王 剛,關(guān)卓懷,沐森林,湯 慶,吳崇友
?
油菜聯(lián)合收獲機種子籽粒脫粒裝置結(jié)構(gòu)及運行參數(shù)優(yōu)化
王 剛,關(guān)卓懷,沐森林,湯 慶,吳崇友※
(農(nóng)業(yè)部南京農(nóng)業(yè)機械化研究所,南京 210014)
為探究油菜聯(lián)合收獲機脫粒系統(tǒng)對油菜籽粒的收獲效果,尋求較優(yōu)的脫粒裝置結(jié)構(gòu)及運行參數(shù),以喂入量、脫粒滾筒間隙、脫粒滾筒轉(zhuǎn)速和脫粒元件型式種類為影響因素,油菜種子籽粒發(fā)芽率、脫粒損失為評價指標,開展油菜聯(lián)合收獲脫粒試驗、發(fā)芽率試驗及無損傷籽粒發(fā)芽率對比試驗,探究了聯(lián)合收獲油菜籽粒的脫粒損傷機理。結(jié)果表明:影響油菜種子籽粒脫粒損傷的主次因素依次為脫粒元件型式、脫粒滾筒間隙、脫粒滾筒轉(zhuǎn)速、喂入量;所選因素水平下,綜合考慮脫粒損傷及損失,采用喂入量3.2 kg/s、脫粒滾筒間隙9 mm、脫粒滾筒轉(zhuǎn)速856 r/min、全釘齒時為較優(yōu)組合。分析表明:聯(lián)合收獲脫粒會對油菜種子籽粒造成損傷,影響脫粒損傷的直接因素為種子籽粒在滾筒內(nèi)受打擊次數(shù)及打擊力大??;通過調(diào)整脫粒系統(tǒng)結(jié)構(gòu)及運行參數(shù),能夠顯著降低油菜的脫粒損傷及損失,本文為脫粒裝置結(jié)構(gòu)及運行參數(shù)的優(yōu)化提供參考。
機械化;優(yōu)化;農(nóng)作物;油菜籽粒;脫粒損傷;聯(lián)合收獲;發(fā)芽率
油菜是重要的油料作物,是優(yōu)質(zhì)食用植物油的主要來源。油菜種子發(fā)芽率直接關(guān)系到油菜產(chǎn)量,是評價油菜種子優(yōu)劣的重要指標之一。聯(lián)合收獲顯著提高了收獲效率,但是籽粒在機械脫粒過程中若受到過大的應(yīng)力就會破裂或永久變形,破壞籽粒的生長點,產(chǎn)生裂紋的籽粒易受到微生物和昆蟲的侵害,從而影響了籽粒的利用率和種子的發(fā)芽率[1-4],造成種子浪費、增加生產(chǎn)成本,同時也會影響到機械化精量播種質(zhì)量,造成減產(chǎn),降低經(jīng)濟效益。
機械化收獲造成的籽粒損傷問題已經(jīng)引起國內(nèi)外學(xué)者的關(guān)注,并針對水稻、小麥、玉米、大豆等作物開展了研究,研究方法主要包括射線觀察法[5]、發(fā)芽率判斷法[6]、圖像處理法[7-12]等。研究表明,收獲損傷主要發(fā)生在脫粒環(huán)節(jié),脫粒部件的沖擊會造成籽粒裂紋從而導(dǎo)致了籽粒的損傷[13-19],改變脫粒裝置結(jié)構(gòu)和運行參數(shù)能有效降低籽粒損傷[20-23]。因此,研究油菜籽粒脫粒損傷,對油菜籽粒的利用具有重要意義。
為探究油菜聯(lián)合收獲機種子籽粒脫粒裝置結(jié)構(gòu)及運行參數(shù),本文以喂入量、脫粒滾筒間隙、脫粒滾筒轉(zhuǎn)速和脫粒元件型式種類為影響因素,以發(fā)芽率及損失率為評價指標,開展了油菜聯(lián)合收獲脫粒試驗、發(fā)芽率試驗及無損傷籽粒發(fā)芽率對比試驗。為說明油菜種子籽粒損傷率和發(fā)芽率的相關(guān)性,排除其他因素對籽粒發(fā)芽率的干擾,以同時期、同品種、同地塊及長勢相同的人工收獲的無損傷油菜籽粒的發(fā)芽率作為對照。通過對比和分析不同脫粒裝置結(jié)構(gòu)和運行參數(shù)下機收油菜籽粒的發(fā)芽率和損失率,探究脫粒裝置結(jié)構(gòu)和運行參數(shù)對油菜籽粒脫粒效果的影響。獲得損傷率及損失率綜合評價下的較優(yōu)參數(shù)組合。以期探究油菜聯(lián)合收獲機脫粒系統(tǒng)的較優(yōu)裝置結(jié)構(gòu)及運行參數(shù),并為油菜聯(lián)合收獲機脫粒系統(tǒng)的設(shè)計和參數(shù)的優(yōu)化提供參考。
