(石河子大學農(nóng)學院/新疆兵團綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832003)
doi:10.6048/j.issn.1001-4330.2017.11.002
滴灌模式和種植密度對棉花葉片衰老特性的影響
馬 卉,牛玉萍,夏 軍,陳宗奎,羅宏海
(石河子大學農(nóng)學院/新疆兵團綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832003)
目的研究不同滴灌模式下,種植密度對棉花產(chǎn)量形成期葉片衰老及物質生產(chǎn)的調節(jié)作用,為調控滴灌棉花早衰和提高棉花產(chǎn)量提供依據(jù)。方法選用新陸早45號為試驗材料,設置常規(guī)滴灌(I1,600 mm)和有限滴灌(I2,450 mm),每種滴灌模式下設低密度(D1,12×104株/hm2)、中密度(D2,24×104株/hm2)和高密度(D3,36×104株/hm2),測定了棉花產(chǎn)量形成期葉面積指數(shù)(LAI)、葉綠素含量、保護性酶活性及干物質量的動態(tài)變化。結果與常規(guī)滴灌處理相比,有限滴灌處理棉花LAI降低了17.8%,但盛鈴期葉綠素含量、超氧化物歧化酶(SOD)活性、過氧化物酶(POD)活性分別增加了8.4%、44.7%、12.9%;兩處理間干物質累積量無明顯差異。隨種植密度增加,LAI、干物質累積量及盛鈴期可溶性蛋白(Pr)、丙二醛(MDA)、葉綠素含量均呈逐漸增加趨勢。相關分析表明,SOD與LAI間呈極顯著正相關(r=0.485**),LAI與生殖器官干重和總干物質重均極顯著正相關(r=0.721**,r=0.859**)。有限滴灌條件下,高密度處理通過增強盛鈴期后葉片葉綠素含量、SOD活性、POD活性和Pr含量,延長LAI高值持續(xù)期,最終獲得了較高群體總干物質和生殖器官累積量。結論有限滴灌條件下,增加種植密度可彌補水分虧缺對棉株生長的負面效應,有利于實現(xiàn)棉花節(jié)水高產(chǎn)。
棉花;滴灌方式;種植密度;葉片衰老;物質生產(chǎn)
【研究意義】新疆屬于干旱半干旱區(qū),是我國重要的優(yōu)質棉產(chǎn)區(qū)。隨著人口的增長、灌溉面積的增加,棉田中約有40%以上得不到及時灌水,每年因缺水造成的損失約占總產(chǎn)量的10%~15%[1-3]。目前,研究新疆棉區(qū)棉花節(jié)水生理機制及調控技術,對調控棉花早衰和提高棉花產(chǎn)量有實際意義。【前人研究進展】干旱易降低光合產(chǎn)物的形成,導致皮棉產(chǎn)量降低[4-5]。保持較高光合面積和光合色素含量增加作物光合產(chǎn)物的關鍵[6],延緩葉片衰老可以維持較高LAI和抑制葉綠素的降解速率;隨生育期的推進,葉片活性氧不斷累積,促進細胞質膜降解,加速組織的衰老[7]。在水分虧缺條件下,棉花葉片SOD和POD活性顯著增加,延緩葉片衰老,增強抗旱性[9-10]。有研究提出,棉花有限滴灌條件下,通過光合生理補償效應,水分利用效率可大幅提高,但籽棉產(chǎn)量因干物質累積量顯著降低而降低[11-12]。前人研究表明,通過優(yōu)化種植密度可以改善冠層微環(huán)境,影響棉株衰老進程,進而影響群體光合效率和棉花產(chǎn)量[13]?!颈狙芯壳腥朦c】通過增加種植密度,能否彌補因有限滴灌造成的干物質累積量降低,是當前棉花高產(chǎn)節(jié)水栽培研究的核心。研究不同滴灌條件下,種植密度對棉花產(chǎn)量形成期葉片衰老及物質生產(chǎn)的調節(jié)作用?!緮M解決的關鍵問題】通過大田栽培試驗,研究不同滴灌模式和種植密度條件下葉片面積、葉綠素、保護性酶活性的生育期變化,探討葉片衰老特性與干物質積累的關系,為完善干旱區(qū)棉花高產(chǎn)高效優(yōu)質栽培提供理論依據(jù)和技術指導。
試驗在石河子大學農(nóng)學試驗站進行,前茬作物為棉花。土壤質地為中壤土,全氮1.1 g/kg,堿解氮54.9 mg/kg,速效磷19 mg/kg,速效鉀194 mg/kg,以新陸早45號為試驗材料。
1.2.1 試驗設計
采用裂區(qū)設計,主區(qū)為滴灌模式,即常規(guī)滴灌(I1):本地生產(chǎn)中普遍采用的滴灌周期、滴灌定額,全生育期滴水總量500 mm;有限滴灌(I2):在滴水周期不變的前提下,減少盛蕾至初花期、盛鈴至吐絮期滴水定額,全生育期滴水總量425 mm[11, 14]。副區(qū)為密度處理,在行距一定的條件下(30 cm+50 cm+30 cm),改變株距,低密度(D1,12×104株/hm2,株距20 cm)、中密度(D2,24×104株/hm2,株距10 cm)、高密度(D3,36×104株/hm2,株距6.5 cm)。表1
