項賢領(lǐng),朱曄璘,徐秋磊,朱凌云,席貽龍,2
1 安徽師范大學(xué)生命科學(xué)學(xué)院,蕪湖 241000 2 安徽省高?!吧锃h(huán)境與生態(tài)安全”省級重點實驗室,蕪湖 241000
鹽酸四環(huán)素濃度和食物密度對萼花臂尾輪蟲生活史特征的綜合影響
項賢領(lǐng)1,2,*,朱曄璘1,徐秋磊1,朱凌云1,席貽龍1,2
1 安徽師范大學(xué)生命科學(xué)學(xué)院,蕪湖 241000 2 安徽省高?!吧锃h(huán)境與生態(tài)安全”省級重點實驗室,蕪湖 241000
近年來,抗生素的環(huán)境污染問題已引起人們的廣泛關(guān)注,其在環(huán)境中的殘留可對水生態(tài)系統(tǒng)的結(jié)構(gòu)和功能產(chǎn)生重要影響。迄今,鹽酸四環(huán)素濃度和食物密度對輪蟲生活史特征的影響研究尚未見報道。以萼花臂尾輪蟲(Brachionuscalyciflorus)為受試動物,研究了在不同斜生柵藻(Scenedesmusobliquus)密度下,不同濃度的鹽酸四環(huán)素(Tetracycline hydrochloride)對萼花臂尾輪蟲生活史特征的影響。結(jié)果表明,食物密度和鹽酸四環(huán)素濃度對輪蟲的生命期望、凈生殖率、世代時間、內(nèi)稟增長率、平均壽命和后代混交率,以及食物密度和鹽酸四環(huán)素濃度間交互作用對除了內(nèi)稟增長率外的其他5個統(tǒng)計學(xué)參數(shù)均具有顯著影響。在各食物密度下,輪蟲的特定年齡繁殖率高峰值隨著鹽酸四環(huán)素濃度的增加呈現(xiàn)先增加后降低的趨勢;鹽酸四環(huán)素對輪蟲生長和繁殖參數(shù)的影響呈現(xiàn)“低促高抑”的特點。3個食物密度下,高濃度的鹽酸四環(huán)素顯著提高了萼花臂尾輪蟲的后代混交率,且在1.0×106個/mL藻密度下毒物濃度與輪蟲后代混交率間具有顯著的劑量-效應(yīng)關(guān)系。食物密度的高低顯著影響鹽酸四環(huán)素對萼花臂尾輪蟲的毒性效應(yīng)。
鹽酸四環(huán)素;食物密度;萼花臂尾輪蟲;生命表;生活史特征
四環(huán)素類抗生素(Tetracyclines, TCs)是由放線菌合成的一類廣譜抗生素,其對革蘭氏陽性菌、革蘭氏陰性菌、立克次體和衣原體等致病微生物均具有較強的抑制和滅殺作用[1]。因其具有價廉、高效和廣譜等優(yōu)點,四環(huán)素作為獸藥和飼料添加劑而被廣泛應(yīng)用于養(yǎng)殖業(yè)和畜牧業(yè)[2- 4]。研究表明,四環(huán)素類抗生素進入生物體內(nèi)后,不能被機體完全吸收,其中有30%—90%會再以母體化合物或代謝產(chǎn)物的形式隨排泄物釋放到環(huán)境中[5-9],而目前使用的污水處理技術(shù)并不能完全消除抗生素殘留,進而對人體健康和水生態(tài)系統(tǒng)構(gòu)成長期潛在危害[2]。
目前,我國長江三角洲、珠江三角洲等地區(qū)的地表水、地下水和畜禽水產(chǎn)養(yǎng)殖廢水中都可檢出四環(huán)素[10-12],且其在全球水環(huán)境中的濃度有逐漸升高的趨勢[13-15]。研究表明,殘留在環(huán)境中的四環(huán)素可以誘導(dǎo)環(huán)境中的微生物產(chǎn)生耐藥性,從而使得抗性基因在非靶生物間擴散和傳播,且在河流和污水處理廠的出入水與活性污泥中均檢測到高水平的編碼四環(huán)素抗性基因[16-19],這給公共健康帶來極大隱患??股氐拈L期超量使用還會對浮游動植物和其他水生生物產(chǎn)生影響,最終改變水生態(tài)系統(tǒng)的結(jié)構(gòu)和功能[20-21]?;诎l(fā)光細菌的微毒(Microtox)急性毒性試驗研究表明,鹽酸四環(huán)素(Tetracycline hydrochloride, TCH)在5大類20種常用抗生素中毒性最強[22]。研究表明,四環(huán)素能夠抑制綠藻蛋白質(zhì)的合成,并通過抑制葉綠體內(nèi)合成酶的活性,對藻類生長產(chǎn)生抑制作用[20, 23-24]。此外,四環(huán)素還能夠影響浮游動物的生長與繁殖[25-26],抑制水生動物多種酶的活性,如β-半乳糖苷酶,并造成魚類等較嚴(yán)重的DNA損傷。
輪蟲(Rotifer)是廣泛分布于各類水體中的浮游動物四大類群之一。因其體型微小、繁殖迅速、世代時間短和對污染物變化敏感等特點,輪蟲已作為模式動物在環(huán)境監(jiān)測和生態(tài)毒理學(xué)研究中發(fā)揮著重要作用[27]。美國環(huán)保局已于1991年正式把萼花臂尾輪蟲(Brachionuscalyciflorus)和褶皺臂尾輪蟲(B.plicatilis)分別作為淡水和海水污染的測試生物列入國家測試標(biāo)準(zhǔn)[28]。自20世紀(jì)70年代以來,已有諸多研究以輪蟲為受試生物開展了重金屬[29-33]、有機氯農(nóng)藥[34-39]、有機磷農(nóng)藥[40-41]和擬除蟲菊酯類農(nóng)藥[42]等化合物的急、慢性毒性實驗[43]。隨著抗生素在畜牧業(yè)和水產(chǎn)養(yǎng)殖業(yè)中的廣泛應(yīng)用,開展輪蟲對抗生素的應(yīng)激響應(yīng)研究顯得尤為重要。已有學(xué)者證實,輪蟲的生長與繁殖對抗生素濃度的變化非常敏感,大多呈現(xiàn)出“低促高抑”的雙重效應(yīng)[21, 44- 46]。然而,有關(guān)鹽酸四環(huán)素對輪蟲生活史特征的影響研究尚鮮有報道,僅見Araujo 和 McNair[47]開展了鹽酸四環(huán)素對萼花臂尾輪蟲和褶皺臂尾輪蟲的生活史參數(shù)和種群增長的影響研究,結(jié)果表明,四環(huán)素對萼花臂尾輪蟲的壽命和繁殖力均具有顯著影響,其中總生殖率對抗生素濃度的變化最為敏感,其對鹽酸四環(huán)素的1%抑制濃度(IC1)為3.91 mg/L,上述影響隨著四環(huán)素濃度的加大呈明顯的加劇趨勢。
作為重要的初級生產(chǎn)者,藻類在水體中可有效加速污染物降解,減緩毒物對浮游動物的毒害作用,因而,污染物對浮游動物的毒性作用會常常受到食物密度等因素的制約[34]。近年來,食物密度和污染物濃度對輪蟲種群增長的交互作用正逐漸引起了人們的關(guān)注[48]。大量研究表明,水體污染物可抑制輪蟲的種群增長,而較高的食物密度則能夠降低毒物對輪蟲種群增長的抑制作用[49- 53]。迄今,不同食物密度下鹽酸四環(huán)素對輪蟲生活史特征的影響研究尚未見報道。
