席天宇 丁建華 雷永生 / XI Tianyu, DING Jianhua, LEI Yongsheng
居住區(qū)底層架空設(shè)計(jì)對(duì)風(fēng)環(huán)境影響研究
席天宇 丁建華 雷永生 / XI Tianyu, DING Jianhua, LEI Yongsheng
底層架空設(shè)計(jì)不但能有效改善室外風(fēng)環(huán)境,還可創(chuàng)建避免太陽(yáng)直射的室外活動(dòng)空間,在熱帶和亞熱帶地區(qū)被廣泛采用,系統(tǒng)研究架空設(shè)計(jì)的風(fēng)環(huán)境影響對(duì)基于環(huán)境優(yōu)化的居住區(qū)設(shè)計(jì)具有一定參考價(jià)值。本研究以廣州市為例,采用結(jié)合非穩(wěn)態(tài)放射計(jì)算的CFD耦合模擬方法,對(duì)不同架空率下居住組團(tuán)的風(fēng)速平均值和累積度數(shù)展開(kāi)對(duì)比研究。研究結(jié)果顯示,在非架空區(qū)域,隨著底層架空率的增加,低風(fēng)速累積分布比例逐漸縮減,當(dāng)?shù)讓蛹芸章食^(guò)60%時(shí),平均風(fēng)速增長(zhǎng)率出現(xiàn)拐點(diǎn),增速加快;在架空區(qū),隨著架空率的提升風(fēng)環(huán)境有明顯改善,當(dāng)架空率達(dá)到80%時(shí),平均風(fēng)速增長(zhǎng)率出現(xiàn)拐點(diǎn),增速放緩。值得注意的是,架空率較低時(shí),其改善架空區(qū)風(fēng)環(huán)境的能力有限,當(dāng)架空率為40%時(shí),架空區(qū)風(fēng)速均低于0.3m/s。
居住區(qū) 風(fēng)環(huán)境 底層架空 CFD耦合模擬
聯(lián)合國(guó)政府間氣候變化專門委員會(huì)(Intergovernmental Panel on Climate Change,IPCC)第三次評(píng)估報(bào)告指出,20世紀(jì)全球平均溫度上升了0.6±0.2℃。城市環(huán)境惡化不僅增加了能源消耗,還引發(fā)了人類健康問(wèn)題,已在世界范圍內(nèi)引起了廣泛關(guān)注。亞洲城市多屬濕熱氣候,城市熱島現(xiàn)象尤為嚴(yán)重,針對(duì)該問(wèn)題,亞洲各國(guó)在國(guó)家層面和地方層面采取了多種措施,以改善室外熱環(huán)境,如提高環(huán)境綠化率、建筑圍護(hù)結(jié)構(gòu)采用高反射性能材料、改善城市通風(fēng)、利用海風(fēng)、減少人工散熱等。
在室外熱環(huán)境研究方面,國(guó)內(nèi)外學(xué)者通過(guò)現(xiàn)場(chǎng)實(shí)測(cè)、模擬和風(fēng)洞實(shí)驗(yàn)等方法做了大量研究(Yoshida Shinji et al.,2002;Tetsu Kubota,Supian Ahmad,2006;Uehara Kiyoshi,Ymamao Yukio,2007;Takanobu Moriizumi et al.,2008;Yoshida Shinji et al.,2003;Harayama Kazuya et al.,2002),但鮮有底層架空設(shè)計(jì)對(duì)室外環(huán)境影響的系統(tǒng)研究。熱帶和亞熱帶氣候區(qū)廣泛采用底層架空的設(shè)計(jì)方法,以改善風(fēng)環(huán)境并提供避免太陽(yáng)直射的室外活動(dòng)空間(圖1,Tianyu Xi et al.,2016),因此,底層架空設(shè)計(jì)對(duì)室外環(huán)境的影響應(yīng)成為政府部門、設(shè)計(jì)師和使用者共同關(guān)注的問(wèn)題。
席天宇等發(fā)表關(guān)于廣州市多種建筑環(huán)境的實(shí)測(cè)結(jié)果,其中包含底層架空方面的研究,但沒(méi)有采用模擬軟件進(jìn)行系統(tǒng)分析(Tianyu Xi et al.,2011a;Tianyu Xi et al.,2011b;Tianyu Xi et al.,2012;Tianyu Xi et al.,2011c);金虹等采用三維非穩(wěn)態(tài)放射計(jì)算方法模擬了底層架空對(duì)平均輻射溫度的影響,但未涉及風(fēng)環(huán)境相關(guān)內(nèi)容(Tianyu Xi et al.,2014;Tianyu Xi et al.,2015);李瓊等采用耦合模擬法研究半開(kāi)敞空間(100%架空率)對(duì)居住區(qū)室外熱環(huán)境的影響,但未與不同底層架空率的情況進(jìn)行對(duì)比研究(Tianyu Xi et al.,2009)。