油菜聯(lián)合收獲試驗于2016年6月5日至6月6日在江蘇省東臺市弶港鎮(zhèn)進行,油菜品種為寧雜1818,種植方式為機械直播。按照GB/T 8097-2008《收獲機械聯(lián)合收割機試驗方法》、NY/T12 31-2006《油菜聯(lián)合收獲機質(zhì)量評價技術(shù)規(guī)范》的規(guī)定,進行作物的基本特性信息采集,結(jié)果如表1所示。
試驗機具為農(nóng)業(yè)部南京農(nóng)業(yè)機械化研究所研制的NJS-2.2型移動式聯(lián)合收獲脫粒清選試驗臺,如圖1所示。
表1 油菜基本特性參數(shù)
圖1 NJS-2.2型移動式聯(lián)合收獲機脫粒清選試驗臺
根據(jù)已有研究,影響油菜聯(lián)合收獲脫粒效果的主要因素有喂入量、脫粒滾筒間隙、脫粒滾筒轉(zhuǎn)速和脫粒元件型式種類[24-27]。根據(jù)文獻所述,李耀明等[28]試制短紋桿-板齒脫粒滾筒并進行脫粒對比試驗;宗望遠等[29]分析滾筒轉(zhuǎn)速對脫出物質(zhì)量的影響[28-29]。選取常用的脫粒滾筒轉(zhuǎn)速范圍為760~1 010 r/min;移動試驗臺的脫粒滾筒由鏈輪傳動,更換中間軸上的鏈輪可獲得不同的轉(zhuǎn)速。改變脫粒滾筒齒桿在脫粒滾筒幅板上安裝位置可以調(diào)節(jié)脫粒間隙,如圖2所示。通過前期研究,選取脫粒間隙調(diào)節(jié)范圍為9~13 mm,當(dāng)脫粒間隙大于13 mm時含雜率顯著增加,當(dāng)脫粒間隙小于9 mm時會提高功耗,且造成滾筒堵塞。
圖2 脫粒間隙調(diào)節(jié)
目前油菜聯(lián)合收獲常用脫粒元件為釘齒式、紋桿式及組合式,采用全釘齒、全紋桿及半釘齒半紋桿組合3種形式進行試驗,齒桿整體拆卸后替換。喂入量通過測定測區(qū)內(nèi)收獲的籽粒、莖稈和清選排出物的總量除以通過測區(qū)的時間進行計算。在滿幅收割下改變聯(lián)合收獲機的前進速度從而改變喂入量。
以脫粒滾筒脫粒元件型式、脫粒滾筒轉(zhuǎn)速、脫粒間隙和喂入量為影響因素,每個影響因素選取3個水平開展正交試驗L9(34),試驗因素水平如表2所示。
表2 聯(lián)合收獲試驗因素水平
選取長勢均勻,密度、植株高度產(chǎn)量水平一致性較好的油菜進行聯(lián)合收獲試驗。在作業(yè)地塊中確定試驗區(qū)域并分為準備區(qū)、測定區(qū)和停車區(qū)。準備區(qū)長度10 m,測定區(qū)長度20 m,停車區(qū)長度10 m,均不臨地邊。機具在準備區(qū)和測定區(qū)內(nèi)滿幅作業(yè)、割茬高度保持一致,試驗過程中不改變工況。每次到達試驗區(qū)前,先清空糧箱;試驗結(jié)束后,人工將糧箱內(nèi)的籽粒攪拌均勻,采用五點取樣法,從每個點獲取200 g籽粒,共1 kg,裝入接樣袋中保存并編號。聯(lián)合收獲試驗共9組,每組試驗重復(fù)4次,共36次,獲得聯(lián)合收獲籽粒樣本36袋。每次試驗時收集滾筒脫出物料,篩選出物料內(nèi)的油菜籽粒稱重得出脫粒損失。
聯(lián)合收獲的同時,人工收獲相同地塊長勢相同的油菜。進行人工割倒、晾曬,待角果干燥可以脫出籽粒時進行人工脫粒,每株全部角果脫粒干凈,收集脫出籽粒并攪拌均勻,從籽粒中隨即取出1 kg裝入接樣袋中保存編號。選取4塊區(qū)域重復(fù)人工收獲試驗4次,獲得籽粒樣本4袋,收獲試驗共獲得籽粒樣本40袋。
