嚴紅梅
摘? 要:在小學數(shù)學教學中,培養(yǎng)學生的數(shù)學思維能力十分重要。思維與語言存在緊密的聯(lián)系,課堂對話是學生進行數(shù)學思維的有效途徑,也是提升數(shù)學思維能力的重要載體?;诖吮尘?,本文對“借助引導性對話,指明思維方向;借助啟發(fā)性對話,疏通思維路徑;借助追問性對話,推進思維深度;借助跟進性對話,引導思維反思”的策略進行了探究,希望能夠達到一定的借鑒意義。
關鍵詞:深度對話;數(shù)學思維
“數(shù)學是思維的體操”,在小學數(shù)學教學中,培養(yǎng)小學生的數(shù)學思維能力是重要的教學目標之一。小學生的思維體系仍處于不斷發(fā)展的進程中,因為還不夠成熟,所以很難有效啟動自主思維。語言是思維的載體,而思維正是語言所展現(xiàn)的內(nèi)核,因此,教師要有針對性地靈活運用對話教學策略推動學生數(shù)學學習過程中思維的發(fā)展,使學生能夠在這一過程中展開更充分的數(shù)學思考。
一、借助引導性對話,指明思維方向
小學生的思維體系暫時處于不成熟的發(fā)展狀態(tài),針對問題的思考容易偏離方向,也容易出現(xiàn)條理不明等現(xiàn)象。由于缺少深入性,他們對問題的理解大都停留于淺顯的表層。小學數(shù)學課堂上經(jīng)常出現(xiàn)的現(xiàn)象就是學生想到什么說什么,其他學生隨聲附和。雖然在課堂教學中需要學生大膽主動地表達,但并不意味著可以任意表達,而是需要教師明確具體的表達方向,一旦發(fā)現(xiàn)學生有所偏離,就需要結(jié)合恰當?shù)膶υ拰ζ溥M行正確引導。
例如,一位教師在教學“平均數(shù)”一課時,有這樣一個教學片段:
師:為了充分了解我家當前的用水量情況,我調(diào)查了小區(qū)內(nèi)部分三口之家的實際用水量,并制作出統(tǒng)計圖(圖略),但是通過統(tǒng)計圖卻發(fā)現(xiàn),每家的用水量都存在較大的差異,究竟應該和誰比?
生1:我想應該和7噸的那家比較,比7噸多就說明用水量多。
生2:我認為應當和8噸比較,這才是中等用水量。
生3:應當和13噸比較才對,如果超過13噸,就說明用水量很高。
這是展開“平均數(shù)”教學時師生之間的導入對話,教師通過對話對學生的思維進行引導,基于比較的方式引出平均數(shù)這一概念,使大家可以了解到通過平均數(shù)能夠充分地反映出一組數(shù)據(jù)的整體水平,能夠幫助學生了解正確的思維方向,同時也確保了較為顯著的教學實效。
二、借助啟發(fā)性對話,疏通思維路徑
在教學實踐中,教師不但要引導學生表達個人觀點,同時還要認真傾聽和思辨,對他們的課堂對話進行啟發(fā),這樣才能更充分展現(xiàn)學生的思維狀態(tài),才能了解學生的思維困惑并展開積極正確的引導和點撥,這種形式的課堂對話才能充分凸顯其有效性,幫助學生疏通思維之路。
以《十幾減9》一課的教學為例,一位教師為學生創(chuàng)設了如下情境:猴媽媽有13個桃子,小猴子從媽媽那里拿走9個之后,媽媽還剩下幾個?很快就有學生結(jié)合生活經(jīng)驗說出了答案,教師首先對此進行了表揚,之后便引導學生展開更深層面的探究。
師(導學問題):剛才已經(jīng)有同學回答出了這道題,那么你們能不能說明是怎樣得出這一答案的呢?
(由此引發(fā)了學生之間的交流和探討。)
生1:我使用的是“先后減”,先減3,再減6,一共減了兩次,總共減去9,由此得出答案4。
師:那么其他同學呢?有沒有不同的方法?
生2:我首先將13拆成了10和3,先用10-9得出結(jié)果1,之后再加上之前拆開的3,就能得出答案4。
生3:因為9+4=13,所以如果用13-9的話,就能夠得出結(jié)果4。(生鼓掌)
……
教師引導學生對這些方法做出比較,很多學生都認為第三種方法比較快,但是必須熟記20以內(nèi)的進位加法;也有部分學生認為第二種比較好,計算簡單……由于學生的認知和生活經(jīng)驗的不同,所以在看法上也存在差異,雖然他們并沒有接觸過“破十法”或者“平十法”,但是通過教師的引導和學生之間的交流,他們卻能夠以自主的方式推導出這些算法。
通過問題導學,必然能夠構(gòu)建更和諧的課堂氛圍,有助于開拓學生的思維和視角,既充分交還了學生的主體學習地位,又促進了學生之間的合作學習,保障了高效的學習效果。
三、借助追問性對話,推進思維深度
很多教師選擇在學生的思維粗淺處設置提問,既能夠?qū)W生形成有效的啟發(fā)和引導,同時也保障了師生之間及生生之間的思維互動。有效的提問還可以對問題進行拓展和延伸,保障學生思維的縱深拓展,不僅有助于提升學生的思維水平,同時也有助于發(fā)展其認知能力。
以“商不變性質(zhì)”一課的教學為例,一位教師在教學時有這樣一個教學片段:
師:大家可以先自主完成演算和填空,之后對結(jié)果進行比較,能否從中發(fā)現(xiàn)規(guī)律?