行列式是居住組團(tuán)布局的主要形式之一,在居住形態(tài)布局中處于主導(dǎo)地位(陸嚴(yán)冰,2016)。本文以廣州市為例,結(jié)合非穩(wěn)態(tài)放射計(jì)算的CFD(Computational Fluid Dynamics,計(jì)算流體力學(xué))耦合模擬,旨在探討不同架空率對(duì)行列式多層居住區(qū)風(fēng)環(huán)境的綜合影響,為深入了解行列式居住區(qū)不同架空率的區(qū)域風(fēng)環(huán)境提供準(zhǔn)確的數(shù)據(jù)分析,并對(duì)基于環(huán)境優(yōu)化的居住區(qū)設(shè)計(jì)和風(fēng)環(huán)境改善提供參考。
傳統(tǒng)模擬方法視同一物性表面溫度為均一值,忽略了物體表面輻射換熱、墻體和地面熱傳導(dǎo)等因素的影響,不能反映環(huán)境的真實(shí)情況,且物體表面溫度的簡(jiǎn)化計(jì)算使浮力項(xiàng)的計(jì)算受到影響,導(dǎo)致CFD流體計(jì)算精度降低。
為了提高風(fēng)環(huán)境模擬精度,本研究采用了非穩(wěn)態(tài)放射計(jì)算與一維導(dǎo)熱計(jì)算相結(jié)合的耦合模擬計(jì)算方法。首先假設(shè)同一物性表面溫度為單一恒定值,調(diào)用當(dāng)?shù)貧庀髷?shù)據(jù)(包括風(fēng)速、風(fēng)向、溫度和濕度等),進(jìn)行流體模擬。而后采用非穩(wěn)態(tài)放射計(jì)算方法(包括三維輻射和一維導(dǎo)熱計(jì)算),對(duì)地表和建筑表面溫度進(jìn)行模擬,取得精確值?;谏鲜鰞刹降挠?jì)算結(jié)果,再次進(jìn)行CFD耦合模擬分析,獲得更準(zhǔn)確的平均風(fēng)速分布數(shù)據(jù)和風(fēng)向數(shù)據(jù)。
圖1 亞熱帶氣候區(qū)建筑的底層架空設(shè)計(jì)
同樣架空率情況下,架空區(qū)域分布位置存在多種組合(圖2),架空率均為50%。為縮小研究范圍,本研究在建筑正中間設(shè)置架空區(qū),對(duì)架空率為0(無(wú)架空)、40%、60%、80%和100%(完全架空)5種情況展開(kāi)模擬研究。
圖2 架空區(qū)布局位置
模擬區(qū)域建筑高度設(shè)定為21m,進(jìn)深設(shè)定為15m,模擬工況5個(gè)。依據(jù)日本建筑協(xié)會(huì)(Architectural Institute of Japan,AIJ)標(biāo)準(zhǔn),對(duì)模擬域設(shè)定如下:流體流入邊界與建筑物邊界之間的距離設(shè)為建筑高度的5倍 ;流體流出邊界與建筑物邊界之間的距離設(shè)為建筑高度的15倍。此外,為避免邊界效應(yīng)影響,采用在居住區(qū)中心部位評(píng)價(jià)單元的數(shù)據(jù)作為CFD模擬結(jié)果的評(píng)價(jià)依據(jù)(圖3,Tianyu Xi et al.,2016)。
圖3 模擬區(qū)域的大小、風(fēng)向和建筑朝向(平面、三維示意)
依據(jù)每小時(shí)的平均氣象數(shù)據(jù)計(jì)算日平均數(shù)據(jù)(每日24h),累計(jì)得到全夏季數(shù)據(jù)并計(jì)算平均值,而后計(jì)算逐日平均數(shù)據(jù)與全夏季平均數(shù)據(jù)的標(biāo)準(zhǔn)差,選擇日平均數(shù)據(jù)最接近全夏季平均值的一天(7月14日)作為分析日期。模擬的開(kāi)始時(shí)間設(shè)為15:00,即廣州市最高溫度出現(xiàn)的時(shí)間。
模擬步驟包括(Tianyu Xi et al.,2017):第一步,設(shè)定流體模擬計(jì)算邊界條件(表1);第二步,設(shè)定非穩(wěn)態(tài)放射計(jì)算邊界條件(表2~6);第三步,設(shè)定耦合模擬計(jì)算邊界條件(表7)。
當(dāng)架空率分別為0、40%和60%時(shí),非架空區(qū)風(fēng)速在數(shù)值上被明顯劃分為低速區(qū)和高速區(qū)兩個(gè)部分,風(fēng)速較高的區(qū)域位于居住區(qū)的風(fēng)道上,風(fēng)速較低的區(qū)域主要集中于建筑的前后兩側(cè);當(dāng)架空率為80%時(shí),高速區(qū)和低速區(qū)界限消失,低風(fēng)速的累積度數(shù)(Cumulative Degree)顯著降低,小于0.9m/s的累積度數(shù)約為20%;當(dāng)架空率達(dá)到100%時(shí),非架空區(qū)的最低風(fēng)速值達(dá)到0.9m/s,風(fēng)速明顯提高(圖4 ~ 8,Tianyu Xi et al.,2017)。
當(dāng)?shù)讓蛹芸章实陀?0%時(shí),非架空區(qū)平均風(fēng)速的增速較緩;當(dāng)架空率達(dá)到60%時(shí),平均風(fēng)速增長(zhǎng)率出現(xiàn)拐點(diǎn),增速變快(圖9,Tianyu Xi et al.,2017)。