從每個接樣帶中隨即選取400顆籽粒,分為2組,每組200顆,分別放入帶有雙層紙床的培養(yǎng)皿中并編號記錄,共80組。將雙層紙床吸足水分后瀝去多余水分放置在編號的培養(yǎng)皿內(nèi),紙床pH值為6.0~7.5,種子籽粒均勻鋪放在紙床上并保持一定距離。將培養(yǎng)皿放入人工氣候箱中,按照國家經(jīng)濟作物種子發(fā)芽標準GB4407.2-2008進行發(fā)芽試驗。氣候箱內(nèi)保持20°恒溫,濕度為70%~80%,每天光照12 h,試驗周期為7 d。
7 d后,從氣候箱中取出培養(yǎng)皿,數(shù)出已發(fā)芽和未發(fā)芽的油菜籽粒數(shù)。設(shè)發(fā)芽率為,則
式中為未發(fā)芽的籽粒數(shù),為發(fā)芽試驗的籽??倲?shù)。
在沒有其他因素影響發(fā)芽率的情況下,損傷率可表達為
試驗結(jié)果如表3所示。人工收割、脫粒的油菜種子籽粒發(fā)芽率為99.8%。機收籽粒發(fā)芽率范圍為85.7%~97.6%,且變化較大。根據(jù)機收籽粒發(fā)芽率與無損籽粒的發(fā)芽率進行比較可以看出,機械化收獲的油菜籽粒發(fā)芽率明顯低于人工收獲的無損傷油菜籽粒,脫粒裝置結(jié)構(gòu)及運行參數(shù)的差異會導(dǎo)致油菜種子籽粒不同的發(fā)芽率。脫粒損失率范圍為0.18%~0.51%,在所選參數(shù)范圍內(nèi)脫粒損失都在較低水平[30]。
表3 發(fā)芽率試驗方案與試驗結(jié)果
由表3可知,人工收獲、脫粒的油菜籽粒發(fā)芽率為99.8%,說明油菜籽粒發(fā)芽試驗所設(shè)置的環(huán)境條件合理,能夠滿足油菜發(fā)芽所需的外界條件。在當(dāng)前發(fā)芽率試驗條件下,人工收獲、脫粒的無機械損傷油菜籽粒發(fā)芽率接近100%,排除了其他因素對油菜籽粒發(fā)芽率的影響。說明油菜籽粒發(fā)芽率與籽粒損傷之間呈正相關(guān),可以用發(fā)芽率來評價油菜籽粒的損傷。
由表3可知,聯(lián)合收獲的油菜籽粒發(fā)芽率為85.7%~97.6%,低于人工收獲無損傷油菜種子籽粒的發(fā)芽率99.8%。通過人工收獲無損傷油菜籽粒的對比試驗已經(jīng)排除了其他因素對發(fā)芽率的影響,所以機械化聯(lián)合收獲確實會對油菜籽粒造成損傷。這種損傷直接影響油菜籽粒的發(fā)芽率,并且損傷程度與脫粒裝置結(jié)構(gòu)及運行參數(shù)相關(guān)。在當(dāng)前收獲試驗參數(shù)下,損傷率范圍為2.4%~14.3%。
對聯(lián)合收獲的油菜籽粒發(fā)芽率結(jié)果進行極差分析,結(jié)果如表4所示。根據(jù)極差R的大小,可以判斷影響油菜籽粒發(fā)芽率的主次因素依次為脫粒元件形式>脫粒間隙>滾筒轉(zhuǎn)速>喂入量。依據(jù)試驗指標k的大小可以判斷損傷率較小的水平組合為脫粒元件為全釘齒,脫粒滾筒間隙9 mm,脫粒滾筒轉(zhuǎn)速1 010 r/min,喂入量2.2 kg/s。
表4 發(fā)芽率極差分析
對聯(lián)合收獲的油菜籽粒發(fā)芽率結(jié)果進行方差分析,結(jié)果如表5所示。由方差分析可知,喂入量對試驗結(jié)果影響不顯著,脫粒滾筒間隙和元件型式對結(jié)果影響極其顯著(<0.01),脫粒滾筒轉(zhuǎn)速對結(jié)果影響顯著(<0.05)。
表5 發(fā)芽率方差分析
注:<0.01(極顯著,**),<0.05(顯著,*)。
Note:<0.01(highly significant, **),<0.05(significant,*).
