薛 源,張正富,沈 韜,徐順濤,吳天涯
(昆明理工大學 材料科學與工程學院,昆明 650093)
微波燒結LiCo1/3Ni1/3Mn1/3O2電磁場與溫度場的仿真模擬
薛 源,張正富,沈 韜,徐順濤,吳天涯
(昆明理工大學 材料科學與工程學院,昆明 650093)
分析了微波燒結的原理和特點,利用COMSOL Multi-physics模擬軟件對矩形微波爐進行了仿真模擬,研究了微波燒結正極材料LiCo1/3Ni1/3Mn1/3O2時電磁場與溫度場的分布,測量了粉末樣品LiCo1/3Ni1/3Mn1/3O2的介電常數(shù),并與模擬結果相對照.研究表明:微波在燒結LiCo1/3Ni1/3Mn1/3O2樣品時,爐腔內(nèi)電磁場的分布受到影響,微波爐內(nèi)表面的電場強度減弱;材料內(nèi)部溫度場的分布不均勻,材料的下半部分溫度較高;同時,在仿真模擬計算過程中,求得LiCo1/3Ni1/3Mn1/3O2在微波中燒結到不同溫度時的能量損耗,根據(jù)李赫德涅凱法則計算出其對應的相對介電常數(shù),發(fā)現(xiàn)在20~620 ℃,相對介電常數(shù)隨溫度的上升而變大.根據(jù)實驗測得的復合介電常數(shù),求出對應溫度點LiCo1/3Ni1/3Mn1/3O2的相對介電常數(shù).利用Origin對仿真模擬計算和實驗求得的兩組相對介電常數(shù)數(shù)據(jù)進行擬合對比,發(fā)現(xiàn)實驗求得的LiCo1/3Ni1/3Mn1/3O2的相對介電常數(shù)與仿真模擬計算所得數(shù)據(jù)趨勢吻合.
微波燒結;LiCo1/3Ni1/3Mn1/3O2;矩形微波爐;有限元模擬;相對介電常數(shù)
微波是指頻率為300 MHz至3 000 GHz范圍內(nèi)的電磁波.微波技術發(fā)展迅速,并已得到廣泛應用.其中,微波加熱是微波應用的一個重要組成部分,它是通過將材料所吸收的微波能轉(zhuǎn)化為自身內(nèi)部的動能和熱能的過程,與常規(guī)燒結方式相比,微波加熱過程是一種電磁場能量在傳輸過程中損耗的過程,具有加熱均勻、燒結溫度低、燒結時間短、能源利用率和加熱效率高(比常規(guī)燒結節(jié)省80%左右)、安全無污染等優(yōu)點[1-4].
近幾年,動力鋰離子電池的發(fā)展迅猛[5],其中,鋰離子動力電池正極材料包括磷酸鐵鋰(LiFePO4)、錳酸鋰(LiMn2O4)、鎳鈷錳三元材料(LiNi1-x-yCoxMnyO2)3種[6].目前,動力鋰離子電池正極材料主要的合成方法有高溫固相法、共沉淀法、溶膠凝膠法、噴霧熱分解法和濕化學法等[7-12].其中,高溫固相法具有操作簡單、投入成本低、可以精確控制原料計量比等優(yōu)點,成為最適宜于大批量工業(yè)生產(chǎn)的使用方法.高溫固相法雖然工藝簡單,但其原料混合均勻程度有限,需要在高溫下反應較長時間,合成的產(chǎn)物通常顆粒大小不均勻、晶粒形狀不規(guī)則、晶界尺寸較大以及電化學性能不容易控制等[13-15].微波法通過改變加熱方式改進工藝和提高效率制備LiCo1/3Ni1/3Mn1/3O2,為此,本文將針對微波燒結LiCo1/3Ni1/3Mn1/3O2過程進行進一步的理論分析和實驗探討.
本文借助有限元求解器COMSOL Multi-physics實現(xiàn)了微波電場和熱傳遞的耦合計算,研究并展示了多模腔微波燒結過程的三維模擬結果,并采用數(shù)值計算方法計算出理論相對介電常數(shù),并與模擬結果相對照,研究了微波燒結LiCo1/3Ni1/3Mn1/3O2時材料的相對介電常數(shù)的變化規(guī)律.
借助COMSOL Multi-physics對微波燒結LiCo1/3Ni1/3Mn1/3O2進行數(shù)值模擬,加熱腔內(nèi)的電場分布通過式(1)求取[16].
(1)
計算材料在電磁場中生成的電阻熱即微波加熱過程中的損耗功率(P)為
(2)
(3)
式中:ρ為密度;Cp為常壓熱容;k是熱傳導系數(shù);T為溫度;t為時間.