隨著架空率的增加,非架空區(qū)風(fēng)速平均值從1.2m/s(無(wú)架空)增加到1.8m/s(全部架空),風(fēng)環(huán)境得到了顯著改善。
表1 流體模擬邊界條件設(shè)定
表2 非穩(wěn)態(tài)放射計(jì)算邊界條件設(shè)定
表3 地表和建筑表面參數(shù)設(shè)定
表4 墻體結(jié)構(gòu)熱工參數(shù)設(shè)定
表5 屋頂結(jié)構(gòu)熱工參數(shù)設(shè)定
表6 地面結(jié)構(gòu)熱工參數(shù)設(shè)定
表7 耦合模擬計(jì)算邊界條件設(shè)定
圖4 非底層架空區(qū)風(fēng)環(huán)境(架空率:0)
當(dāng)?shù)讓蛹芸章蕿?0%時(shí),架空區(qū)風(fēng)速均小于0.3m/s,大于0.3m/s的風(fēng)速累積度數(shù)為0。當(dāng)架空率為60%時(shí),小于0.3m/s的風(fēng)速累積度數(shù)降至20%左右,大于0.5m/s的風(fēng)速累積度數(shù)達(dá)到80%,大于1.3m/s的風(fēng)速比例為40%,架空區(qū)風(fēng)環(huán)境改善明顯。當(dāng)架空率為80%時(shí),架空區(qū)風(fēng)速均大于0.7m/s,且0.7~1.3m/s的風(fēng)速累積度數(shù)僅為20%,大于1.3m/s的風(fēng)速比例為80%。當(dāng)架空率達(dá)到100%時(shí),架空區(qū)風(fēng)速均大于1.1m/s,弱風(fēng)區(qū)完全消失(圖10~13,Tianyu Xi et al.,2017)。
提高架空率對(duì)改善架空區(qū)風(fēng)環(huán)境效果顯著,架空率每增加20%,架空區(qū)平均風(fēng)速約提高0.5~0.6m/s。當(dāng)架空率為40%時(shí),架空區(qū)平均風(fēng)速約為0.2m/s,表明低架空率對(duì)架空區(qū)風(fēng)環(huán)境的改善效果極其有限;當(dāng)架空率達(dá)到80%時(shí),增長(zhǎng)率出現(xiàn)拐點(diǎn),平均風(fēng)速的增速放緩,降至0.1~0.2m/s左右,表示架空率為80%~100%的時(shí)候,對(duì)風(fēng)環(huán)境的改善效果有限(圖14,Tianyu Xi et al.,2017)。
圖5 非底層架空區(qū)風(fēng)環(huán)境(架空率:40%)
圖6 非底層架空區(qū)風(fēng)環(huán)境(架空率:60%)
圖7 非底層架空區(qū)風(fēng)環(huán)境(架空率:80%)
圖8 非底層架空區(qū)風(fēng)環(huán)境(架空率:100%)
圖9 非底層架空區(qū)平均風(fēng)速
圖10 架空區(qū)風(fēng)環(huán)境(架空率:40%)
圖11 架空區(qū)風(fēng)環(huán)境(架空率:60%)
圖12 架空區(qū)風(fēng)環(huán)境(架空率:80%)
圖13 架空區(qū)風(fēng)環(huán)境(架空率:100%)
圖14 架空區(qū)平均風(fēng)速
當(dāng)架空率低于80%時(shí),居住區(qū)非架空區(qū)的顯著特征為建筑的前后兩側(cè)形成低風(fēng)速區(qū),風(fēng)道上形成高風(fēng)速區(qū)。當(dāng)架空率達(dá)到80%時(shí),低風(fēng)速區(qū)累積度數(shù)顯著降低,有80%比例風(fēng)速超過(guò)0.9m/s。非架空區(qū)的平均風(fēng)速隨架空率的增長(zhǎng)而增加,當(dāng)架空率達(dá)到60%時(shí),平均風(fēng)速增長(zhǎng)率出現(xiàn)拐點(diǎn),增速加快。
居住區(qū)架空區(qū)的風(fēng)環(huán)境隨著架空率增加而明顯改善,當(dāng)架空率為60%時(shí),有40%比例的風(fēng)速超過(guò)1.3m/s;當(dāng)架空率為80%時(shí),超過(guò)1.3m/s的風(fēng)速比例達(dá)到80%。
值得注意的是,較低的架空率難以營(yíng)造良好的風(fēng)環(huán)境,如架空率為40%時(shí),平均風(fēng)速只有0.2m/s左右,最高風(fēng)速不超過(guò)0.3m/s。架空區(qū)的平均風(fēng)速隨著架空率的增長(zhǎng)而增加,當(dāng)架空率達(dá)到80%時(shí),平均風(fēng)速增長(zhǎng)率出現(xiàn)拐點(diǎn),增速放緩。
本文研究對(duì)象為亞熱帶行列式多層居住區(qū),架空部分均設(shè)置在住宅中心位置,因此研究結(jié)果存在一定局限性。