通過對試驗結(jié)果極差分析和方差分析可知:
1)脫粒元件為全釘齒時發(fā)芽率為97.3%,全紋桿時發(fā)芽率為88.3%。在采用不同的脫粒元件時,油菜的發(fā)芽率相差達9個百分點,脫粒元件型式對油菜籽粒的收獲損傷影響極大。根據(jù)文獻[9]的研究,籽粒的損傷率與其和脫粒元件碰撞時所吸收能量成正比,表面自由能越大,損傷越嚴重,圓形斷面的脫粒零件比矩形斷面的脫粒零件產(chǎn)生的表面自由能小,更不容易造成籽粒的損傷。所以在進行油菜收獲時,釘齒比紋桿對油菜種子籽粒的碰撞損傷小。應(yīng)盡量選擇釘齒作為脫粒元件。
2)在不同的脫粒間隙下,油菜籽粒的發(fā)芽率相差4.9個百分點,脫粒間隙對油菜籽粒的收獲損傷有較大的影響。在當(dāng)前試驗參數(shù)下,隨著脫粒間隙的增大,發(fā)芽率先減小后增大,損傷率先增大后減小,與文獻[3]中的試驗結(jié)果一致。根據(jù)文獻[9]的研究,籽粒損傷與其所受打擊力的大小和次數(shù)有關(guān)。打擊力越大、次數(shù)越多,越容易損傷。脫粒間隙越小,籽粒受到的打擊力越大,同時籽粒也更容易脫出離開脫粒系統(tǒng),受到打擊的次數(shù)越少。脫粒間隙為9 mm時,由于滾筒內(nèi)空間小,物料在滾筒內(nèi)的揉搓作用明顯,籽粒更容易從莢果中脫出,脫出的籽粒從滾筒內(nèi)篩出后不再受到滾筒的打擊,籽粒受打擊次數(shù)少,所以損傷低,發(fā)芽率高。油菜籽粒的損傷率與脫粒間隙之間并非正相關(guān),需要進一步的研究才能定性說明。在當(dāng)前試驗參數(shù)下,脫粒間隙的較優(yōu)水平為9 mm。
3)在不同的滾筒轉(zhuǎn)速下,油菜籽粒的發(fā)芽率相差4.3個百分點。脫粒滾筒轉(zhuǎn)速對油菜籽粒的收獲損傷有較大的影響。在當(dāng)前試驗參數(shù)下,隨著滾筒轉(zhuǎn)速的升高,發(fā)芽率先減小后增大,損傷率先增大后減小,與文獻[3]中的試驗結(jié)果一致。根據(jù)文獻[17]的能量理論和文獻[18]的加載理論,滾筒轉(zhuǎn)速越快,脫粒元件和籽粒之間碰撞的產(chǎn)生的表面能越大,籽粒越容易損傷;但是滾筒轉(zhuǎn)速越快,籽粒離開脫粒系統(tǒng)的速度越快,受到打擊的次數(shù)越少。滾筒轉(zhuǎn)速為1 010 r/min時,打擊力較大,籽粒從莢果中更容易脫出,脫出的籽粒從滾筒內(nèi)篩出后不再受到滾筒的打擊,籽粒受打擊次數(shù)少,所以損傷率低,發(fā)芽率高。所以,油菜籽粒的損傷率與滾筒轉(zhuǎn)速之間也非正相關(guān),需要進一步的研究才能定性說明。在當(dāng)前試驗參數(shù)下,脫粒滾筒轉(zhuǎn)速的較優(yōu)水平為1 010 r/min。
4)在不同的喂入量下,發(fā)芽率的變化范圍在1.1個百分點以內(nèi)。根據(jù)文獻[23],在不同的喂入量下,脫粒元件的扭矩變化并不大。所以在其他條件不變的情況下,喂入量幾乎不影響脫粒元件對籽粒的打擊力、打擊次數(shù)和籽粒的表面能。所以,相較于其他因素,喂入量對油菜籽粒損傷的影響較小。
前文分析了不同參數(shù)下籽粒脫粒損傷情況,得出了損傷率較小的參數(shù)組合,為了兼顧脫粒損失及損傷2種指標,使脫粒效果達到最優(yōu),采用加權(quán)評分法對表3中損傷及損失試驗結(jié)果進行分析。以100分為總權(quán)重,通過加權(quán)綜合指標Z來進行評分,其計算公式如式(3)所示。
式中Z為表3中第號試驗所得計算值(加權(quán)評分指標,較小為優(yōu)),=1,2,3,…,9;W為第個指標的“權(quán)”值,=1,2;Y為第個試驗中第個指標;Ymax為所有9組試驗中,第個指標的最大值。
若所收油菜籽粒作為種子源,為保證種子出苗率,則以損傷率為重,將損傷率定為1=70分,損失率2=30分,最優(yōu)結(jié)果為加權(quán)綜合指標9=23.3分,最優(yōu)組合為正交試驗第9組3321;若所收油菜用于食用或加工,損傷則為次要因素,以損失率為重,將損傷率定為1=30分,損失率2=70分。最優(yōu)結(jié)果為加權(quán)綜合指標9=30.2分,最優(yōu)組合亦為正交試驗第9組3321。