本文以萼花臂尾輪蟲為對象,采用生命表統(tǒng)計方法,研究了3個食物密度下的不同四環(huán)素濃度對萼花臂尾輪蟲生命表參數(shù)的影響,旨在了解亞致死濃度的鹽酸四環(huán)素對輪蟲生長和繁殖的影響及其與藻類密度間的交互關(guān)系,揭示浮游動物種群動態(tài)對抗生素的生態(tài)學(xué)響應(yīng),并為水環(huán)境的監(jiān)測和化學(xué)污染物對水生生物的影響提供更為詳實的參考資料。
實驗用萼花臂尾輪蟲采自安徽省蕪湖市鏡湖。采集后的輪蟲單克隆培養(yǎng)及后續(xù)實驗均于(25±1)℃、自然光照條件下(光照強度約130 lx)的恒溫培養(yǎng)箱中進行。培養(yǎng)液采用EPA配方[54],每天投喂以HB- 4培養(yǎng)基[55]培養(yǎng)的處于指數(shù)增長期的斜生柵藻(Scenedesmusobliquus),離心濃縮后使用。培養(yǎng)時間在1個月以上。實驗前,對萼花臂尾輪蟲進行為期兩周的預(yù)培養(yǎng),期間每天更換50%輪蟲培養(yǎng)液,并投喂密度分別為1.0×106、2.0×106、4.0×106個/mL的斜生柵藻為食物,保持輪蟲種群處于指數(shù)增長狀態(tài)。
實驗所用的鹽酸四環(huán)素購自生工生物工程上海(股份)有限公司,純度為USP Grade(>98.5%)。測試液按母液稀釋法配置,實驗前用蒸餾水配置1.0 g/L的母液,置于4 ℃冰箱中備用。實驗時用EPA將其配制成所需濃度的測試液。
根據(jù)正式毒性實驗前的預(yù)備實驗結(jié)果將鹽酸四環(huán)素設(shè)置為60.0、80.0、100.0、120.0、140.0、160.0 mg/L共6個濃度梯度,另設(shè)1個空白對照組。實驗在特制的容積為6 mL的玻璃杯(使用前在相應(yīng)濃度溶液中浸泡48 h)中進行,每杯放入10只齡長小于4 h的輪蟲幼體和5 mL測試液,內(nèi)含密度分別為1.0×106、2.0×106、4.0×106個/mL的斜生柵藻,每個濃度組設(shè)置3個重復(fù),共計63組(7個測試液濃度×3個食物密度×3個重復(fù))。實驗24 h后分別觀察記錄每個玻璃杯中輪蟲的死亡數(shù)目,采用概率單位法求得鹽酸四環(huán)素對萼花臂尾輪蟲的24 hLC50值。
根據(jù)急性毒性實驗得出的LC50值,將鹽酸四環(huán)素濃度設(shè)置為0、0.5、1.5、4.5、13.5、40.5 mg/L等6個濃度梯度,每組均設(shè)3個重復(fù),共計54組(6個鹽酸四環(huán)素濃度×3個食物密度×3個重復(fù))。測試液的配制方法如前所述。實驗時,分別由預(yù)培養(yǎng)的各組輪蟲中隨機挑取若干攜卵非混交雌體的輪蟲母體置于與預(yù)培養(yǎng)時條件相同的燒杯內(nèi)繼續(xù)培養(yǎng);4 h后,取10只齡長小于4 h的輪蟲幼體置于容積為6 mL的玻璃杯中,每杯添加體積為5 mL、內(nèi)含密度分別為1.0×106、2.0×106、4.0×106個/mL斜生柵藻的各相應(yīng)濃度鹽酸四環(huán)素溶液(共54個玻璃杯)。實驗開始后,每12 h觀察記錄各玻璃杯中輪蟲母體的存活情況及所孵化的幼體數(shù),隨即移出所孵化的幼體置于干凈的玻璃杯中并于相同條件下繼續(xù)培養(yǎng),待其產(chǎn)卵后確定其雌體類型,用于計算輪蟲后代中的混交雌體百分率。實驗期間,每12 h懸浮一次沉積于杯底的藻類食物,每24 h更換一次測試液。實驗持續(xù)到所有輪蟲母體全部死亡時為止。
采用SPSS 22.0分析軟件和Excel對數(shù)據(jù)進行分析,對所得數(shù)據(jù)作正態(tài)性分布檢驗后,對符合正態(tài)分布的各組數(shù)據(jù)通過雙因素方差分析(Two-way ANOVA)檢查食物密度、污染物濃度及兩者間的交互作用對各參數(shù)影響的顯著性,并對鹽酸四環(huán)素濃度與各參數(shù)之間的關(guān)系進行回歸分析;采用多重比較(LSD檢驗)分析各參數(shù)的平均數(shù)在各組間(食物密度間和鹽酸四環(huán)素濃度間)的差異顯著性。
急性毒性實驗結(jié)果顯示,在(25±1) ℃、自然光照的條件下,當(dāng)食物密度分別為1.0×106、2.0×106、4.0×106個/mL時,鹽酸四環(huán)素對萼花臂尾輪蟲幼體的24 hLC50值分別是107.95、116.92 mg/L和111.23 mg/L,三者間無顯著差異(P> 0.05),其95%的置信限分別為100.34—113.69、110.62—123.51 mg/L和104.21—118.34 mg/L。
3個食物密度和6個鹽酸四環(huán)素濃度下萼花臂尾輪蟲的特定年齡存活率(lx)和特定年齡繁殖率(mx)如圖1所示。在對照組及低濃度的鹽酸四環(huán)素(0 mg/L和0.5 mg/L)存在下,隨著食物濃度的增加,輪蟲的全部死亡時間逐漸推遲,而其他濃度的鹽酸四環(huán)素(1.5、13.5、40.5 mg/L)下,輪蟲的全部死亡時間則隨著食物密度的增加而逐漸提前。在對照組及低濃度(0、0.5、1.5 mg/L)的鹽酸四環(huán)素條件下,投喂中等食物密度(2.0×106個/mL)的輪蟲出現(xiàn)死亡的時間最遲,而在高濃度的鹽酸四環(huán)素(4.5、13.5、40.5 mg/L)條件下,低食物密度(1.0×106個/mL)下的輪蟲開始死亡的時間最遲。
在對照組及各鹽酸四環(huán)素濃度下,輪蟲的特定年齡繁殖率高峰值均隨著食物密度的增加而增大;在各食物密度下,輪蟲的特定年齡繁殖率高峰值在低濃度(0.5—4.5 mg/L)的鹽酸四環(huán)素濃度下逐漸增加,而高濃度(13.5 mg/L和40.5 mg/L)的鹽酸四環(huán)素則降低了特定年齡繁殖率高峰值。在鹽酸四環(huán)素脅迫下(除4.5 mg/L外),輪蟲的特定年齡繁殖率高峰值出現(xiàn)的時間在1.0×106個/mL食物密度組最遲,而在2.0×106個/mL食物密度組最早。