[1]Yoshida Shinji, Murakami Shuzo, Narita Ken-ichi, et al. Field Measurement of Outdoor Thermal Environment within Courtyard Canyon Space around Apartment Complex in Summer[J]. Paper Collection of Plan System of Annual Meeting of Architectural Institute of Japan, 2002.
[2]Tetsu Kubota, Supian Ahmad. Wind Environment Evaluation of Neighbourhood Areas in Major Towns of Malaysia[J]. Journal of Asian Architecture and Building Engineering, 2006(1).
[3]Uehara Kiyoshi, Ymamao Yukio, Oikawa Susumu, Mochida Akashi.Wind-tunnel Experiments on Improving the Natural Ventilation of a Street-Canyon[J]. Journal of Japan Society for Atmospheric Environment, 2007(5).
[4]Takanobu Moriizumi, Toru Kawai, Atsushi Inagaki, Manabu Kanda. Outdoor Urban Scale Model Experiments on the Effects of Building Height Variation on the Atmosphere[J]. Journal of Hydroscience and Hydraulic Engineering, 2008.
[5]Yoshida Shinji, Murakami Shuzo, Mochida Akashi, et al. In fl uence of Green Area Ratio on Outdoor Thermal Environment with Coupled Simulation of Convection, Radiation and Moisture Transport[J]. Paper Collection of Planning System of Annual Meeting of Architectural Institute of Japan, 2003.
[6]Harayama Kazuya, Yoshida Shinji, Ooka Ryozo, et al. Numerical Study Based on Unsteady Radiation and Conduction Analysis:Prediction of Outdoor Environment with Unsteady Coupled Simulation of Convection, Radiation and Conduction Part 1[J].Paper Collection of Planning System of Annual Meeting of Architectural Institute of Japan, 2002.
[7]Tianyu Xi, Qiong Li, Akashi Mochida. Research on Outdoor Climate and Thermal Comfort in Subtropical Climate Urban Areas:A Study in Guangzhou, China, as an Example. Summaries of Technical Papers of Annual Meeting of Architectural Institute of Japan[J], Environmental Engineering, 2011a.
[8]Tianyu Xi, Qiong Li, Akashi Mochida, Qinglin Meng. The Outdoor Thermal Environment and Thermal Comfort of Piloti in Subtropical Climate Cities[J]. Journal of Habitat Engineering, 2011b(2).
[9]Tianyu Xi, Qiong Li, Akashi Mochida, Qinglin Meng. Study on the Outdoor Thermal Environment and Thermal Comfort around Campus Clusters in Subtropical Urban Areas[J]. Building and Environment, 2012.