由表3可知,在所選因素水平內(nèi)損失率變化范圍0.18%~0.51%相較于損傷率處于較低水平,對綜合評價結(jié)果影響較小。在加權(quán)評價方法下?lián)p失率權(quán)重從30分至70分范圍內(nèi)最優(yōu)組合皆為第9組。此時損失率為0.18%,損傷率為2.6%,機器在此參數(shù)下作業(yè)喂入量大,收獲效率高、籽粒損失及損傷在較低水平、機器功耗也較低。
1)油菜籽粒發(fā)芽率與籽粒損傷之間呈正相關(guān),可以用發(fā)芽率來評價油菜籽粒的損傷。機械化脫粒會對油菜籽粒造成損傷,在試驗所選的參數(shù)范圍內(nèi),脫粒損傷率為2.4%~14.3%。影響油菜籽粒損傷的主次因素依次為脫粒元件型式、脫粒滾筒間隙、脫粒滾筒轉(zhuǎn)速、喂入量。
2)在試驗所選的參數(shù)范圍內(nèi),綜合考慮脫粒損傷及損失情況下,采用喂入量3.2 kg/s、滾筒間隙9 mm、滾筒轉(zhuǎn)速856 r/min、全釘齒時為較優(yōu)組合。此時損失率為0.18%,損傷率為2.6%,喂入量較大,收獲效率高、機器功耗較低。通過調(diào)整脫粒系統(tǒng)結(jié)構(gòu)及參數(shù),能夠達到較好的收獲脫粒效果。
影響脫粒損傷的直接因素為籽粒在滾筒內(nèi)受打擊次數(shù)及打擊力大小。由于試驗次數(shù)、參數(shù)水平的限制,要明確脫粒滾筒轉(zhuǎn)速、脫粒間隙與油菜種子籽粒損傷之間的關(guān)系還需要更加深入的研究。
[1] 吳明亮,官春云,方耿,等. 擠壓及剪切作用對油菜籽粒發(fā)芽率的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報,2009,35(3):329-330.
Wu Mingliang, Guan Chunyun, Fang Geng, et al. Influence of extrusion and shear force on rate of rapeseed germination[J]. Journal of Hunan Agricultural University, 2009, 35(3): 329-330. (in Chinese with English abstract)
[2] 徐立章,李耀明,王顯仁. 谷物脫粒損傷的研究進展分析[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(1):303-307.
Xu Lizhang, Li Yaoming, Wang Xianren. Research development of grain damage during threshing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 303-307. (in Chinese with English abstract)
[3] 李心平,馬福麗,高連興. 玉米種子的機械損傷對其發(fā)芽率的影響[J]. 農(nóng)機化研究,2009,31(3):34-35.
Li Xinping, Ma Fuli, Gao Lianxing. Impact of mechanical damage of corn seed to it’s germination percentage[J]. Journal of Agricultural Mechanization Research, 2009, 31(3): 34-35. (in Chinese with English abstract)
[4] 高連興,李曉峰,接鑫,等. 大豆內(nèi)部機械損傷對發(fā)芽的影響[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(10):63-66.
