肖 琳,王冠輝,邱 思,賈 近,肖海英,張東興
(哈爾濱工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,哈爾濱 150001)
聚合物基復(fù)合材料低速沖擊損傷的研究進(jìn)展
肖 琳,王冠輝,邱 思,賈 近,肖海英,張東興
(哈爾濱工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,哈爾濱 150001)
聚合物基復(fù)合材料具有許多優(yōu)異的性能,如比強(qiáng)度高和耐疲勞等,因此,被廣泛應(yīng)用于各個領(lǐng)域.然而,在其服役過程中,會受到低速沖擊作用而產(chǎn)生明顯或潛在損傷,易導(dǎo)致應(yīng)力集中,形成安全隱患.為此,國內(nèi)外科研人員對此展開了多方面的研究工作.本文綜述了聚合物基復(fù)合材料低速沖擊損傷及環(huán)境和材料結(jié)構(gòu)對其影響的研究現(xiàn)狀,歸納了環(huán)境作用后聚合物基復(fù)合材料的沖擊損傷機(jī)理,總結(jié)了國內(nèi)外對沖擊損傷的測試與評估方法,對比了不同有限元模擬軟件的分析方法,指出了目前研究中存在的問題,并展望了未來需要著重開展的研究方向.
聚合物基復(fù)合材料;低速沖擊;無損檢測;損傷評估;有限元分析
聚合物基復(fù)合材料具有比強(qiáng)度高、比模量高、耐疲勞、耐腐蝕、電絕緣性能好、熱膨脹系數(shù)低、導(dǎo)熱率低、抗熱沖擊等優(yōu)點(diǎn),既滿足常規(guī)環(huán)境下的使用,也可用于高溫、低溫、高濕以及腐蝕性等特殊環(huán)境下的應(yīng)用[1-4].同時,聚合物基復(fù)合材料也存在一些缺點(diǎn),如抗沖擊性能、耐候性差,低溫下易脆斷[5].隨著應(yīng)用范圍不斷擴(kuò)展,環(huán)境、結(jié)構(gòu)對聚合物基復(fù)合材料性能的影響也日益突出,致使材料在使用過程中出現(xiàn)損傷的現(xiàn)象.另外,由于聚合物基復(fù)合材料結(jié)構(gòu)的各向異性,其損傷模式較為復(fù)雜,且在很多情況下多種損傷模式共存.因此,研究聚合物基復(fù)合材料在不同環(huán)境下的損傷具有重要意義.
由聚合物基復(fù)合材料構(gòu)成的飛行器部件,在服役中會受到修理工具掉落、跑道上的砂石、冰雹、雨滴和其他物體的低速沖擊[6],所造成的損傷往往很難用肉眼發(fā)現(xiàn).這些損傷在受到應(yīng)力作用后逐步擴(kuò)展,造成材料力學(xué)性能減退,進(jìn)而導(dǎo)致材料失效,形成重大安全隱患.國內(nèi)外學(xué)者對聚合物基復(fù)合材料的低速沖擊損傷進(jìn)行了大量研究[7-10],包括不同溫度、濕度等環(huán)境下材料老化對其抗沖擊性能的影響,沖擊角度、沖擊物體的形狀和材質(zhì)對材料抗沖擊性能的影響,以及材料結(jié)構(gòu)對其耐沖擊性能的影響.
損傷檢測及評估是聚合物基復(fù)合材料低速沖擊的一個重要方面,除采用光學(xué)顯微鏡、X射線探傷、聲發(fā)射、超聲C掃描等單一無損檢測方法進(jìn)行檢測外,還可以將不同方法進(jìn)行連用,提高測試準(zhǔn)確度,并借助于有限元方法模擬聚合物基復(fù)合材料在低速沖擊下的損傷行為.本文綜述了高溫、低溫和濕熱環(huán)境老化對聚合物基復(fù)合材料低速沖擊下的損傷行為和機(jī)理,以及不同結(jié)構(gòu)對復(fù)合材料沖擊性的影響,總結(jié)了有限元模擬在聚合物基復(fù)合材料沖擊損傷中的應(yīng)用及進(jìn)展,以期為其后續(xù)研究提供參考.
聚合物基復(fù)合材料構(gòu)件在服役過程中,常受溫濕度、紫外線輻射、外載荷等復(fù)雜環(huán)境的作用,這些環(huán)境因子以不同的機(jī)制作用于復(fù)合材料,造成其降質(zhì)退化,狀態(tài)改變直至材料失效[11].目前,國內(nèi)外研究人員主要采用自然環(huán)境和實(shí)驗(yàn)室環(huán)境對材料的耐候性進(jìn)行研究.自然環(huán)境下的實(shí)驗(yàn)結(jié)果更加真實(shí)可靠,但可重復(fù)性差、試驗(yàn)周期長,不利于開展進(jìn)一步的研究.實(shí)驗(yàn)室模擬服役環(huán)境的方法,則控制性和可重復(fù)較好,可加速試驗(yàn)縮短周期;其缺點(diǎn)在于試驗(yàn)結(jié)果可能與實(shí)際環(huán)境老化的機(jī)理有一定偏差[12- 13].