[10]Tianyu Xi, Qiong Li, Akashi Mochida, Qinglin Meng. A Study on the Influence of Various Human-built Elements on Outdoor Thermal Comfort in Subtropical Climate Cities. 4th International Conference on Human-Environment System, ICHES 2011 in Sapporo, Japan, 2011c.
[11]Tianyu Xi, Jianhua Ding, Hongjin. Study on the In fl uence of Piloti on Mean Radiant Temperature in Residential Blocks by 3-D Unsteady State Heat Balance Radiation Calculation[J]. Journal of Harbin Institute of Technology, 2014(4).
[12]Tianyu Xi, Hong Jin, Jianhua Ding. Study on the Comprehensive Influence of Piloti Ratio on Mean Radiant Temperature in Residential Communities in Subtropical Climate Cities in China.2015 International Conference on Materials Engineering and Environment Science, MEES2015 in Wuhan, China, 2015.
[13]Tianyu Xi, Yingli Xuan, Akashi Mochida. Research on the Effects of Semi-open Space on the Outdoor Thermal Environment of Residential Communities in the Subtropical Zones: Simulation of Residential Communities in Guangzhou, China, as an Example.Technical papers of Annual Meeting of Society of Heating, Air conditioning and Sanitary Engineers of Japan, 2009.
[14]Tianyu Xi, Hong Jin, Akashi Mochida, Jianhua Ding. Research on the Residential Block's Outdoor Thermal Comfort by Questionnaire Survey and Coupled Simulation Method in Guangzhou, China. 3rd International Conference on Advances in Energy, Environment and Chemical Engineering, 2017.
[15]Tianyu Xi, Jian-Hua Ding, Hong Jin. Study on Comprehensive Influence on Wind Environment of Piloti in Residential Blocks in Guangzhou, China. International Forum on Energy, Environment and Sustainable Development (IFEESD 2016).
[16]陸嚴(yán)冰. 行列式街坊與圍合式街坊——以日照標(biāo)準(zhǔn)為線索的城市居住形態(tài)演進(jìn)[C]//. 中國(guó)城市規(guī)劃學(xué)會(huì), 沈陽(yáng)市人民政府.規(guī)劃60年:成就與挑戰(zhàn)——2016中國(guó)城市規(guī)劃年會(huì)論文集. 北京: 中國(guó)建筑工業(yè)出版社, 2016.
EFFECT ON WIND ENVIRONMENT OF PILOTI DESIGN IN RESIDENTIAL COMMUNITY
First floor piloti design can not only optimize the outdoor wind environment, but also create activity spaces which avoid the direct radiation from the sun, which is commonly used in building design in tropical and subtropical climate zones. Taking the city of Guangzhou as an example, by adopting a coupled CFD simulation method, this research firstly designed a series of cases, and then compared the mean wind velocity and cumulative values of the simulation results. The results showed that, for those areas out of piloti, cumulative values of low wind velocity decreased with the increase of piloti ratio,and the inflection point appears at 60 percent piloti ratio for the mean wind velocity (increase trend to be faster after inflection point). For the areas under piloti, the wind environment was highly optimized by the increase of piloti ratio, and the inflection point appears at 80 percent piloti ratio for the mean wind velocity (increase trend to be slower after inflection point). It was noticed that, the very low piloti ratio contributes little to the wind environment under piloti areas, for example, all wind velocity under piloti areas are lower than 0.3m/s when piloti ratio is 40 percent.
Dwelling District, Wind Environment, Piloti Design, Coupled CFD Simulation
由中國(guó)國(guó)家自然科學(xué)基金項(xiàng)目提供資助(編號(hào):51408160、U1504528),部分研究資助來(lái)自中國(guó)博士后科學(xué)基金(編號(hào):2015M571419),教育部留學(xué)歸國(guó)基金;哈爾濱市青年后備人才項(xiàng)目(編號(hào):2015RQQXJ068);黑龍江省博士后科學(xué)基金(編號(hào):LBH-Z15084)和黑龍江省寒地建筑科學(xué)重點(diǎn)實(shí)驗(yàn)室青年基金(編號(hào):2016HDJZ-1206)。
席天宇,哈爾濱工業(yè)大學(xué)建筑學(xué)院
丁建華,通訊作者,深圳大學(xué)本原設(shè)計(jì)研究中心,深圳大學(xué)建筑與城市規(guī)劃學(xué)院
雷永生,哈爾濱工業(yè)大學(xué)建筑學(xué)院
2017-07-27