圖1 不同藻密度和鹽酸四環(huán)素濃度下萼花臂尾輪蟲的特定年齡存活率和特定年齡繁殖率Fig.1 The age-specific survivorship (square) and fecundity curves (triangle) of B. calyciflorus at six TCH concentrations and three algal densities
雙因素方差分析表明,食物密度和鹽酸四環(huán)素濃度對輪蟲的生命期望、凈生殖率、世代時間、內(nèi)稟增長率、平均壽命和后代混交率,以及食物密度和鹽酸四環(huán)素濃度間交互作用對除了內(nèi)稟增長率外的其他5個統(tǒng)計學(xué)參數(shù)均具有顯著影響(P< 0.05)(表1)。多重比較分析結(jié)果(表2)表明,與對照組相比,在各食物密度下,鹽酸四環(huán)素對萼花臂尾輪蟲的生命期望、凈生殖率、世代時間、平均壽命和后代混交率都具有顯著影響。如表2所示,當(dāng)食物密度為1.0×106個/mL時,1.5 mg/L濃度鹽酸四環(huán)素顯著提高了輪蟲的生命期望和平均壽命,1.5、4.5、13.5 mg/L的鹽酸四環(huán)素顯著提高了輪蟲的凈生殖率,0.5 mg/L和1.5 mg/L的鹽酸四環(huán)素顯著增加了輪蟲的世代時間,13.5 mg/L和40.5 mg/L的鹽酸四環(huán)素顯著提高了輪蟲的混交率。在2.0×106個/mL食物密度下,0.5 mg/L的鹽酸四環(huán)素顯著提高了輪蟲的生命期望、世代時間和平均壽命,而4.5 mg/L和40.5 mg/L的鹽酸四環(huán)素卻顯著降低了輪蟲的生命期望;4.5 mg/L的鹽酸四環(huán)素顯著提升了輪蟲的凈生殖率,但40.5 mg/L的鹽酸四環(huán)素顯著降低了輪蟲的凈生殖率和平均壽命;40.5 mg/L濃度鹽酸四環(huán)素極顯著提高了輪蟲的混交率。當(dāng)食物密度為4.0×106個/mL環(huán)境下,除0.5 mg/L濃度外,其他濃度鹽酸四環(huán)素顯著縮短了輪蟲的生命期望;4.5 mg/L的鹽酸四環(huán)素極顯著提高了輪蟲的凈生殖率;1.5和13.5 mg/L的鹽酸四環(huán)素顯著縮短了輪蟲的世代時間;1.5、13.5、40.5 mg/L的鹽酸四環(huán)素顯著縮短了輪蟲的平均壽命;40.5 mg/L的鹽酸四環(huán)素極顯著地提高了輪蟲的后代混交率。
在對照組(0 mg/L)中,2.0個/mL和4.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的生命期望、凈生殖率、內(nèi)稟增長率和平均壽命;0.5 mg/L的鹽酸四環(huán)素下,2.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的生命期望、凈生殖率、內(nèi)稟增長率和平均壽命,而世代時間和后代混交率在各食物密度間無顯著差異;1.5 mg/L的鹽酸四環(huán)素下,1.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的生命期望、世代時間和平均壽命,而凈生殖率和內(nèi)稟增長率在2.0×106個/mL食物密度下最高;4.5 mg/L的鹽酸四環(huán)素下,2.0×106個/mL和4.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的凈生殖率和內(nèi)稟增長率,而其他各參數(shù)在各食物密度間無顯著差異;在13.5 mg/L的鹽酸四環(huán)素下,2.0×106個/mL和4.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的凈生殖率和內(nèi)稟增長率,而1.0×106個/mL和2.0×106個/mL的食物密度顯著提高了萼花臂尾輪蟲的生命期望和平均壽命,1.0×106個/mL的食物密度下輪蟲的世代時間和后代混交率最高;40.5 mg/L的鹽酸四環(huán)素下,2.0×106個/mL和4.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的凈生殖率,而1.0×106個/mL和2.0×106個/mL的食物密度顯著提高了萼花臂尾輪蟲的生命期望、世代時間和平均壽命,4.0×106個/mL的食物密度下輪蟲的內(nèi)稟增長率和后代混交率最高。
表1食物密度和鹽酸四環(huán)素濃度及其交互作用對萼花臂尾輪蟲生命表統(tǒng)計學(xué)參數(shù)的影響
Table1Effectsoffooddensity,tetracyclinehydrochloride(TCH)concentrationandtheirinteractiononlifetabledemographicparametersofB.calyciflorous
參數(shù)和差異源Parameterandsource平方和SSSumofsquare自由度dfDegreeoffreedom均方MSMeansquareFP生命期望Lifeexpectancyathatching食物密度Fooddensity(A)3181.2921590.6521.42<0.01鹽酸四環(huán)素濃度TCHconcentration(B)3250.115650.028.75<0.01A×B3846.1510384.615.18<0.01Error2672.883674.25凈生殖率Netreproductionrate食物密度Fooddensity(A)932.262466.13113.95<0.01鹽酸四環(huán)素濃度TCHconcentration(B)304.34560.8714.88<0.01A×B210.861021.095.15<0.01Error147.26364.09世代時間Generationtime食物密度Fooddensity(A)1285.642642.8249.10<0.01鹽酸四環(huán)素濃度TCHconcentration(B)200.04540.013.06<0.05A×B1001.5710100.167.65<0.01Error471.293613.09內(nèi)稟增長率Intrinsicrateofpopulationincrease食物密度Fooddensity(A)0.0017520.0008861.67<0.01鹽酸四環(huán)素濃度TCHconcentration(B)0.0002550.000053.49<0.05A×B0.00023100.000021.64>0.05Error0.00051360.00001平均壽命Meanlifespan食物密度Fooddensity(A)2959.5721479.7920.05<0.01鹽酸四環(huán)素濃度TCHconcentration(B)3115.655623.138.45<0.01A×B4043.3110404.335.48<0.01Error2656.323673.79后代混交率Mixisrateofoffspring食物密度Fooddensity(A)0.0720.0318.38<0.01鹽酸四環(huán)素濃度TCHconcentration(B)0.1650.0317.79<0.01A×B0.18100.029.72<0.01Error0.07360.00