由于大多數(shù)聚合物耐熱性較差,因此,溫度是影響聚合物基復(fù)合材料性能的一個重要因素.高溫下,碳纖維與環(huán)氧基樹脂因熱膨脹系數(shù)差距較大而在兩者界面產(chǎn)生熱應(yīng)力,誘發(fā)CFRP內(nèi)部結(jié)構(gòu)破壞,導(dǎo)致復(fù)合材料的性能降低[14].另一方面,低溫下聚合物基體韌性降低,易發(fā)生脆性斷裂引發(fā)災(zāi)難性事故[15].兩者同屬溫度環(huán)境的影響,但其作用機(jī)理卻不盡相同,對復(fù)合材料性能的影響也有差異,如圖1所示.
圖1 CFRP層合板在30 J能量沖擊后正面、背面損傷及凹坑云圖[14]
Fig.1 Surface observation of the damage on CFRP laminates after 30 J impacted[14]:(a) untreated ;(b) treated at high temperature and 672 h; (c) treated at low temperature and 672 h
從圖1可以看出,未處理、高溫(150 ℃)和低溫(-30 ℃)處理的CFRP試樣受到?jīng)_擊作用后,試樣表面的凹坑深度、裂紋長度和擴(kuò)展方式各不相同.經(jīng)高溫處理的試樣背面裂紋擴(kuò)展呈“十”字型,低溫處理的試樣背面裂紋擴(kuò)展呈“一”字型,而未處理試樣背面裂紋則呈現(xiàn)不規(guī)則擴(kuò)展[14].
濕熱環(huán)境是影響聚合物基復(fù)合材料力學(xué)性能的一個重要因素,而濕熱老化是聚合物基復(fù)合材料的一種重要失效機(jī)制[16].張阿櫻等[17]探討了濕熱老化對CFRP沖擊后剩余拉伸強(qiáng)度的影響.研究發(fā)現(xiàn):隨著濕熱處理時間的延長,CFRP沖擊后剩余拉伸強(qiáng)度不斷下降;隨著處理溫度的升高, CFRP的抗沖擊性能下降增大.隨著沖擊能量的提高,未老化試樣、濕熱老化試樣及脫濕試樣的沖擊后剩余拉伸強(qiáng)度顯著下降[18].這主要是復(fù)合材料的基體與纖維界面間的水分子對界面結(jié)構(gòu)的破壞造成的.當(dāng)其水分含量下降時,界面化學(xué)鍵和范德華力均有所增加[19],從而提高了界面的剪切強(qiáng)度.
復(fù)合材料層間強(qiáng)度主要由樹脂的內(nèi)聚能決定,其數(shù)值遠(yuǎn)小于面內(nèi)拉伸、壓縮強(qiáng)度,因而復(fù)合材料結(jié)構(gòu)件對垂直于板面的載荷作用更為敏感[20].因此,復(fù)合材料整體結(jié)構(gòu)類型、增強(qiáng)材料的材質(zhì)以及排列都會對復(fù)合材料的抗沖擊性能產(chǎn)生很大的影響.目前,對復(fù)合材料的結(jié)構(gòu)設(shè)計研究大多數(shù)集中于蜂窩結(jié)構(gòu)三明治板、編織復(fù)合材料以及雜交/混合復(fù)合材料等[21].
編織纖維增強(qiáng)復(fù)合材料具有更好的層間性能和更高的損傷容限[22].與碳纖維復(fù)合材料層合板相比,三明治板具有更高的穩(wěn)定性,它與混合材料層合板結(jié)構(gòu)具有更高的抗沖擊性能.目前,三明治板復(fù)合材料被大量用作承載部件.Al-Shamary等[23]研究了3種結(jié)構(gòu)的三明治板對低速沖擊的響應(yīng).其中面板為單向玻璃纖維,環(huán)氧樹脂和PVC泡沫分別作為基體和芯材,3種結(jié)構(gòu)分別為[0°/90°/0°/芯材/0°/90°/0°]、[0°/90°/芯材/0°/0°/芯材/90°/0°]和[0°/90°/芯材/0°/芯材/0°/芯材/90°/0°].在不同沖擊能量水平下,結(jié)構(gòu)內(nèi)部具有兩層內(nèi)面板的三明治板展現(xiàn)出最小的接觸力和最強(qiáng)的能量吸收能力,如圖2(a)、(b)所示.當(dāng)沖擊能量為40 J時,三明治板內(nèi)部沒有內(nèi)面板時受到的接觸力幾乎為具有兩層內(nèi)面板時的1.77倍.三明治板可通過內(nèi)部添加內(nèi)面板來提高對沖擊能量的吸收.