由于實驗中使用的微波爐是家用矩形波爐,時間溫度屬于可控因素,但在加熱過程中物料受熱是否均勻,物料對微波場分布的影響,需要通過模擬進行研究和探討.
微波爐尺寸為267 mm×270 mm×188 mm.饋口位于z=170 mm的平面上,上表面與微波爐上底同面,其尺寸為50 mm×78 mm×18 mm.將微波爐內(nèi)腔作為金屬面,輸入2.45 GHz,功率500 W的矩形TE10平面波.爐腔和波導都是完美的導體,用邊界條件n×E=0(n為垂直于邊界平面的單位矢量;E為電場強度矢量)表示.利用對稱性截取一半模型,由于電場關于對稱面鏡像對稱,因此,對稱面可看成是完美的磁導體,用邊界條件n×H=0(H為磁場強度矢量)表示.建立的微波爐幾何模型如圖1所示.
圖1 微波爐的幾何模型
微波恒定功率設置為800 W,初始溫度T0=298 K,模擬使用的LiCo1/3Ni1/3Mn1/3O2粉末的初始物理參數(shù)一部分是真實測得:由成都志揚微波科技有限公司使用圓柱腔微擾法復介電常數(shù)測試得相對介電常數(shù)ε=6.3,由排水法測得密度ρ=4 678 kg/m3,一部分根據(jù)文獻得到:電導率σ=1.13 S/m,相對磁導率μ′=1,熱傳導率k=1.5 W/(m·K),等壓熱容Cp=800 J/(kg·K).需要著重說明以下3點:1)LiCo1/3Ni1/3Mn1/3O2材料作為一種粉末狀材料,其相對介電常數(shù)、電導率等電介質(zhì)參數(shù),目前仍是材料領域需要研究的課題;2)因為微波燒結的致密作用,故測得的相對介電常數(shù)是以空氣作為填充物;3)從不同文獻查閱的相關數(shù)據(jù)出入很大.因此,上述部分參數(shù)設置為初始參數(shù),作常量處理.而作為初步對電磁場和溫度場分布的研究,數(shù)據(jù)基本可靠,在后續(xù)的研究中將進一步獲得更真實準確的材料參數(shù).
通過以上設定,在COMSOL Multi-physics求解器中獲得結果,空腔中微波場的分布如圖2所示.在微波爐的z=94 mm橫截面,如圖2所示,微波在爐腔內(nèi)傳播遇到金屬腔體發(fā)生全發(fā)射,從而疊加產(chǎn)生駐波.通過分析微波爐的諧振方式以及電磁場的分布,找出合適的樣品放置位置.因此,樣品臺設置在高度為z=94 mm的平面.其中電場的最大值E=11 400 V/m.
圖2 空腔中電磁場的分布
在微波場中放置樣品后,樣品被設為邊長為0.02 m的正方體,由于樣品的吸波性能,爐腔內(nèi)電磁場的分布將會受到影響,如圖3所示.放入樣品后,對比圖2和圖3可知,樣品周圍微波場明顯減弱.說明在有較大負載時,微波爐內(nèi)部表面的電場強度減弱,這有助于微波的吸收,但其他位置的電場卻有所增強,電場強度的最大值為E=13 600 V/m.
圖3 電磁場分布
如圖4所示,樣品的各部分加熱并不均勻,在實際燒結過程中,可以采取樣品臺旋轉(zhuǎn)等方式解決這一問題.此外,微波燒結正極材料時,溫度場的分布取決于兩個方面,一方面是材料密度的分布情況,另一個方面是電磁場的分布.但在模擬過程中,默認材料的密度均勻,因此,在電磁場固定不變的前提下,模擬所得結果,溫度場的分布同樣適合其他正極材料.
圖4 溫度場分布
表1為由成都志揚微波科技有限公司使用圓柱腔微擾法復介電常數(shù)測試測得的LiCo1/3Ni1/3Mn1/3O2在2.45 GHz下燒結得到的不同溫度(θ)時的復合介電常數(shù)(ε),以及模擬得到的不同溫度下吸收的微波功率(P).
表1LiCo1/3Ni1/3Mn1/3O2在不同溫度下的復合介電常數(shù)和微波吸收功率
Table 1 The compound dielectric and microwave absorption power of the LiCo1/3Ni1/3Mn1/3O2at different temperature
θ/℃εP/W256.303207.72.1384207.52.4105206.62.6026206.33.261
通過模擬所得到的數(shù)據(jù),可以求解樣品的相對介電常數(shù).微波吸收功率為[17]
(4)
由于實驗所得的相對介電常數(shù)是以空氣作為填充物,故LiCo1/3Ni1/3Mn1/3O2材料的相對介電常數(shù)可以由李赫德涅凱法則計算[18].
Inε=Inε2+(Inε1-Inε2)v1.