回歸分析顯示,當(dāng)食物密度為1.0×106個/mL時,鹽酸四環(huán)素濃度與輪蟲的凈生殖率、內(nèi)稟增長率和后代混交率間均具有顯著的劑量-效應(yīng)關(guān)系;當(dāng)食物密度為4.0×106個/mL時,鹽酸四環(huán)素濃度與輪蟲的生命期望期間具有顯著的劑量-效應(yīng)關(guān)系(表3)。在食物密度為2.0×106個/mL的條件下,鹽酸四環(huán)素濃度與輪蟲的生命表參數(shù)間均不存在顯著的劑量-效應(yīng)關(guān)系。
表2不同食物密度/(×106個/mL)和鹽酸四環(huán)素濃度/(mg/L)下萼花臂尾輪蟲生命表統(tǒng)計學(xué)參數(shù)(均數(shù)±標(biāo)準(zhǔn)誤)*
Table2LifetabledemographicparametersofB.calyciflorousexposedtodifferentconcentrationsofTCHatthreefooddensities(Mean ± SE)
參數(shù)Parameters食物密度Fooddensities鹽酸四環(huán)素濃度TCHconcentrations00.51.54.513.540.5e0(h)1105.20±12.94Bb116.00±8.51Bb145.00±2.40Aa107.60±3.67Ab114.00±8.40Ab113.20±2.50Ab2130.40±2.77Ab142.40±9.77Aa127.20±9.8ABbc116.00±1.83Acd125.60±6.61Abcd114.80±3.67Ad4120.40±12.26ABa124.00±3.46Ba104.40±7.3Bbc106.80±7.3Ab94.80±1.2Bbc93.20±4.54BcR0(個)19.23±1.08Bde11.12±1.21Ccd14.93±2.19Ba12.52±0.71Bbc13.85±1.17Bab8.34±0.99Be219.93±0.53Ab22.72±0.72Aab22.45±1.96Aab24.39±3.04Aa20.81±2.97Aab14.78±1.97Ac420.87±3.48Ab19.48±1.92Bb17.50±1.29Bb27.79±3.6Aa17.26±1.3ABb17.43±2.16AbT(h)177.04±4.64Ac84.68±6.62Aab98.15±4.98Aa75.89±0.37Ac83.30±1.14Ab82.57±3.81Abc278.12±1.84Ab84.53±5.81Aa78.07±3.76Bb80.67±3.98Aab80.26±1.37Bab80.90±1.46Aab475.00±4.05Aa73.90±3.67Aab68.74±0.87Cbc75.92±3.33Aa68.10±1.14Cc70.56±3.8Babcrm(d-1)10.0371±0.005Bab0.0370±0.003Bab0.0378±0.002Ca0.0419±0.001Ba0.0418±0.002Ba0.0320±0.003Cb20.0502±0.0003Aab0.0545±0.013Aa0.0526±0.002Aab0.0513±0.002Aab0.0485±0.002Aab0.0433±0.004Bb40.0504±0.002Aab0.0493±0.002ABb0.0488±0.002Bb0.0533±0.004Aa0.0482±0.008Ab0.0498±0.009AabML(h)193.20±12.94Bb104.00±8.51Bb133.20±1.03Aa95.60±3.67Ab102.00±8.40Ab101.20±2.50Ab2118.40±2.77Ab130.40±9.77Aa115.20±9.8ABb104.00±1.83Abc113.60±6.61Abc102.80±3.67Ac4108.40±12.6ABab112.00±3.46Ba92.40±7.3Bcd98.80±7.62Abc82.80±1.2Bd81.20±20.45BdM(%)10.19±0.01Bc0.21±0.06Abc0.20±0.01Ac0.28±0.02Abc0.45±0.02Aa0.31±0.02Bb20.19±0.01Bb0.18±0.02Ab0.15±0.05Ab0.16±0.03Ab0.16±0.02Bb0.29±0.04Ba40.27±0.04Ab0.17±0.01Ac0.16±0.02Ac0.19±0.02Ac0.22±0.04Bc0.42±0.02Aa
*多重比較方法(最小顯著差數(shù)法):不同字母分別表示同列(A,B和C)或同行(a,b,c,d和e)存在顯著性差異(5%),字母從前到后表示平均數(shù)逐漸減??;表中符號的含義如下:e0:生命期望,Life expectancy at hatching;R0:凈生殖率,Net reproductive rate;T:世代時間,Generation time;rm:內(nèi)稟增長率,Intrinsic rate of population growth;ML:平均壽命,Mean lifespan;M:后代混交率,Mixis rate of offspring
表3 各食物密度下萼花臂尾輪蟲的生命表參數(shù)(Y)與鹽酸四環(huán)素濃度(X, mg/L)間的關(guān)系