圖2 3種結(jié)構(gòu)的三明治板低速沖擊響應(yīng)情況[23]
Fig.2 Low velocity impact response of sandwich plates with 3 structures[23]:(a) diagram of maximum contact force and impact energy; (b) diagram of absorbed energy and impact energy
復(fù)合材料層合板的堆疊順序也是改變結(jié)構(gòu)穩(wěn)定性的一個重要因素.Rhead等[24]通過改變混合纖維(碳纖維/玻璃纖維)增強(qiáng)復(fù)合材料的堆疊序列抑制子層屈曲分層的傳播和反對稱層合板屈曲失效,可以有效提高層合板的抗沖擊性.不同能量沖擊后壓縮強(qiáng)度(CAI)試驗(yàn)表明混合纖維復(fù)合材料比碳纖維復(fù)合材料有更好的抗沖擊性能.Chandekar等[25]通過H-VARTM真空輔助成型工藝制備了4種結(jié)構(gòu)的復(fù)合材料板:10EG、10AS4、Hybrid181和Hybrid262,其結(jié)構(gòu)如圖3所示.研究發(fā)現(xiàn),在低速沖擊過程中,Hybrid262類型層合板的抗沖擊性最強(qiáng),而10AS4的抗沖擊性最差,如圖4所示.
熱固性聚合物基復(fù)合材料的樹脂基體具有較高的交聯(lián)密度,因此,材料呈脆性,抗沖擊性能較低.對此,國內(nèi)外研究人員采用層間增韌的方法提高纖維增強(qiáng)熱固性聚合物基復(fù)合材料的抗沖擊性能.目前,復(fù)合材料層間增韌主要有3種方法:顆粒增韌、聚合物纖維增韌和薄膜增韌[26].Sagar等[27]利用回收的磨短碳纖維(SMCF)改性環(huán)氧樹脂,添加5wt%和10wt%的SMCF粒子可使基體的斷裂韌性分別增加了300%和700%.以此為基體制備的兩種纖維/改性環(huán)氧樹脂復(fù)合材料的斷裂韌性都有大幅提高(50%和64%).Downey和Sreekumar等[28-30]對纖維進(jìn)行表面改性,提高了纖維與樹脂的附著力,使得復(fù)合材料的斷裂韌性隨之提高.鄧火英等[31]以無規(guī)碳納米管膜、取向碳納米管膜對復(fù)合材料進(jìn)行層間增韌,都可以提高CNT膜/碳纖維復(fù)合材料的力學(xué)性能和層間韌性,其中以無規(guī)CNT膜的增韌效果為佳.當(dāng)CNT無規(guī)膜的面密度為0.75 g/m2時,材料的Ⅰ型層間斷裂韌性GⅠC和Ⅱ型層間斷裂韌性GⅡC與改性前相比分別提高了21%和42%.
圖3 4種結(jié)構(gòu)的復(fù)合材料板[25]
Fig.3 Four structures of composite plates[25]:(a) E Glass Epoxy; (b) AS4 Carbon Epoxy;(c) Hybrid181 Epoxy; (d) Hybrid262 Epoxy
圖44種類型層合板的比沖擊載荷與漸近損傷加載水平曲線圖[25]
Fig.4 Graphs of specific impact load and loading level of progressive damage of 4 types of laminates[25]
按照低速沖擊損傷形態(tài)的不同,可以將聚合物基復(fù)合材料層合板的沖擊損傷大致分為3類:基體開裂、纖維斷裂和層間分層[32-34].通過目測對材料表面的損傷來評估整體材料性能的方法往往不夠準(zhǔn)確.目前,常用的損傷的檢測方法有:光學(xué)顯微鏡、X射線探傷、聲發(fā)射、超聲C掃描等.
Topac等[35]在復(fù)合材料受低速沖擊破壞過程中,采用高速攝像機(jī)和DIC技術(shù)來記錄材料的損傷進(jìn)展和動態(tài)應(yīng)變場.Bull等[36]采用一種新穎的方法對碳纖維增強(qiáng)復(fù)合材料的沖擊損傷進(jìn)行了多尺度研究,即微焦點(diǎn)X射線斷層掃描(μCT)和同步輻射X射線分層成像(SRCL)共同檢測損傷.兩種方法都捕捉到基體開裂、分層以及裂紋等損傷現(xiàn)象,以及增韌區(qū)域的損傷形貌,兩者分辨率分別達(dá)到了0.7和4.3 μm,如圖5所示.