Gao Lianxing, Li Xiaofeng, Jie Xin, et al. Inner mechanical damage impact to germination of soybean kernels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 63-66. (in Chinese with English abstract)
[5] Gunasekaran S, Paulsen M R, Shove G C. A laser optical method for detecting corn kernel defects[J]. Transactions of the Asae, 1986, 29(1): 0294-0298.
[6] 欒玉娜,梁明. 花生米機械損傷特征及其對發(fā)芽的影響[J]. 農(nóng)業(yè)科技與裝備,2013,31(2):24-25.
Luan Yu’na, Liang Ming. Internal mechanical damage of peanut seed and the influence on the germination[J]. Agricultural science & technology & equipment, 2013, 31(2): 24-25. (in Chinese with English abstract)
[7] 李曉峰,接鑫,張永麗,等. 玉米種子內(nèi)部機械裂紋檢測與機理研究[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(12):143-147.
Li Xiaofeng, Jie Xin, Zhang Yongli, et al. Detecting and research on characteristics and mechanism of inner mechanical cracks of corn seed kernels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 143-147. (in Chinese with English abstract)
[8] Junior M B, Luiz H. Avaliaco do relacionamento entre danos mecanicos e vigor, em sementes de milho, por meio da análise de imagens[J]. Revista Brasileira De Sementes, 2003, 25(1): 29-36.
[9] 張新偉,趙學(xué)觀,張健東,等. 基于數(shù)據(jù)融合的玉米種子內(nèi)部機械裂紋檢測方法[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(9):136-141.
Zhang Xinwei, Zhao Xueguan, Zhang Jiandong, et al. Detection of internal mechanical cracks in corn seeds based on data fusion technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(9): 136-141. (in Chinese with English abstract)
[10] 王艷春,遲勝起,鄭長英. 基于數(shù)學(xué)形態(tài)學(xué)濾波算子的黃頂菊種子圖像邊緣檢測[J]. 農(nóng)機化研究,2011,33(3):39-42.
Wang Yanchun, Chi Shengqi, Zheng Changying. The edge detection of flaveria bidentis seed image based on mathematics morphological filtering operators[J]. Journal of Agricultural Mechanization Research, 2011,33 (3): 39-42. (in Chinese with English abstract)
[11] Ni B, Paulsen M R, Reid J F. Corn kernel crown shape identification using image processing[J]. Transactions of the Asabe, 1997, 40(3): 83-88.
[12] Vanutrecht D, Bernc C J, Rukunudin I H. Soybean mechanical damage detection[J]. Applied Engineering in Agriculture, 2000, 16(2): 137-141.
[13] 高連興,李曉峰,接鑫,等. 大豆機械脫粒損傷特征及損傷率研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,2010,41(1):55-58.
Gao Lianxing, Li Xiaofeng, Jie Xin, et al. Inner mechanical damage impact to germination of soybean kernels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 55-58. (in Chinese with English abstract)
[14] 李心平. 種子玉米脫粒損傷機理及5TYZ-1型定向喂入式脫粒機研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2007.
Li Xinping. Study on Threshing-damage Mechanism and 5TYZ-1 Type Directional-feeding Thresher of Seed corn[D]. Shenyang: Shenyang Agricultural University, 2007. (in Chinese with English abstract)
[15] 耿愛軍,楊建寧,張姬,等. 玉米摘穗收獲機械損傷影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(22):56-62.
Geng Aijun, Yang Jianning, Zhang Ji, et al. Influence factor analysis of mechanical damage on corn ear picking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 56-62. (in Chinese with English abstract)
[16] 范國昌,王惠新,籍俊杰,等. 影響玉米摘穗過程中籽粒破碎和籽粒損失率的因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2002,18(4):72-74.
Fan Guochang, Wang Huixin, Ji Junjie, et al. Analysis of influence factor on seed damage rate and loss rate during picking corn cob[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(4): 72-74. (in Chinese with English abstract)
[17] 李耀明,王顯仁,徐立章. 基于能量平衡的水稻谷粒脫粒損傷[J]. 機械工程學(xué)報,2007,43(3):160-164.
Li Yaoming, Wang Xianren, Xu Lizhang. Threshing injury to rice grain based on the energy conservation[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 160-164. (in Chinese with English abstract)
[18] 李耀明,王顯仁,徐立章. 加載/卸載作用次數(shù)對水稻谷粒機械損傷的影響[J]. 農(nóng)業(yè)機械學(xué)報,2007,38(10):61-63.