抗生素類藥物被廣泛應(yīng)用于人類的疾病治療與預(yù)防,同時也作為牲畜用藥和生長促進劑在農(nóng)業(yè)、水產(chǎn)和畜牧業(yè)中普遍使用。急性毒性研究表明,鹽酸四環(huán)素對秀麗線蟲(Caenorhabditiselegans)的24h半致死濃度LC50為82.9 mg/L[56],對浮游動物大型溞(Daphniamagna)的最大無觀察效應(yīng)濃度(NOEC)為340 mg/L[25]。本研究中,當(dāng)食物密度分別為1.0×106、2.0×106、4.0×106個/mL時,鹽酸四環(huán)素對萼花臂尾輪蟲的24hLC50值分別是107.95、116.92、111.23 mg/L。可見,萼花臂尾輪蟲對鹽酸四環(huán)素的敏感性較秀麗線蟲弱,但比浮游動物大型溞敏感。因而,在水環(huán)境生物監(jiān)測尤其是對鹽酸四環(huán)素的生物監(jiān)測中,萼花臂尾輪蟲是較為理想的受試生物。
有關(guān)環(huán)境中殘留的抗生素對浮游生物的影響,目前主要表現(xiàn)為低濃度暴露可以促進種群的生長與繁殖,此后隨著暴露濃度的增大轉(zhuǎn)為抑制作用[44, 46]。例如,低濃度(0.0125 mg/mL)的氯霉素和低劑量組(0.25 mg/mL和0.50 mg/mL)的煙酸氟哌酸可促進褶皺臂尾輪蟲的種群增長,隨著染毒濃度的升高(0.0250 mg/mL和0.0500 mg/mL的氯霉素及0.75 mg/mL和1.00 mg/mL的煙酸氟哌酸),褶皺臂尾輪蟲的種群增長則受到不同程度的抑制作用[44]。當(dāng)紅霉素和氯霉素濃度為6.25 μg/mL時可促進萼花臂尾輪蟲的種群增長,當(dāng)濃度增加到12.5—50 μg/mL時,則有不同程度的抑制作用,且抑制作用隨著濃度的增大而增大,當(dāng)濃度達到100 μg/mL時,抑制作用最為明顯。本研究中,在各食物密度下,輪蟲的特定年齡繁殖率(mx)高峰值均隨著鹽酸四環(huán)素濃度的增加呈現(xiàn)先增加后降低的趨勢;在食物密度1.0×106個/mL的情況下,1.5、4.5、13.5 mg/L 3個濃度的鹽酸四環(huán)素均顯著提高了萼花臂尾輪蟲的凈生殖率(R0),而40.5 mg/L濃度則降低了萼花臂尾輪蟲的凈生殖率;食物密度為2.0×106、4.0×106個/mL時,4.5 mg/L的鹽酸四環(huán)素顯著提高了輪蟲的凈生殖率(R0),但隨著染毒濃度的升高,輪蟲的凈生殖率有不同程度的降低。同樣,在1.0×106個/mL和2.0×106個/mL的食物密度下,低濃度(0.5 mg/L或1.5 mg/L)的鹽酸四環(huán)素延長了萼花臂尾輪蟲的生命期望、世代時間和平均壽命,這進一步驗證了在低濃度污染物下藻密度的上升有利于輪蟲對毒物毒性的降解,而暴露于高濃度污染物下的輪蟲對毒物的實際攝入量增加,導(dǎo)致毒性影響顯著提高。這一結(jié)果與Chopra等[1]、Araujo等[47]和Huang等[57]的研究結(jié)果基本一致,即毒物對輪蟲的生長和繁殖具有“低促高抑”的特點。這種“毒性興奮效應(yīng)”的雙相劑量—反應(yīng)現(xiàn)象已在各類生物、各類毒物及各類生命現(xiàn)象中都有發(fā)現(xiàn),其范圍幾乎涵蓋了包括重金屬化合物、氰化物、多環(huán)芳烴、多氯聯(lián)苯、有機砷化物以及農(nóng)藥和一些抗生素在內(nèi)的所有有毒物質(zhì)[58]。
萼花臂尾輪蟲為營周期性孤雌生殖的單巢目輪蟲,在環(huán)境適宜時其非混交雌體以孤雌生殖的方式進行繁殖,此時的種群后代混交率極低或沒有混交雌體產(chǎn)生;當(dāng)受到混交刺激時,非混交雌體以減數(shù)分裂的方式產(chǎn)生混交卵,輪蟲進入有性生殖繁殖方式,后代混交率提高。有性生殖可使輪蟲種群以休眠卵的形式渡過不利的環(huán)境條件,并通過基因重組增加了種群遺傳多樣性,從而提高輪蟲種群對環(huán)境變化的適應(yīng)能力。引起輪蟲由無性生殖轉(zhuǎn)向有性生殖產(chǎn)生的因素包括諸多外源性因素(如光照周期、低溫刺激、培養(yǎng)液pH值、食物密度、種群密度、生育酚、保幼激素、增塑劑、重金屬和農(nóng)藥等)及內(nèi)源性因素(如遺傳因素、母體的年齡和孤雌生殖的累積世代數(shù))[59-60]。有關(guān)抗生素的研究表明,2.0—10.0 μg/mL的利福平各濃度均顯著提高了萼花臂尾輪蟲的后代混交率;在各藻密度下,后代混交率與利福平濃度間均具有劑量—效應(yīng)關(guān)系,表明萼花臂尾輪蟲的有性生殖顯著受到利福平毒性的脅迫影響。本研究中,在3個食物密度下鹽酸四環(huán)素濃度為40.5 mg/L時,以及1.0×106個/mL的食物密度下13.5 mg/L的鹽酸四環(huán)素均顯著提高了萼花臂尾輪蟲的后代混交率,且鹽酸四環(huán)素濃度與輪蟲后代混交率間具有顯著的劑量-效應(yīng)關(guān)系??梢?鹽酸四環(huán)素像利福平一樣可有效促進萼花臂尾輪蟲有性生殖的發(fā)生。
萼花臂尾輪蟲是濾食性浮游動物。當(dāng)輪蟲暴露于低濃度污染物時,藻密度的上升加大了其對毒物毒性的降解,進而降低了毒物對輪蟲的影響;此外,藻密度的上升也提高了輪蟲的攝食率,從而增加了輪蟲對毒物的抵抗力,促進了輪蟲的種群增長[48]。然而,當(dāng)輪蟲暴露于高濃度污染物時,由于輪蟲濾水率的增加進而導(dǎo)致實際攝入毒物劑量的增加,這使得毒物對輪蟲的毒性影響顯著提高[21]。本研究中,在對照組及低濃度的鹽酸四環(huán)素(0 mg/L和0.5 mg/L)存在下,隨著食物濃度的增加,輪蟲的全部死亡時間逐漸推遲,而其他濃度的鹽酸四環(huán)素(1.5、13.5、40.5 mg/L)下,輪蟲的全部死亡時間則隨著食物密度的增加而逐漸提前。在對照組及低濃度(0、0.5、1.5 mg/L)的鹽酸四環(huán)素條件下,投喂中等食物密度(2.0×106個/mL)的輪蟲出現(xiàn)死亡的時間最遲,而在高濃度的鹽酸四環(huán)素(4.5、13.5、40.5 mg/L)條件下,低食物密度(1.0×106個/mL)下的輪蟲開始死亡的時間最遲。雙因素方差分析表明,除了4.5 mg/L的鹽酸四環(huán)素對萼花臂尾輪蟲各生命表參數(shù)在食物密度間基本未見顯著性差異外,在對照組及低濃度的鹽酸四環(huán)素(0 mg/L和0.5 mg/L)中,2.0×106個/mL和4.0×106個/mL的食物密度顯著增加了萼花臂尾輪蟲的生命期望、凈生殖率、內(nèi)稟增長率和平均壽命;而在1.5、13.5、40.5 mg/L的鹽酸四環(huán)素下,4.0×106個/mL的食物密度顯著降低了萼花臂尾輪蟲的生命期望、世代時間和平均壽命。因此,食物密度可顯著影響污染物濃度對浮游動物的毒性效應(yīng),且低污染物濃度下高食物密度表現(xiàn)為有利影響,而高污染物濃度下的高食物密度則加劇了毒性效應(yīng)。藻密度對鹽酸四環(huán)素毒性的干擾作用還有待進一步研究。