圖5未增韌(0.6J沖擊)和增韌(1.2J沖擊)的結(jié)構(gòu)相同界面層區(qū)域的兩種掃描圖像結(jié)果[36]
Fig.5 SEM graphs of the same interfacial layer region of untoughened (0.6 J impacted) and toughened (1.2 J impacted) structures:(a) μCT-2D images of cross section; (b) SRCL images of cross section
相較而言,SRCL掃描精度更高,且可以檢測到樹脂富集區(qū)域,并證明了顆粒有助于增韌裂紋的偏轉(zhuǎn).Gu等[37]采用數(shù)字散斑干涉(DSPI)方法對復(fù)合材料層合板低速沖擊損傷的熱負(fù)荷進(jìn)行無損檢測,可以有效、靈敏地觀察到異常散斑條紋分布.此外,低速沖擊損傷對復(fù)合材料層合板結(jié)構(gòu)變形可通過圖像處理準(zhǔn)確地進(jìn)行評價.Xia等[38]采用超聲C掃描對維修后飛機(jī)結(jié)構(gòu)件的落錘沖擊損傷容限進(jìn)行了研究.通過對不同沖擊能量水平造成的損傷壓痕、大小以及材料吸收的能量和剩余壓縮強(qiáng)度進(jìn)行對比,判定預(yù)浸料修復(fù)板的耐沖擊性和抗壓性優(yōu)于原始板,而使用樹脂浸漬修復(fù)后的板材性能最差.
另外,關(guān)于復(fù)合材料層合板損傷阻抗和損傷容限的研究,很多研究人員通過層合板內(nèi)部分層面積大小來判定其性能的退化程度,這種方法并不夠完善.因此,沈真提出采用沖擊凹坑深度來衡量復(fù)合材料層合板性能的退化并評估損傷阻抗和損傷容限的建議[39- 40].這是因?yàn)楫?dāng)層合板內(nèi)部分層損傷面積不再增加時,其凹坑損傷深度可能繼續(xù)增加,導(dǎo)致層合板力學(xué)性能仍呈現(xiàn)下降的趨勢.
復(fù)合材料種類繁多、結(jié)構(gòu)復(fù)雜、服役環(huán)境多變,借助于計算機(jī)模擬技術(shù)對其進(jìn)行研究具有很高的效費(fèi)比.采用有限元模擬與實(shí)驗(yàn)相結(jié)合的方法[41-43],歸納材料在低速沖擊載荷作用下的損傷規(guī)律,探討沖擊損傷與結(jié)構(gòu)剩余強(qiáng)度的內(nèi)在聯(lián)系,具有重要的理論和工程意義.有限元計算可通過LS-DYNA、ANSYS、ABAQUS、HYPERMESH及NASTRAN等軟件進(jìn)行[44],其中較為常用的軟件是LS-DYNA、ANSYS和ABAQUS軟件,主要以二維和三維有限元法進(jìn)行計算.
有限元模擬中的實(shí)體模型可通過模擬軟件建立,結(jié)構(gòu)復(fù)雜的模型也可通過CAD繪圖軟件建立后導(dǎo)入模擬軟件前處理中.如Rajesh等[45]運(yùn)用SolidWorks軟件建立了3種復(fù)雜結(jié)構(gòu)的3D編織復(fù)合材料模型,如圖6所示,隨后導(dǎo)入ANSYS軟件中,使得模型的建立更加簡單、高效.
在復(fù)合材料漸近損傷分析中,常用的強(qiáng)度失效準(zhǔn)則有最大應(yīng)力失效準(zhǔn)則、最大應(yīng)變失效準(zhǔn)則、蔡-希爾失效準(zhǔn)則、霍夫曼失效準(zhǔn)則、蔡-吳張量失效準(zhǔn)則、Hashin失效準(zhǔn)則等[46].Chang等針對面內(nèi)的基體和纖維損傷提出了Chang-Chang破壞準(zhǔn)則,通過進(jìn)一步改進(jìn)對層間剪切應(yīng)力和剝離應(yīng)力進(jìn)行分析,但損傷的逐漸擴(kuò)展過程還需要利用斷裂力學(xué)方法預(yù)測[47].由于斷裂力學(xué)方法是基于用戶自定義(初始裂紋和有限元網(wǎng)格劃分)進(jìn)行預(yù)測,其準(zhǔn)確性和可靠性受限.Su等[48]在有限元模型中引入內(nèi)聚力單元模擬沖擊損傷的起始和擴(kuò)展,采用二次開發(fā)破壞準(zhǔn)則來模擬分層損傷,但其過分依賴于準(zhǔn)則中定義的參數(shù).對此,在模型中引入層間摩擦效應(yīng)可有效地模擬分層損傷[49],并可以避免定義較復(fù)雜的破壞準(zhǔn)則,提高了建模效率和準(zhǔn)確性.于飛等[50]改進(jìn)了內(nèi)聚力損傷模型,對損傷起始準(zhǔn)則進(jìn)行了修正,彌補(bǔ)了原模型未考慮層內(nèi)裂紋對界面分層影響的不足,且分層損傷面積的模擬結(jié)果與試驗(yàn)結(jié)果吻合較好.為了預(yù)測低速沖擊造成的永久損傷凹坑大小,Singh等[51]建立了兩種模型:損傷誘發(fā)塑性模型和彈塑性損傷模型.與試驗(yàn)結(jié)果相比,損傷誘發(fā)塑性模型能夠更好的預(yù)測永久損傷凹坑的深度.
