CHZ)3](ClO4)2.

        Fig.9 Cleaved main crystal faces of [Co(CHZ)3](ClO4)2.

        Fig.10 Cleaved main crystal faces of [Ni(CHZ)3](ClO4)2.

        Fig.11 Cleaved main crystal faces of [Cd(CHZ)3](ClO4)2.

        3.2 Experimental morphology

        The crystal-morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Co(CHZ)3](ClO4)2and [Ni(CHZ)3](ClO4)2without crystal-control reagent was synthesized and observed by BX51 microscope (Olympus Corp., Japan) in Fig.15.

        It can be seen that the crystal morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2and [Cd(CHZ)3](ClO4)2are obviously short columnar polyhedrons on the crystal morphology. In literature40, [Co(CHZ)3](ClO4)2also appear columnar polyhedrons shapes. Through the comparison of BDFH and AE model, it can be concluded that AE model are nearer to experimental morphology, and more better to predict crystal growth morphology. Therefore, we ascertain that the predicted crystal morphologies for carbohydrazide perchlorates by AE model are reliable.

        Fig.12 The bonding network of the (002) face; (a) top view of the face, (b) schematic image of incorporation of growth units.

        Fig.13 The bonding network of theface; (a) top view of the face, (b) schematic image of incorporation of growth units.

        Fig.14 The bonding network of the (011) face; (a) top view of the face, (b) schematic image of incorporation of growth units.

        Fig.15 Crystal-morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2 and [Cd(CHZ)3](ClO4)2 without crystal-control reagent.

        4 Conclusions

        (1) Duan, X.; Wei,C.; Liu,Y.; Pei,C.. 2010, 174. doi: 10.1016/j.jhazmat.2009.09.03

        (2) Czerski, H.; Proud, W.. 2007,, 113515. doi: 10.1063/1.2818106

        (3) Taylor, G.; Thomas, A. T.1968,, 391. doi: 10.1016/0022-0248(68)90181-4

        (4) Baer, M. R.2002,, 351. doi: 10.1016/S0040-6031(01)00794-8

        (5) Fabbiani, F. P.; Pulham, C. R.. 2006,, 932. doi: 10.1039/B517780B

        (6) Kr?ber, H.; Teipel, U.. 2008,, 33. doi: 10.1002/prep.200800205

        (7) Kishore, K.; Sunitha, M. R.. 1979,, 1118. doi: 10.2514/3.61286

        (8) Akiyoshi, M.; Nakamura, H.; Hara, Y.. 2000,, 41. doi: 10.1002/(SICI)1521-4087(200001)25:1<41:: AID-PREP41>3.0.CO;2-X

        (9) Schoyer, H. F. R.; Welland-Veltmans, W. H. M.; Louwers, J.; Korting, P. A. O. G.; vander Heijden, A. E. D. M.; Keizers, H. L. J.; vanden Berg, R. P.2002,, 138.

        (10) Dutta, R. L.; Sarkar, A. K. J.. 1981,, 2557. doi: 10.1016/0022-1902(81)80302

        (11) Mansour, A. K.; Eid, M. M.; Khalil, N. S.2003,, 744. doi: 10.3390/81000744

        (12) Akiyoshi, M.; Hirata, N. ;Nakamura, H.; Hara, Y..1996,, 238.

        (13) Bustos, C.; Burckhardt, O.; Schrebler, R.; Carrillo, D.; Arif, A.; Cowley, A.; Nunn, C.. 1990,, 3996. doi: 0020-1669/90/1329-3996$02.50/0

        (14) Bushuyev, O. S.; Arguelles, F. A.; Brown, P.; Weeks, B. L;. Hope-Weeks, L. J.. 2011, 4622. doi: 10.1002/ejic.201100465

        (15) Rahn, P. C.; Siggia, S.. 1973,, 2336. doi: 10.1021/ac60336a012

        (16) Akiyoshi, M.; Hirata, N.; Nakamura, H.; Hara, Y..1997,, 68.

        (17) Akiyoshi, M.; Nakamura, H.; Hara, Y.. 2000,, 224. doi: 10.1002/1521-4087(200011)25:5<224: AID-PREP224>3.0.CO;2-O

        (18) Talawar, M. B.; Agrawal, A. P.; Chhabra, J. S.; Asthana, S. N.. 2004,, 57. doi:10.1016/j.jhazmat.2004.07.001

        (19) Qi, S. Y.; Li, Z. M.; Zhang, T. L.; Zhou, Z. N.; Yang, L.; Zhang, J. G.; Qiao, X. J. ;Yu, K. B.. 2011,, 987. doi: http://sioc-journal.cn/Jwk_hxxb/CN/Y2011/V69/I08/987

        (20) Mi, Z.H.; Chen, S. T.; Jing, Z.; Yang, L.; Zhang, T. L.. 2016,, 3978. doi: 10.1002/ejic.201600479

        (21) Mi, Z.H.; Zhang, T. L.; Zhang, J. G.; Zhou, Z. N.; Yang, L.. 2016,, 46828. doi: 10.1039/C6RA07277A

        (22) Joas, M.; Klapotke, T. M.. 2015,, 246. doi: 10.1002/prep.201400142

        (23) Casewit, C. J.; Colwell, K. S.; Rappe, A. K.. 1992,, 10035. doi: 0002-7863/92/1514-10035$03.00/0

        (24) Casewit, C. J.; Colwell, K. S.; Rappe, A. K.. 1992,, 10046. doi: 0002-7863/92/1514-10046$03.0

        (25) Rappe, A. K.; Colwell, K. S.; Casewit, C. J.. 1993,, 3438. doi: 0020-16691931 1332-3438%04.0