[1] Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232- 260.
[2] 周啟星, 羅義, 王美娥. 抗生素的環(huán)境殘留、生態(tài)毒性及抗性基因污染. 生態(tài)毒理學(xué)報, 2007, 2(3): 243- 251.
[3] Bowman S M, Drzewiecki K E, Mojica E R E, Zielinsk A M, Siegel A, Aga D S, Berry J O. Toxicity and reductions in intracellular calcium levels following uptake of a tetracycline antibiotic inArabidopsis. Environmental Science & Technology, 2011, 45(20): 8958- 8964.
[4] 李偉明, 鮑艷宇, 周啟星. 四環(huán)素類抗生素降解途徑及其主要降解產(chǎn)物研究進展. 應(yīng)用生態(tài)學(xué)報, 2012, 23(8): 2300- 2308.
[5] Chee-Sanford J C, Mackie R I, Koike S, Krapac I G, Lin Y F, Yannarell A C, Maxwell S, Aminov R I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 2009, 38(3): 1086- 1108.
[6] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, 65(5): 725- 759.
[7] Snyder S A, Westerhoff P, Yoon Y, Sedlak D L. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science, 2003, 20(5): 449- 469.
[8] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 2011, 45(2): 681- 693.
[9] 王慧珠, 羅義, 徐文青, 周啟星, 湯保華, 王媛媛. 四環(huán)素和金霉素對水生生物的生態(tài)毒性效應(yīng). 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2008, 27(4): 1536- 1539.
[10] Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 1999, 225(1/2): 109- 118.
[11] 姜蕾, 陳書怡, 楊蓉, 任重遠, 尹大強. 長江三角洲地區(qū)典型廢水中抗生素的初步分析. 環(huán)境化學(xué), 2008, 27(3): 371- 374.
[12] 那廣水, 陳彤, 張月梅, 顧佳, 劉春陽, 張琳, 姚子偉. 中國北方地區(qū)水體中四環(huán)素族抗生素殘留現(xiàn)狀分析. 中國環(huán)境監(jiān)測, 2009, 25(6): 78- 80.
[13] Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 2005, 39(17): 6649- 6663.
[14] Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science & Technology, 2006, 40(7): 2442- 2447.
[15] Papa E, Fick J, Lindberg R, Johansson M, Gramatica P, Andersson P L. Multivariate chemical mapping of antibiotics and identification of structurally representative substances. Environmental Science & Technology, 2007, 41(5): 1653- 1661.
[16] Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 2007, 41(5): 1143- 1151.
[17] Rysz M, Alvarez P J J. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Research, 2004, 38(17): 3705- 3712.
[18] Hu J Y, Shi J C, Chang H, Li D, Yang M, Kamagata Y. Phenotyping and genotyping of antibiotic-resistantEscherichiacoliisolated from a natural river basin. Environmental Science & Technology, 2008, 42(9): 3415- 3420.
[19] Chee-Sanford J C, Aminov R I, Krapac I J, Garrigues-Jeanjean N, Mackie R I. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Applied and Environmental Microbiology, 2001, 67(4): 1494- 1502.
[20] 徐冬梅, 王艷花, 饒桂維. 四環(huán)素類抗生素對淡水綠藻的毒性作用. 環(huán)境科學(xué), 2013, 34(9): 3386- 3390.