圖6 宏觀3D編織結(jié)構(gòu)[45]
Fig.6 The macro 3D woven structures[45]:(a) orthogonal structure;(b) angle interlock structure;(c) double ribbed structure
隨著聚合物基復(fù)合材料的應(yīng)用領(lǐng)域不斷擴(kuò)展,對其性能水平的要求也越來越高.面對服役中的環(huán)境老化問題,特別老化后的損傷機(jī)制及性能演變,聚合物基復(fù)合材料的相關(guān)研究還有待提高.目前,低速沖擊研究對象多為單一環(huán)境因素下簡單結(jié)構(gòu)的層合板,而對復(fù)雜環(huán)境、載荷下的復(fù)合材料的損傷研究還不甚透徹.對于纖維隨機(jī)分布的纖維增強(qiáng)層合板、復(fù)雜結(jié)構(gòu)的復(fù)合材料沖擊損傷研究及其環(huán)境老化下力學(xué)性能的演變研究較少.此外,在聚合物基復(fù)合材料低速沖擊損傷有限元模擬方面,層合板分層、微裂紋產(chǎn)生、裂紋穩(wěn)態(tài)擴(kuò)展和失穩(wěn)擴(kuò)展過程基于三維應(yīng)力和現(xiàn)有的失效理論的模擬預(yù)測精確度有待提高,而為此建立的復(fù)雜模型、多載荷步、用戶子程序等將會大幅度提高模擬計算的工作量,甚至增大了計算結(jié)果與實(shí)際結(jié)果之間的誤差.因此,高效的計算模型是未來模擬的主要研究方向.
[1] ISHIDA H. Characterization of composite materials [M]. Harbin: Harbin Institute of Technology Press, 2014: 669-76.
[2] CARLSSON L, ADAMS D, PIPES R. Experimental characterization of advanced composite materials.Fourth Edition [M]. Boca Raton:CRC Press, 2014.
[3] 郭建軍. 碳纖維多官能團(tuán)環(huán)氧樹脂基復(fù)合材料基體及界面研究 [D]. 上海: 上海大學(xué)學(xué)位論文, 2009.
GUO Jianjun. Study on matrix and interface of carbon fiber/multifunctionnal epoxy resin matrix composites [D]. Shanghai: Dissertation of Shanghai University, 2009.
[4] MASUELLI M A. Introduction of fibre reinforced polymers-polymers and composites: concepts, properties and processes [M]. Fiber Reinforced Polymers-The Technology Applied for Concrete Repair. 2013: 3-40.DOI: 10.5772/54629.
[5] PARK H. Investigation on repairable damage tolerance for structural design of aircraft composite structure [J]. J Compos Mater, 2016. DOI: 10.1177/0021998316643579 jcm.sagepub.com.
[6] 夏明星. 濕熱下含孔隙CFRP層合板抗低能量沖擊性能研究 [D]. 哈爾濱: 哈爾濱工業(yè)大學(xué)學(xué)位論文, 2011.
XIA Mingxing. The research of resistance to low energy impact properties of carbon fiber reinforced plastic under hygrothermal environment [D]. Harbin: Dissertation of Harbin Institute of Technology, 2011.
[7] 劉萬雷, 常新龍, 張曉軍,等. 纏繞復(fù)合材料殼體低速沖擊損傷試驗(yàn)與仿真研究[J]. 推進(jìn)技術(shù), 2017, 38(1):172-178. DOI: 10.13675/j.cnki.tjjs.2017.01.023.
LIU Wanlei, CHANG Xinlong, ZHANG Xiaojun, et al. Experimental and numerical analysis of filament winding composite shell under low-velocity impact [J]. Journal of Propulsion Technology, 2017, 38(1): 172-178. DOI: 10.13675/j.cnki.tjjs.2017.01.023.
[8] 李胤, 田干, 楊正偉,等. 復(fù)合材料低速沖擊損傷超聲紅外熱波檢測能力評估[J]. 儀器儀表學(xué)報, 2016, 17(5):1124-1130.