Li Yaoming, Wang Xianren, Xu Lizhang. Study on rice grain injury under repeated loads[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(10): 61-63. (in Chinese with English abstract)
[19] 李耀明,李洪昌,徐立章. 短紋桿-板齒與釘齒脫粒滾筒的脫粒對比試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(3):139-142.
Li Yaoming, Li Hongchang, Xu Lizhang. Comparative experiment on threshing performance between short-rasp-bar tooth cylinder and spike tooth cylinder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 139-142. (in Chinese with English abstract)
[20] 周旭,李心平,高連興,等. 兩種脫粒滾筒的玉米籽粒損傷試驗研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,2005,36(6):756-758.
Zhou Xu, Li Xinping, Gao Lianxing, et al. Comparison of corn kernel damage using two types of threshing cylinders[J]. Journal of Shenyang Agricultural University, 2005,36(6): 756-758. (in Chinese with English abstract)
[21] ?pokas L, Steponavi?ius D, Petkevi?ius S. Impact of technological parameters of threshing apparatus on grain damage[J]. Agronomy Research, 2008,33(6): 367-376.
[22] 王顯仁,李耀明,徐立章. 水稻谷粒的機械損傷機理及試驗[J]. 農(nóng)機化研究,2007,29(12):141-143.
Wang Xianren, Li Yaoming, Xu Lizhang. Mechanical injury mechanism of rice grain and experiments[J]. Journal of Agricultural Mechanization Research, 2007, 29(12): 141-143. (in Chinese with English abstract)
[23] 謝方平,羅錫文,蘇愛華,等. 剛性弓齒與桿齒及柔性齒的脫粒對比試驗[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報,2005,31(6):648-651.
Xie Fangping, Luo Xiwen, Su Aihua, et al. Contrastive experiment on threshing by using rigid wire-loop,rigid pole tooth and flexible pole tooth[J]. Journal of Hunan Agricultural University, 2005, 31(6): 648-651. (in Chinese with English abstract)
[24] 吳崇友,丁為民,石磊,等. 油菜分段收獲撿拾脫粒機撿拾損失響應(yīng)面分析[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(8):89-93.
Wu Chongyou, Ding Weimin, Shi Lei, et al. Response surface analysis of pickup losses in two-stage harvesting for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 89-93. (in Chinese with English abstract)
[25] Bansal N K, Lohan S K. Design and development of an axial flow thresher for seed crops[J]. Journal of Agricultural Engineering, 2009, 46(1): 1-8.
[26] Harrison H P. Grain separation and damage of an axial-flow combine [J]. Canadian Agricultural Engineering, 1992, 34(1): 49-53.
[27] 宗望遠,廖慶喜,陳立,等. 完熟期油菜果莢不同脫粒方式的脫粒效果[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(9):29-34.
Zong Wangyuan, Liao Qingxi, Chen Li, et al. Threshing effect of ripe rape by different methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(9): 29-34. (in Chinese with English abstract)
[28] 李耀明,周金芝,徐立章,等. 油菜聯(lián)合收割機脫粒分離裝置的試驗[J]. 江蘇大學(xué)學(xué)報:自然科學(xué)版,2005,26(4):281-284.
Li Yaoming, Zhou Jinzhi, Xu Lizhang, et al. Experimental study on threshing and separating unit of rape combine[J]. Journal of Jiangsu University, 2005,26 (4): 281-284. (in Chinese with English abstract)
[29] 宗望遠,黃鵬,李海同,等. 完熟期油菜的脫粒特性與分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2013,32(2):128-133.
Zong Wangyuan, Huang Peng, Li Haitong, et al. Threshing characteristic and analysis of full ripeness period rape[J]. Journal of Huazhong Agricultural University, 2013, 32(2): 128-133. (in Chinese with English abstract)
[30] 李耀明,孫韜,徐立章. 油菜多滾筒脫粒分離裝置的性能試驗與分析[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(8):36-43.