[21] 翟盼, 溫新利, 陳治文, 趙政, 李海洋, 席貽龍. 抗生素利福平對萼花臂尾輪蟲生命表參數(shù)的影響. 中國環(huán)境科學(xué), 2016, 36(6): 1886- 1894.
[22] Backhaus T, Grimme L H. The toxicity of antibiotic agents to the luminescent bacteriumVibriofischeri. Chemosphere, 1999, 38(14): 3291- 3301.
[23] Halling-S?rensen B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 2000, 40(7): 731- 739.
[24] Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y. Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Research, 2004, 32(19): 5732- 5741.
[25] Wollenberger L, Halling-S?rensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics toDaphniamagna. Chemosphere, 2000, 40(7): 723- 730.
[26] Ferreira C S G, Nunes B A, de Melo Henriques-Almeida J M, Guilhermino L. Acute toxicity of oxytetracycline and florfenicol to the microalgaeTetraselmischuiiand to the crustaceanArtemiaparthenogenetica. Ecotoxicology and Environmental Safety, 2007, 67(3): 452- 458.
[27] Wallace R L, Snell T W. Rotifera//Thorp J H, Covich A P, eds. Ecology and Classification of North American Freshwater Invertebrates. New York: Academic Press, 1991: 187- 248.
[28] ASTM. Standard guide for acute toxicity tests with the rotiferBrachionus. Annual Book of ASTM Standards. Philadelphia, PA, USA: American Society for Testing and Material, 1991: E1440- 91.
[29] Sarma S S S, Brena-Bustamante P, Nandini S. Body size and population growth ofBrachionuspatulus(Rotifera) in relation to heavy metal (copper and mercury) concentrations. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(5): 547- 553.
[30] Ramírez-Pérez T, Sarma S S S, Nandini S. Effects of mercury on the life table demography of the rotiferBrachionuscalyciflorusPallas (Rotifera). Ecotoxicology, 2004, 13(6): 535- 544.
[31] Gama-Flores J L, Castellanos-Paez M E, Sarma S S S, Nandini S. Effect of pulsed exposure to heavy metals (copper and cadmium) on some population variables ofBrachionuscalyciflorusPallas (Rotifera: Brachionidae: Monogononta). Hydrobiologia, 2007, 593(1): 201- 208.
[32] 許丹丹, 席貽龍, 馬杰, 葛雅麗. Cd2+對角突臂尾輪蟲和曲腿龜甲輪蟲的急性毒性和生命表統(tǒng)計學(xué)參數(shù)的影響. 生態(tài)學(xué)報, 2011, 31(17): 4874- 4880.
[33] Xu X P, Xi Y L, Huang L, Xiang X L. The life-table demographic response of freshwater rotiferBrachionuscalyciflorusto multi-metal (Cu, Zn, Cd, Cr, and Mn) mixture interaction. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2): 165- 170.
[34] Rao T R, Sarma S S S. Demographic parameters ofBrachionuspatulusMuller (Rotifera) exposed to sublethal DDT concentrations at low and high food levels. Hydrobiologia, 1986, 139(3): 193- 200.
[35] Femandez-Casalderrey A, Ferrando M D, Andreu-Moliner E. Demographic parameters ofBrachionuscalyciflorusPallas (Rotifers) exposed to sublethal endosulfan concentrations. Hydrobiologia, 1991, 226(2): 103- 110.
[36] Zha C W, Xi Y L, Huang L, Zhao L L. Effect of sublethal exposure to chlordecone on life history characteristics of freshwater rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2007, 78(1): 79- 83.
[37] Huang L, Xi Y L, Zha C W, Zhao L L, Wen X L. Effects of dieldrin and 17β-estradiol on life history characteristics of freshwater rotiferBrachionuscalyciflorusPallas. Journal of Freshwater Ecology, 2012, 27(3): 381- 392.
[38] Huang L, Xi Y L, Zha C W, Wen X L. Responses in the population growth and reproduction of freshwater rotiferBrachionuscalyciflorusto four organochlorine pesticides. Annales de Limnologie-International Journal of Limnology, 2013, 49(1): 79- 85.
[39] Xu X P, Xi Y L, Chu Z X, Xiang X L. Effects of DDT and dicofol on population growth ofBrachionuscalyciflorusunder different algal (Scenedesmusobliquus) densities. Journal of Environmental Biology, 2014, 35(5): 907- 916.
[40] 儲昭霞, 席貽龍, 徐曉平, 葛雅麗, 董麗麗, 陳芳. 除草劑草甘膦對萼花臂尾輪蟲生活史特征的影響. 應(yīng)用生態(tài)學(xué)報, 2005, 16(6): 1142- 1145.
[41] Ke L X, Xi Y L, Zha C W, Dong L L. Effects of three organophosphorus pesticides on population growth and sexual reproduction of rotiferBrachionuscalyciflorusPallas. Acta Ecologica Sinica, 2009, 29(3): 182- 185.
[42] 徐曉平, 席貽龍, 儲昭霞, 陳芳. 溴氰菊酯對萼花臂尾輪蟲實驗種群動態(tài)的影響. 動物學(xué)報, 2005, 51(2): 251- 256.
[43] Snell T W, Janssen C R. Rotifers in ecotoxicology: a review. Hydrobiologia, 1995, 313(1): 231- 247.
[44] 王金秋, 周葉平, 林雋姬, 王天宇. 兩種抗生素對褶皺臂尾輪蟲種群增長的影響. 復(fù)旦學(xué)報: 自然科學(xué)版, 2008, 47(3): 347- 353.
[45] 葛晨霞, 董曉慶, 裴懷全, 朱成成. 抗生素對圓形臂尾輪蟲攜帶細菌和種群生長的影響. 安徽農(nóng)業(yè)科學(xué), 2010, 38(29): 16274- 16275, 16303- 16303.
[46] 張雄. 藍藻和抗生素對萼花臂尾輪蟲種群生態(tài)學(xué)的影響研究[D]. 武漢: 中南民族大學(xué), 2012.
[47] Araujo A, McNair J N. Individual- and population-level effects of antibiotics on the rotifers,BrachionuscalyciflorusandB.plicatilis. Hydrobiologia, 2007, 593(1): 185- 199.