LI Yin, TIAN Gan, YANG Zhengwei, et al. Detection capabilityevaluation of low velocity impact damage in composites using ultrasonic infrared thermography [J]. Chinese Journal of Scientific Instrument, 2016, 17(5): 1124-1130.
[9] TOPAC O T, GOZLUKLU B, GURSES E, et al. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact [J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 167-182. DOI: 10.1016/j.compositesa.2016.06.023.
[10] HAZZARD M K, HALLETT S, CURTIS P T, et al. Effect of fibre orientation on the low velocity impact response of thin dyneema? composite laminates [J]. International Journal of Impact Engineering, 2017, 100: 35-45. DOI: 10.1016/j.ijimpeng.2016.10.007.
[11] 南田田. 濕熱環(huán)境下彎曲載荷對CFRP性能的影響 [D]. 哈爾濱工業(yè)大學(xué), 2013.
NAN Tiantian. Influence of bending load on the properties of CFRP under hygrothermal environment [D]. Harbin: Dissertation of Harbin Institute of Technology, 2013.
[12] 馮宇,何宇廷,邵青,等. 濕熱環(huán)境對復(fù)合材料加筋板壓縮性能的影響[J].機(jī)械工程材料,2015,39(1)73-76.
FENG Yu, HE Yuting, SHAO Qing, et al.Effect of Hygrothermal Environment on Compressive Performance of Composite Stiffened Panel [J]. Materials for Mechanical Engineering, 2015,39(1)73-76.
[13] FENG Y, HE Y, AN T, et al. Influence of hygrothermal environment on compressive buckling and post-buckling performance of aero composite stiffened panel [J]. Journal of Materials Engineering, 2015, 43(5): 81-88. DOI: 10.11868/j.issn.1001-4381.2015.05.014.
[14] 肖琳. 高低溫循環(huán)作用后CFRP層合板力學(xué)性能演變研究 [D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2014.
XIAO Lin. Study on mechanical properties evolution of cfrp laminates after high and low temperature cycle [D]. Harbin: Dissertation of Harbin Institute of Technology, 2014.
[15] JIA Z, MA H, LAU K, et al. Stress transfer properties of carbon nanotube reinforced polymer composites at low temperature environment [J]. Composites Part B: Engineering, 2016,106:356-365.DOI: 10. 1016/j. compositesb. 2016. 09. 006.
[16] SHIVA E, FATHOLLAH T B, FARID T. Long-term hygrothermal response of perforated GFRP plates with/without application of constant external loading [J]. Polym Compos, 2012, 33(4): 467-475. DOI: 10.1002/pc.22150.
[17] ZHANG A, LU H, ZHANG D. Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates [J]. Compos Str, 2013, 95(1): 322-327. DOI: 10.1016/j.compstruct.2012.08.001.
[18] RAMOS J R S D A, OLSSON R. Testing and modelling of tension after impact of a thin ply textile composite [C]// ECCM 17 Munich June, 2016.
[19] LIU W, HUANG J, WANG N, et al. The influence of moisture content on the interfacial properties of natural palm fiber-matrix composite [J]. Wood Science and Technology, 2015, 49(2): 371-387. DOI: 10.1007/s00226-015-0702-3.
[20] PATEL J S, BODDU V M, BRENNER M W, et al. Effect of fabric structure and polymer matrix on flexural strength, inter-laminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites [J]. Textile Research Journal, 2016, 86(2): 127-137. DOI: 10.1177/0040517515586165.
[21] AHMED A, LI W. The low-velocity impact damage resistance of the composite structures-a review[J]. Rev Adv Mater Sci, 2015, 40(2): 127-145.
[22] PAPA I, LOPRESTO V, SIMEOLI G, et al. Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact [J]. Composites Part B: Engineering, 2016,115:282-288. DOI: 10.1016/j.compositesb.2016.09.076.
[23] AL-SHAMARY A K J, KARAKUZU R, ?ZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations [J]. Journal of Sandwich Structures & Materials, 2016, 18(6): 754-768. DOI: 10.1177/1099636216653267.
[24] RHEAD A T, SHI H, BUTLER R. Damage resistance and damage tolerance of hybrid carbon-glass laminates [J]. Collection of Technical Papers-AIAA/ASME /ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011, 76: 224-232. DOI: 10.1016/j.compositesa.2015.06.001.
[25] CHANDEKAR G S, KELKAR A D. Experimental and numerical investigations of textile hybrid composites subjected to low velocity impact loadings [J]. Sci World J, 2014(1): 325783-325783. DOI: 10.1155/2014/325783.
[26] 董慧民, 益小蘇, 安學(xué)鋒,等. 纖維增強(qiáng)熱固性聚合物基復(fù)合材料層間增韌研究進(jìn)展[J]. 復(fù)合材料學(xué)報, 2014, 31(2): 273-285.
DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273-285.
[27] CHOLAKE S T, MORAN G, JOE B, et al. Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre [J]. Construction and Building Materials, 2016, 111: 399-407. DOI: 10.1016/j. conbuildmat. 2016.02.039.
[28] DOWNEY M A, DRZAL L T. Toughening of carbon fiber-reinforced epoxy polymer composites utilizing fiber surface treatment and sizing [J]. Composites Part A Applied Science & Manufacturing, 2016, 90: 687-698. DOI: 10.1016/j.compositesa.2016.09.005.
[29] P A S, JOSEPH K, G U, et al. Surface-modified sisal fiber-reinforced eco-friendly composites: Mechanical, thermal, and diffusion studies [J]. Polymer Composites, 2015, 32(1): 131-138. DOI: 10.1002/pc.21028.
[30] LIU Z, ZHANG L, YU E, et al. Modification of Glass Fiber Surface and Glass Fiber Reinforced Polymer Composites Challenges and Opportunities: From Organic Chemistry Perspective [J]. Current Organic Chemistry, 2015, 19(11):1-17. DOI: 10. 2174 / 138527281911150610100914.
[31] 鄧火英, 王立敏, 馮奕鈺,等. 碳納米管膜層間增韌對碳纖維復(fù)合材料力學(xué)性能的影響[J]. 宇航材料工藝, 2015, 45(5): 31-35. DOI:10. 3969 / j. issn. 1007-2330. 2015. 05. 006.
DENG Huoying, WANG Limin FENG Yiyu, et al. Effect of carbon nanotube film interlayer toughening on mechanical properties of carbon fiber reinforced composite [J]. Aerospace Materials and Technology, 2015, 45(5): 31-35. DOI:10. 3969 / j. issn. 1007-2330. 2015. 05. 006.
[32] 牛春勻. 實(shí)用飛機(jī)復(fù)合材料結(jié)構(gòu)設(shè)計與制造[M]. 北京: 航空工業(yè)出版社, 2010.
NIU Chunyun. Composite Airframe Structures and Manufacture [M]. Beijing: Aviation Industry Press, 2010.
[33] LIAGHAT G, SHANAZARI H, HADAVINIA H, et al. Analytical investigation of high-velocity impact on hybrid unidirectional/ woven composite panels [J]. J Thermoplast Compos Mater, 2017,30(4):545-563. DOI: 10.1177/0892705715604680.
[34] MOUTI Z, WESTWOOD K, LONG D, et al. An experimental investigation into localised low-velocity impact loading on glass fibre-reinforced polyamide automotive product [J]. Compos Str, 2013, 104(5): 43-53. DOI: 10.1016/j.compstruct.2013.03.014.
[35] TOPAC O T, TASDEMIR B, GOZLUKLU B, et al. Experimental and computational investigation of out-of-plane low velocity impact behavior of CFRP composite plates [M]//Fracture, Fatigue, Failure and Damage Evolution, Volume 8. Beilin: Springer International Publishing, 2016: 9-16. DOI: 10.1007/978-3-319-21611-9_2.
[36] BULL D J, SPEARING S M, SINCLAIR I, et al. Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography [J]. Compos Part A, 2013, 52(5): 62-69. DOI: 10.1016/j.compositesa.2013.05.003.
[37] 顧國慶,王開福.復(fù)合材料層合板低速沖擊損傷激光散斑干涉無損檢測研究[J].應(yīng)用激光,2012,32(6):527-531 DOI: 10.1007/s12541-012-0113-4.
GU Guoqing, WANG Kaifu. NDT of low velocity impact damages in composite laminates using speckle interferometry [J]. Applied Laser, 2012,32(6):527-531. DOI: 10.1007/s12541-012-0113-4.
[38] GUO XIA, LI ZENGSHAN, NIE HENGCHANG, et al. Impact resistance and damage tolerance of scarf-repaired composite structures: An experimental investigation [J]. Polym Compos, 2014,37(6):1681-1694. DOI: 10.1002/pc.23341.
[39] 鄭曉霞, 鄭錫濤, 沈真,等. 低速沖擊與準(zhǔn)靜態(tài)壓痕力下復(fù)合材料層合板的損傷等效性[J]. 航空學(xué)報, 2010, 31(5): 928-933.
ZHENG Xiaoxia, ZHENG Xitao, SHEN Zhen, et al. Damage equivalent of composite laminates subjected to drop-weight impact and quasi-static indentation force [J]. Acta Aeronautica Et Astronautica Sinca, 2010, 31(5): 928-933.
[40] 王儉, 沈真. 復(fù)合材料沖擊損傷阻抗性能的試驗(yàn)研究[J]. 航空制造技術(shù), 2009(s1): 161-164. DOI: 10.3969/j.issn.1671-833X.2009.z1.050.