Li Yaoming, Sun Tao, Xu Lizhang. Performance test and analysis of rape multi cylinder threshing and separating device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 36-43. (in Chinese with English abstract)
Optimization of operating parameter and structure for seed thresher device for rape combine harvester
Wang Gang, Guan Zhuohuai, Mu Senlin, Tang Qing, Wu Chongyou※
(210014,)
Rapeseed germination rate is directly related to rapeseed yield, which is one of the most important indices to evaluate the rapeseed quality. Combine harvesters have greatly improved the harvest efficiency, but rapeseeds would be damaged by the mechanical threshing equipment during harvesting, and mechanical damage extent of rapeseeds was directly correlated to the design characteristics of the threshing apparatus, such as the movement speed of rasp bars, feeding rate, clearance between the drum and the concave. The rapeseed damage caused by mechanized harvest has aroused the concern of scholars, but there is no study on the rape harvest. In order to explore the damage of rapeseed caused by combine harvester during threshing process and the superior parameters of the threshing mechanism, rape combine harvest comprehensive experiment and germination rate experiment were carried out. Germination rate was used as an index to evaluate the damage. The type of rasp bars, the movement speed of rasp bars, the clearance between the drum and the concave and the feeding rate were taken as the influencing factors in the rape combine harvest comprehensive experiment and each factor had 3 levels. The evaluation indices were the germination rate and loss rate, the undamaged rapeseeds grown in the same plots were used as the comparison. The germination of mechanically harvested rapeseeds and hand harvested rapeseeds was tested in the same environment. The parameters of threshing apparatus with the highest germination rate (lower damage rate) were obtained through the comparison of germination rates between undamaged rapeseeds and mechanically harvested rapeseeds. The results showed that the germination rate of hand harvested rapeseeds was 99.8%, and the highest germination rate for mechanically harvested rapeseeds was 97.6% and the lowest was 85.7%. Therefore, mechanized harvest did cause damage to rapeseed and the damage rate was 2.4%-14.3% within the range of parameters selected. Through the range analysis of germination rate experiment, the factors affecting the damage of rapeseed were the threshing component form, the clearance between the drum and the concave, the movement speed of rasp bars and the feeding rate in turn. Through the variance analysis of germination rate experiment, the feeding rate (=0.727) had no significant effect on the test results, the threshing gap (=0.004) and threshing component form (0.001) had highly significant effect on the results, the drum speed (=0.012) had a significant effect on the results, and the repeated experiment error (=0.202) had no significant effect on the test results, and the test results were reliable. The threshing component form had a great influence on the harvest damage of rapeseed. The germination rate was 88.3% when using striped rod and was 97.3% when using full nailed tooth, which had 9 percentage points difference. For the rapeseed, striped rod was more likely to cause threshing damage than nails. Due to the limitation of the number of experiments, the relationship among drum rasp bars speed, clearance between the drum and the concave and rapeseed damage couldn’t be concluded. But the optimal parameters should exist between drum rasp bars speed and clearance between the drum and the concave. It needed further research to clarify the relationship among drum rasp bars speed, clearance between the drum and the concave and rapeseed damage. The effect of feeding rate was not significant. The change range of germination rate was less than 1.1 percentage points under different feeding rates. The optimal combination of threshing parameters was: nailed tooth, threshing drum clearance of 9 mm, drum rasp bars speed of 856 r/min, and feeding rate of 2.2 kg/s, and the damage rate was lower. In order to verify the accuracy of the combination of superior parameters, the artificially harvested rapeseed was threshed by experiment bench and different combinations of parameters were used for the comparison. The germination rate under the optimum parameters combination was 97.4%, which was the highest. Combine harvest damage could be reduced to a very small extent through adjusting the threshing system parameters. The study provides a reference for the design of combine harvester threshing system.
mechanization; optimization; crops; rapeseed; threshing damage; combine harvest; germination rate
10.11975/j.issn.1002-6819.2017.24.007
S225.31
A
1002-6819(2017)-24-0052-06
2017-06-09
2017-11-03
國家重點研發(fā)計劃(2016YFD0702101):油菜智能化低損失收獲技術(shù)與裝備研究
王 剛,安徽阜陽人,助理研究員,主要從事收獲機械的研究。Email:421404047@qq.com
吳崇友,研究員,博士,博士生導(dǎo)師,國家油菜產(chǎn)業(yè)技術(shù)體系收獲機械化崗位專家,主要從事耕作與收獲機械的研究。 Email:542681935@qq.com
王 剛,關(guān)卓懷,沐森林,湯 慶,吳崇友. 油菜聯(lián)合收獲機種子籽粒脫粒裝置結(jié)構(gòu)及運行參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):52-57. doi:10.11975/j.issn.1002-6819.2017.24.007 http://www.tcsae.org
Wang Gang, Guan Zhuohuai, Mu Senlin, Tang Qing, Wu Chongyou. Optimization of operating parameter and structure for seed thresher device for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 52-57. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.007 http://www.tcsae.org