[48] 姚勝, 席貽龍, 趙蘭蘭, 楊冬青. 三氯殺螨醇濃度和食物密度對萼花臂尾輪蟲種群增長的影響. 生態(tài)學(xué)雜志, 2008, 27(4): 578- 582.
[49] Flores J L G, Sarma S S S, Araiza M A F. Combined effects ofChlorelladensity and methyl parathion concentration on the population growth ofBrachionuscalyciflorus(Rotifera). Bulletin of Environmental Contamination and Toxicology, 1999, 62(6): 769- 775.
[50] Gama-Flores J L, Sarma S S S, Nandini S. Acute and chronic toxicity of the pesticide methyl parathion to the rotiferBrachionusangularis(Rotifera) at different algal (Chlorellavulgaris) food densities. Aquatic Ecology, 2004, 38(1): 27- 36.
[51] Girling A E, Pascoe D, Janssen C R, Peither A, Wenzel A, Sch?fer H, Neumeier B, Mitchell G C, Taylor E J, Maund S J, Lay J P, Jüttner I, Crossland N O, Stephenson R R, Persoone G. Development of methods for evaluating toxicity to freshwater ecosystems. Ecotoxicology and Environmental Safety, 2000, 45(2): 148- 176.
[52] Sarma S S S, Nandini S, Flores J L G. Effect of methyl parathion on the population growth of the rotiferBrachionuspatulus(O. F. Müller) under different algal food (Chlorellavulgaris) densities. Ecotoxicology and Environmental Safety, 2001, 48(2): 190- 195.
[53] Sarma S S S, Ramíez-Pérez T, Nandini S, Pealosa-Castro I. Combined effects of food concentration and the herbicide 2, 4-dichlorophenoxyacetic acid on the population dynamics ofBrachionuspatulus(Rotifera). Ecotoxicology, 2001, 10(2): 91- 99.
[54] Peltier W H, Weber C I. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/485/013. Cincinnati: United States Environmental Protect Agency, 1985.
[55] 黎尚豪, 朱蕙, 夏宜琤, 俞敏娟, 林坤二, 劉昆山, 樂正亞, 陳云霞. 單細胞綠藻的大量培養(yǎng)試驗. 水生生物學(xué)集刊, 1959, (4): 462- 472.
[56] 于振洋, 張晶, 張洪昌, 尹大強. 鹽酸四環(huán)素對秀麗線蟲(C.elegans)的急性與多代毒性研究. 生態(tài)毒理學(xué)報, 2010, 5(3): 320- 326.
[57] Huang L, Xi Y L, Zha C W, Zhao L L. Effect of aldrin on life history characteristics of rotiferBrachionuscalyciflorusPallas. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 524- 528.
[58] Mattson M P, Calabrese E J. Hormesis: A Revolution in Biology, Toxicology and Medicine. New York: Humana Press, 2009.
[59] 陳芳. 萼花臂尾輪蟲混交雌體繁殖生物學(xué)研究[D]. 蕪湖: 安徽師范大學(xué), 2005.
[60] 石娟, 席貽龍, 楊琳璐, 汪圣廣, 陳楓華, 蘇田娟. 不同藻密度下Cd2+濃度對萼花臂尾輪蟲生命表統(tǒng)計學(xué)參數(shù)的影響. 應(yīng)用生態(tài)學(xué)報, 2010, 21(6): 1614- 1620.
ComprehensiveeffectsoftetracyclinehydrochlorideconcentrationonlifehistorytraitsofBrachionuscalyciflorusunderdifferentfooddensities
XIANG Xianling1, 2,*, ZHU Yelin1, XU Qiulei1, ZHU Lingyun1, XI Yilong1, 2
1CollegeofLifeSciences,AnhuiNormalUniversity,Wuhu241000,China2KeyLaboratoryofBioticEnvironmentandEcologicalSafetyinAnhuiProvince,Wuhu241000,China
Increasing attention has been paid to the challenging issue of environmental pollution by antibiotics in recent years, and the structure and functioning of aquatic ecosystems could be disturbed by residues remaining in the environment. To date, however, few attempts have been made to investigate the effects of tetracycline hydrochloride on life history traits of rotifers under different food densities. In this study, the effects of tetracycline hydrochloride concentration on life table demography ofBrachionuscalyciflorusunder differentScenedesmusobliquusdensities were studied. The results showed that tetracycline hydrochloride concentration and food density had significant effects on life expectancy at hatching, net reproductive rate, generation time, intrinsic rate of population increase, average lifespan, and proportion of sexual offspring ofB.calyciflorus. In addition, the interaction of tetracycline hydrochloride concentration and food density had a marked influence on five demographic parameters, except for the intrinsic rate of population increase, in rotifers. The peak of age-specific fecundity inB.calyciflorusincreased to a maximum and then decreased with increasing concentration of tetracycline hydrochloride under each food density. The effects of tetracycline hydrochloride on the growth and reproduction ofB.calycifloruspresented a pattern of hormesis. Mixis rate of offspring in rotifers increased at the high concentration of tetracycline hydrochloride under the three food densities, and there were significant dose-effect relationships between tetracycline hydrochloride concentration and the proportion of sexual offspring at the 1.0×106cells/mL food density. Levels of food density played an important role in the poisoning effects of tetracycline hydrochloride onB.calyciflorus.
Tetracycline hydrochloride; food density;Brachionuscalyciflorus; life table; life history trait
國家自然科學(xué)基金(31470015, 31200324);安徽省自然科學(xué)基金(1208085QC47, 1708085MC79);“重要生物資源保護和利用研究”安徽省重點實驗室專項基金
2016- 10- 19;
2017- 02- 17
*通訊作者Corresponding author.E-mail: xiangxianling@163.com
10.5846/stxb201610192135
項賢領(lǐng),朱曄璘,徐秋磊,朱凌云,席貽龍.鹽酸四環(huán)素濃度和食物密度對萼花臂尾輪蟲生活史特征的綜合影響.生態(tài)學(xué)報,2017,37(22):7718- 7728.
Xiang X L, Zhu Y L, Xu Q L, Zhu L Y, Xi Y L.Comprehensive effects of tetracycline hydrochloride concentration on life history traits ofBrachionuscalyciflorusunder different food densities.Acta Ecologica Sinica,2017,37(22):7718- 7728.