WANG Jian, SHEN Zhen.Experimental study on impact damage resistance property of composites [J]. Aeronautical Manufacturing Technology, 2009(s1): 161-164. DOI: 10.3969/j.issn.1671-833X.2009.z1.050.
[41] XIAO Q Z, KARIHALOO B L. Two-scale asymptotic homogenisation-based finite element analysis of composite materials [M]// Multiscale Modelling in Solid Mechanics Computational approaches, 2015: 1568-1579. DOI: 10.1142/9781848163089_0002.
[42] LOU X, CAI H, YU P, et al. Failure analysis of composite laminate under low-velocity impact based on micromechanics of failure [J]. Compos Str, 2017, 163: 238-247. DOI: 10.1016/j.compstruct.2016.12.030.
[43] OCHOA O O, REDDY J N. Finite element analysis of composite laminates [M]. Kluwer Academic Publishers, 2014.
[44] 張佳. 有限元軟件的比較與選擇[J]. 現(xiàn)代裝飾: 理論, 2016(8): 258-259.
ZHANG Jia. The comparison and selection of finite element software [J]. Modern Decoration(Theory), 2016(8): 258-259.
[45] MISHRA R, BEHERA B K, MILITKY J. Impact simulation of three-dimensional woven kevlar-epoxy composites [J]. Journal of Industrial Textiles, 2016,45(5):978-994. DOI: 10.1177/1528083714550056.
[46] 陳建橋. 復(fù)合材料力學(xué)[M]. 武漢:華中科技大學(xué)出版社, 2016.
CHEN Jianqiao. Mechanics of composites [M]. Wuhan: Huazhong University of Science and Technology Press Co. Ltd., 2016.
[47] VIEILLE B, CHABCHOUB M, BOUSCARRAT D, et al. A fracture mechanics approach using acoustic emission technique to investigate damage evolution in woven-ply thermoplastic structures at temperatures higher than glass transition temperature [J]. Composites Part B, 2017,116:340-351. DOI: 10.1016/j.compositesb.2016.10.074.
[48] SU Z C, PHAM D C, NARAYANASWAMY S. High-fidelity progressive failure analyses of composite laminates under impact loading [C]// ECCM17-17 th European Conference on Composite Materials, 2016.
[49] ZHANG J, ZHANG X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact [J]. Composite Structures, 2015, 125: 51-57. DOI: 10.1016/j.compstruct.2015.01.050.
[50] 于飛, 陳向明, 張阿盈, 等. 一種改進(jìn)的內(nèi)聚力損傷模型在復(fù)合材料層合板低速沖擊損傷模擬中的應(yīng)用[J]. 復(fù)合材料學(xué)報, 2015, 32(6): 1745-1753. DOI: 10.13801/j.cnki.fhclxb.20150505.001.
YU Fei, CHEN Xiangming, ZHANG Aying, et al.Application of modified cohesive zone damage model in damage simulation of composite laminates subject to low-velocity impact [J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1745-1753. DOI: 10.13801/j.cnki.fhclxb.20150505.001.
[51] SINGH H, MAHAJAN P. Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite [J]. Composite Structures, 2015, 131: 290-303. DOI: 10.1016/j.compstruct.2015.04.070.
Developmentondamageoflowvelocityimpactonpolymermatrixcomposites
XIAO Lin, WANG Guanhui, QIU Si, JIA Jin, XIAO Haiying, ZHANG Dongxing
(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
The polymer composites can be widely used in many fields due to their amazing properties, such as high strength-weight ratio, anti-fatigue and so on. However, some obvious or potential damage, which can case stress concentration and induce safety hazard, may be generated by low velocity impact during the service process of the materials. Thus many researchers have focused on this problem. In this paper, the current situation of the effect of various environment and composite structures on the low velocity impact damage of polymer matrix composites is summarized. The development of the impact damage assessment and finite element analysis are illustrated. The impact damage mechanism of composites is clarified. The methods and technology of impact damage assessment are summarized. The different analysis methods of finite element softwares are compared. In addition, the problems existing in the current researches are presented. In the end, the developing trend and promising research topics are suggested.
polymer matrix composites; low velocity impact; influencing factors; damage assessment; finite element analysis
2017-03-20. < class="emphasis_bold">網(wǎng)絡(luò)出版時間
時間: 2017-10-17.
黑龍江省自然科學(xué)基金資助項(xiàng)目(E201311).
肖 琳(1988—),女,博士;張東興(1962—),男,教授,博士生導(dǎo)師.
張東興,E-mail:dongxingzhang@163.com.
10.11951/j.issn.1005-0299.20170086
TB332
A
1005-0299(2017)06-0001-08
(編輯呂雪梅)