(5)
式中:ε為混合物材料樣品的介電常數(shù);ε1為已知電磁特性材料的介電常數(shù)(此處即為空氣的相對介電常數(shù));v1為其在混合物中的體積分數(shù),ε2為待測粉末材料的介電常數(shù).
表2實驗和模擬所得相對介電常數(shù)
Table 2 Relative permittivity obtained by experiments and simulation
θ/℃體積比實驗所得復合介電常數(shù)ε'1ε'2251.006.36.9006.9003200.987.78.0267.6924200.927.58.9278.6345200.846.69.4549.3656200.756.311.02311.733
將表2所得數(shù)據(jù)繪制成曲線如圖5所示,可以看到,當溫度上升到320~420 ℃某個臨界點時,實驗所得復合介電常數(shù)由開始的上升變化為下降,這是因為在燒結粉末過程中,由于致密化的作用[19],吸收微波的有效體積在不斷變??;而通過李赫德涅凱法則計算后,所得LiCo1/3Ni1/3Mn1/3O2始終在變大,與模擬結果趨勢相同,但數(shù)據(jù)上大小有所不同,這是因為燒結模型采用LiCo1/3Ni1/3Mn1/3O2物理參數(shù)并非全是準確數(shù)值,因此,模擬仿真得到的相對介電常數(shù)和變化規(guī)律只具有參照意義.
圖5實驗和模擬所得相對介電常數(shù)(ε)隨溫度(θ)變化曲線
Fig.5 Relative permittivity obtained by experiments and simulation as a function of temperature
1)使用COMSOL Multi-physics建立的模型,有效地仿真了矩形微波爐內(nèi)電磁場的分布情況,且有效模擬了燒結過程中LiCo1/3Ni1/3Mn1/3O2樣品內(nèi)部溫度場的分布情況.
2)燒結LiCo1/3Ni1/3Mn1/3O2過程中,存在有空氣填充物時,復合介電常數(shù)先增大后減小,而LiCo1/3Ni1/3Mn1/3O2的相對介電常數(shù)在720 ℃以下,隨著溫度的上升而增大.
[1] 梁寶巖, 張旺璽, 王艷芝, 等. 微波燒結制備 Ti3SiC2-金剛石復合材料的顯微形貌及界面反應機理[J]. 硅酸鹽通報, 2016, 35(3): 725-731. DOI:10.13208/j.electrochem.151128.
LIANG Baoyan, ZHANG Wangxi, WANG Yanzhi, et al. Microstructure and interfacial reaction mechanism of Ti3SiC2-diamond composites fabricated by microwave sintering[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 725-731.DOI:10.13208/j.electrochem.151128.
[2] SCHWENKE A M, HOEPPENER S, SCHUBERT U S. Synthesis and modification of carbon nanomaterials utilizing microwave heating[J]. Advanced Materials, 2015, 27(28): 4113-4141. DOI:10.1002/adma.201500472.
[3] 張家敏, 易健宏, 甘國友. 微波燒結 Mn-Zn 鐵氧體的微觀結構演變特征[J]. Materials Science & Technology, 2014,2: 17-23.
ZHANG Jiamin, YI Jianhong, GAN Guoyou. Microstructure characteristics of microwave sintered Mn-Zn ferrite soft magnetic materials[J]. Materials Science and Technology, 2014, 2: 17-23.
[4] XIONG G, NIE Y, JI D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering[J]. Current Applied Physics, 2016, 16(8): 830-836. DOI:10.1016/j.cap.2016.05.004.
[5] 蔣志軍, 張亞莉, 王乾, 等. 三元正極材料前驅(qū)體Ni1/3Co1/3Mn1/3(OH)2的連續(xù)合成與條件探究[J]. 電化學, 2016, 5: 528-533. DOI: 10.13208/j.electrochem.151128.
JIANG Zhijun, ZHANG Yali, WANG Qian, et al. Continuous synthesis and condition exploration of precursor Ni1/3Co1/3Mn1/3(OH)2of ternary cathode material[J].Electrochemistry, 2016,5:528-533. DOI:10.13208/j.electrochem.151128.
[6] 譚聰,朱文,劉勇,等.鋰離子動力電池正極材料的研究進展[J].材料導報,2011,25:291-296.
TAN Cong, ZHU Wen, LIU Yong, et al. Progress in lithium power ion battery cathode materials[J]. Materials Review, 2011, 25:291-296.
[7] 夏書標, 張英杰, 董鵬, 等. 固相法制備鋰離子電池正極材料 LiNi0.80Co0.15Al0.05O2及其性能研究[J]. 材料科學與工藝, 2014,22 (3): 124-128.
XIA Shubiao, ZHANG Yingjie, DONG Peng, et al. Synthesis and properties of LiNi0.80Co0.15Al0.05O2cathode material for Liion batteries by solidstate method[J]. Materials Science and Technology, 2014,22 (3): 124-128.