        (26) Kern, A.; Nather, C.; Studt, F.; Tuczek, F.. 2004,, 5003. doi: 10.1021/ic030347d

        (27) Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.;Roy, T. K.; Schmid, R.2013,, 1128.doi: 10.1002/pssb.201248460

        (28) Ogawa, T.; Kurita, N.; Sekino, H.; Kitao, O.; Tanaka, S.. 2003,, 271. doi: 10.1016/S0009-2614(03)00720-6

        (29) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M.. 1992,, 10024. doi: 10.1021/ja00051a040

        (30) Fischer, T. H.; Almlof, J.. 1992,, 9768. doi: 10.1021/j100203a036

        (31) Perdew, J. P. Chevary, J. Vosko, S. Jackson, K. A. Pederson, M. R. Singh, D. Fiolhais, C..1992,, 6671. doi: 10.1103/PhysRevB.46.6671

        (32) Perdew, J. P.; Wang, Y.1992,, 12947. doi: 10.1103/PhysRevB.46.12947.

        (33) Docherty, R.; Clydesdale, G.; Roberts, K. J.; Bennema, P.. 1991,, 89. doi: 10.1088/0022-3727/24/2/001

        (34) Hartman, P.; Perdok, W. G. I.. 1955,, 49. doi: 10.1107/S0365110X55000121

        (35) Bennema, P.; Meekes, H. ;Boerrigter, S.; Cuppen, H.; Deij, M.; Van Eupen, J.; Verwer, P.; Vlieg, E.. 2004,, 905. doi: 10.1021/cg034182v

        (36) Berkovitch-Yellin, Z.. 1985,, 8239. doi: 0002-7863/8S/l507-8239$01.50/0

        (37) Kawasaki, T.; Tanaka, H. P.. 2010,, 14036. doi: 10.1073/pnas.1001040107/-/DCSupplemental

        (38) Chen, J. X.; Wang, J. K.; Zhang, Y.; Wu, H.; Chen, W.; Guo, Z. C.2004,, 266. doi: 10.1016/j.jcrysgro.2004.01.055

        (39) Givand, J. C.; Rousseau, R. W.; Ludovice, P. J.1998,, 228. doi: 10.1016/S0022-0248(98)00535-1

        (40) Lv, C. H.; Zhang, T. L.; Ren, L. B.; Yu, K. B.; Lu, Z.; Cai, R. J.. 2000,, 31. doi: 1007-7812( 2000D 01-0031-03

        高氯酸碳酰肼過渡金屬配合物晶體形態(tài)的理論和實驗研究

        楊 利*張國英 劉 影 張同來

        (北京理工大學,爆炸科學與技術國家重點實驗室,北京 100081)

        晶體形貌;預測;附著能;生長速率

        O641

        10.3866/PKU.WHXB201706193

        May 17, 2017;

        June 13, 2017;

        June 19, 2017.

        Corresponding author. Email: yanglibit@bit.edu.cn; Tel: +86-10-68911682.

        The project was supported bythe State Key Laboratory of Explosion Science and Technology, China (YB2016-17) and the National Natural Science Foundation of China (11672040).

        爆炸科學與技術國家重點實驗室基金(YB2016-17)及國家自然科學基金(11672040)資助項目

        猜你喜歡
        北京理工大學高氯酸國家自然科學基金
        北京理工大學機械與車輛學院簡介
        兵工學報(2023年1期)2023-03-03 02:55:40
        常見基金項目的英文名稱(一)
        北京理工大學通信與網(wǎng)絡實驗室
        我校喜獲五項2018年度國家自然科學基金項目立項
        2017 年新項目
        Design of Two-wheeled Mobile Control Robot with Holographic Projection
        國家自然科學基金項目簡介
        酸溶-高氯酸氧化光度法測定錳礦石中全錳的含量
        河北地質(2016年2期)2016-03-20 13:52:04
        高氟高氯酸性廢水處理實驗研究
        國家航天立法研討會在北京理工大學舉行
        太空探索(2015年1期)2015-07-18 11:02:13
        国产午夜激无码av毛片| 亚洲一区二区三区av天堂| 中文字幕乱码亚洲美女精品一区| 久久精品国产亚洲一级二级| 玩弄丝袜美腿超短裙校花| 国产成人亚洲精品一区二区三区 | 97久久精品人人做人人爽| 中文字幕美人妻亅u乚一596| 99久久久无码国产精品性| 亚洲中文字幕久久精品色老板| 久久精品国产亚洲av不卡国产| 91精品国产综合久久熟女| 亚洲av午夜精品无码专区| 亚洲欧美国产精品久久| 国产成人无码a区在线观看导航| 国产98色在线 | 国产| 亚洲av无码一区二区三区天堂古代| 午夜成人理论福利片| 天堂中文官网在线| 亚洲欧洲巨乳清纯| 免费的一级毛片| 国产美女三级视频网站| 日本高清一区二区三区色| 亚洲一区中文字幕一区| 国产女主播一区二区三区| 免费a级毛片18禁网站免费| 少妇精品无码一区二区三区| 真实的国产乱xxxx在线| 亚洲熟妇少妇任你躁在线观看无码| 久久夜色精品国产欧美乱| 中文字幕人妻偷伦在线视频 | 亚洲欧洲日韩另类自拍| 亚洲国产另类久久久精品小说| 亚洲老熟妇愉情magnet| 人妻免费黄色片手机版| 日韩久久免费精品视频| 日产精品毛片av一区二区三区| 国产黄色一区二区在线看| 日本精品一区二区高清| 三年片免费观看影视大全视频| 国产精品乱码一区二区三区|