生1:這些算式的結(jié)果有一個特點,即商是相同的,但是余數(shù)不同。
師:大家認真觀察余數(shù),其中存在怎樣的規(guī)律?
生2:在計算商的過程中,不管是被除數(shù)還是除數(shù),都可以同時去掉0,但是余數(shù)不可以。
生:如果將被除數(shù)和除數(shù)同時乘以2,商不會發(fā)生變化,但是余數(shù)會乘以2。
生4:如果被除數(shù)或者除數(shù)發(fā)生改變的話,余數(shù)也會發(fā)生改變。
通過教師的引導以及學生的自主比較,學生很快地了解并掌握了余數(shù)的變化規(guī)律,能自主完成歸納和總結(jié)。隨著對話的層層深入,學生們針對余數(shù)變化規(guī)律中的“劃0與補0”展開了更深層面的思考,并從中發(fā)現(xiàn):如果被除數(shù)和除數(shù)都除以10,所得的余數(shù)需要乘以10。同時,結(jié)合算式200÷30和400÷60的計算結(jié)果發(fā)現(xiàn):如果被除數(shù)和除數(shù)同時乘以2,所得的余數(shù)也變成了之前的2倍。這種具有引導性的深層對話,能夠幫助學生深化對余數(shù)的認知。教師的追問,將傳統(tǒng)的告知知識教學模式演變?yōu)閷W生的主動發(fā)現(xiàn)式學習,真正落實了學生本位的教學理念。
四、借助跟進性對話,引導思維反思
很多小學生在實際學習的過程中容易出現(xiàn)認知錯誤,這是極為正常的現(xiàn)象。教學實踐中,教師應善于把握學生的錯誤,引導學生展開跟進性對話,使學生能夠通過對話實現(xiàn)思維的自我反思。這樣的方式,既有助于學生自主發(fā)現(xiàn)產(chǎn)生錯誤的根源,同時也有助于培養(yǎng)他們的數(shù)學思維。
例如,一位教師在教學“兩、三位數(shù)的乘法”這一內(nèi)容的過程中,結(jié)合文本情境為學生創(chuàng)設了以下問題:根據(jù)已知條件,如果我國所發(fā)射的第一顆人造地球衛(wèi)星環(huán)繞地球1周的時間為114分鐘,那么,如果環(huán)繞地球21周,需要用時多少分鐘?
在列出算式之后,教師首先引導學生對答案進行估算,有學生先將114及21簡化為100和20,估算出大概的結(jié)果,也有學生將114當作110。
教師對此進行提問:是否還存在其他的算法?
生1:如果將114看作120,21看作20的話,這樣就能夠得出大概的結(jié)果為2400。
師:根據(jù)你的估算,這一答案和正確答案相比,究竟是大還是???為什么?
生(思考后):估算的結(jié)果會略大,因為將114看作120之后,增加了6,而將21看作20,只減少了1。
師:大家認為他的說法是否正確呢?
生:正確。
師:那么,接下來我們就來驗算結(jié)果吧!
(學生自主嘗試計算114×21,所得的結(jié)果為2394;計算120×20,得出的結(jié)果為2400。)
師:那么,這個算法是不是也適合其他的乘法算式呢?
(教師板書算式:113×22。)
師:接下來我們用同樣的方法估算這個算式的答案。
生2:如果將113看作120,22看作20的話,能夠得出大致結(jié)果為2400。
師:大家繼續(xù)思考,這一答案和實際結(jié)果相比較,是大還是小?請說出你的理由。
生3:這一結(jié)果肯定是大于實際結(jié)果的,因為120比113大7,但是20只比22少2。
(根據(jù)學生的回答,教師板書算式:120×20>113×22。)
師:大家回答得非常清楚,我們現(xiàn)在來計算真正的結(jié)果。
通過計算,學生得出答案113×22=2486,這是他們完全沒有想到的,很顯然,這一結(jié)果大于120×20=2400。
上述教學案例中,學生們產(chǎn)生了固有思維模式,他們認為在乘法的估算過程中,如果其中一個數(shù)變大,另一個數(shù)變小,所得出的結(jié)果應當比實際結(jié)果更大,而且很多學生都支持這一看法。但是,數(shù)學運算不能只憑感覺,教師正是因為在學生操作過程中及時發(fā)現(xiàn)了學生思維的偏差和漏洞,才引導他們自主將自認為正確的邏輯推翻。這樣既能夠使學生發(fā)現(xiàn)思維的缺陷,同時也有助于提升學生的數(shù)學意識,使他們能夠在驗證的過程中保持務實的態(tài)度。教師的持續(xù)追問不動聲色,有效地引發(fā)了學生的自我發(fā)現(xiàn)、自我否定及自我糾錯的過程。
總之,在小學數(shù)學教學中,教師應著重培養(yǎng)學生的數(shù)學思維能力,這也是素質(zhì)教育中極為重要的教學目標之一。立足于生本位的數(shù)學課堂實踐,教師應當能和學生之間展開更深層面的對話,通過深度對話激活學生的數(shù)學思維,發(fā)展學生的數(shù)學能力,提升學生的數(shù)學綜合素養(yǎng),保障高效的數(shù)學課堂實效。