[8] GOU J, JIAO L, YUAN H, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2prepared by the metal acetates decomposition method [J]. Electrochimica Acta, 2006, 51: 3731-3735. DOI: 10.1016/j.electacta.2005.10.037.
[9] YASUHIRO F, HIROSHI M, NAOTO SI, et al. Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2: Calcination temperature dependence[J]. J Power Sources, 2007, 171(2):894-903. DOI:10.1016/j.jpowsour.2007.06.017.
[10] DY WANG,J XIA,L MA,et al. A systematic study of electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2(NMC)/graphite pouch cells[J]. Journal of the Electrochemical Society, 2014, 161(12):A1818-A1827. DOI:10.1149/2.0511412jes.
[11] KIZILTAS-YAVUZ N, HERKLOTZ M, HASHEM A M, et al. Synthesis structural magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2prepared by a solgel method using table sugar as chelating agent[J]. Electrochimica Acta, 2013, 113: 313-321. DOI:10.1016/j.electacta.2013.09.065.
[12] ZHENG H, TAN L, LIU G, et al.Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2cathode[J]. Journal of Power Sources, 2012, 208: 52-57. DOI:10.1016/j.jpowsour.2012.02.001.
[13] WU S L, ZHANG W, Song X, et al. High rate capability of Li(Ni1/3Mn1/3Co1/3)O2electrode for Liion batteries[J]. Journal of The Electrochemical Society, 2012, 159(4): A438-A444. DOI: 10.1149/2.062204jes.
[14] OZOEMENA K. Insights into microwave-enhanced cycling performance of nickel-doped LiMn2O4spinel Cathode Material at Elevated Temperature[C]//18th International Meeting on Lithium Batteries (June 19-24, 2016). Ecs, 2016.
[15] SHI S, ZHANG S, WU Z, et al. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 337: 82-91. DOI:10.1016/j.jpowsour.2016.10.107.
[16] SALVI D, BOLDOR D, AITA G M, et al. Comsol multiphysics model for continuous flow microwave heating of liquids[J]. Journal of food engineering, 2011, 104(3): 422-429. DOI:10.1016/j.jfoodeng.2011.01.005.
[17] 金欽漢. 微波化學[M]. 第一版. 北京:科學出版社, 1999:42.
JIN Qinhan.Microwave chemistry [M]. First Edition. Beijing: Science Press, 1999: 42.
[18] SIMPKIN R. Derivation of Lichtenecker′s logarithmic mixture formula from Maxwell′s equations[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(3): 545-550. DOI:10.1109/TMTT.2010.2040406.
[19] LUO S D, YI J H, GUO Y L, et al. Microwave sintering W-Cu composites: analyses of densification and microstructural homogenization[J]. Journal of Alloys and Compounds, 2009, 473(1): L5-L9. DOI:10.1016/j.jallcom.2008.05.038.
ModelingcalculationontheelectromagneticfieldandtemperaturefieldofmicrowavesinteringforLiCo1/3Ni1/3Mn1/3O2
XUE Yuan, ZHANG Zhengfu, SHEN Tao, XU Shuntao, WU Tianya
(School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 65000, China)
Based on the theory and characteristics of microwave sintering, the microwave sintering process was simulated in the platform of finite element software COMSOL Multi-physics. The distribution of the electromagnetic field and the temperature field was investigated when cathode materials (LiCo1/3Ni1/3Mn1/3O2) were sintering. The relative permittivity of LiCo1/3Ni1/3Mn1/3O2was calculated by simulation, which was compared with the experimental result. The results indicate that in the sintering process, the electric field intensity of the inner surface of the microwave oven was weakened and the temperature field distribution of LiCo1/3Ni1/3Mn1/3O2was uneven. In the simulation process, the energy loss of LiCo1/3Ni1/3Mn1/3O2sintered at different temperatures in microwave was calculated. According to the Lichnetecker method, the relative permittivity was calculated, which increased with the increase of temperature at 20~620 ℃. According to the measured dielectric constant, the relative dielectric constant of LiCo1/3Ni1/3Mn1/3O2was obtained at different temperature. Then, the two sets of data were compared by curve fitting, the relative permittivity obtained by experiments was found to be consistent with the data obtained by simulation.
microwave sintering; LiCo1/3Ni1/3Mn1/3O2;rectangular microwave ovens; finite element modeling; relative permittivity
2016-12-12. < class="emphasis_bold">網(wǎng)絡出版時間
時間: 2017-10-27.
國家自然科學基金重點項目(U1202272).
薛 源(1991—),男,碩士研究生.
張正富, E-mail:zhang_zhengfu@126.com.
10.11951/j.issn.1005-0299.20160432
TM912
A
1005-0299(2017)06-0040-05
(編輯呂雪梅)