采用寬膜覆蓋膜下滴灌栽培, 2014年4月17日播種??偸┯驮?含N 13%、P2O52%和K2O 16%) 4 500 kg/hm2、尿素(N 46%)786 kg/hm2、三料磷肥(P2O545%)225 kg/hm2、磷酸二氫鉀(P2O552%、K2O 34%)188 kg/hm2。在整個生育期間共噴施5次縮節(jié)胺(含N, N-二甲基哌啶氯化物≥96%),用量285 g/hm2;于7月10日人工打頂。其他管理措施同膜下滴灌高產(chǎn)棉田。表1
表1 不同滴灌模式灌水時期與灌溉量
Table 1 The irrigation period and quota of different drip irrigation modes(mm)
處理Treatments灌溉日期Data(月/日)6/166/254/711/77/187/251/88/88/158/226/9總計Total常規(guī)滴灌Conventionaldripirrigation37.537.537.54552525252524537.5500有限滴灌Limiteddripirrigation22.522.522.54552525252523022.5425
1.2.2 測定項目
1.2.2.1 葉片酶活性
取棉花功能葉(打頂前倒四葉,打頂后倒三葉)鮮樣,液氮快速冷凍后,放入超低溫冰箱(-70℃)存放。采用氮藍四唑光還原法測定SOD活性、愈創(chuàng)木酚顯色法測定POD活性、硫代巴比妥酸法測定MDA含量、考馬斯亮藍顯色法測定Pr含量[15]。
1.2.2.2 葉綠素含量
取棉花功能葉(打頂前倒四葉,打頂后倒三葉),用打孔器(直徑9.5 mm)取約4~5個葉片圓片(約0.1 g),用80%丙酮提取色素。用UV-2041 型分光光度計(島津,日本),于663和645 nm波長下測定OD值。
計算公式如下:
ρ(Chla)=12.71D663-2.59D645.
ρ(Chlb)=22.88D645-4.67D663.
ρ(ChlT)=ρ(Chla)+ρ(Chlb)=20.29D645+8.04D663.
w(光合色素)=ρ(光合色素)×V(提取液)/(1 000×葉面積).
1.2.2.3 葉面積及干物質量
每處理選取4株代表性植株,先從子葉節(jié)處剪去植株地上部,分為營養(yǎng)器官(葉、莖)和生殖器官(蕾、鈴)兩部分。用激光葉面積儀(LI-COR,Lincoln,USA)測定葉片葉面積,然后再將營養(yǎng)器官和生殖器官裝入紙袋分別標簽后放入烘箱中,105℃殺青0.5 h,80 ℃烘干至恒重后稱重。
數(shù)據(jù)分析使用Microsoft Excel 2010和SPSS19.0 統(tǒng)計分析軟件分析處理,并檢驗差異顯著性。用SigmaPlot 12.5進行作圖,
研究表明,不同處理棉花LAI隨生育期推進呈單峰曲線,其中常規(guī)滴灌處理LAI峰值出現(xiàn)在盛鈴前期、有限滴灌處理則出現(xiàn)在盛鈴期。與常規(guī)滴灌相比,有限滴灌處理的LAI降低了13.8%~21.8%,其中高密度條件下降低了13.8%。不同滴灌模式條件下,LAI在種植密度處理間均呈現(xiàn)為高密度>中密度>低密度,說明高密度處理有利于保持較高的LAI。圖1
FS: 盛蕾期;IF: 初花期;FF: 盛花期;PFB: 盛鈴前期;FB: 盛鈴期;LFB: 盛鈴后期;BO: 吐絮期
FS: full squaring stage; IF: initial flowering stage; FF: full flowering stage; PFB: prophase full boll stage; FB: full boll stage; LFB: later full boll stage; BO: boll opening stage
圖1 不同滴灌模式和種植密度下棉花不同生育期葉面積指數(shù)變化
Fig.1 Leaf area index of cotton as affected by drip irrigation pattern and plant density
研究表明,棉花葉片葉綠素含量在盛蕾期達到最大,隨著生育期的推進呈下降趨勢,在盛鈴前期至盛鈴期有小幅波動,盛鈴期后逐漸下降。有限滴灌處理,葉綠素含量在盛蕾期至盛鈴前期平均比常規(guī)滴灌高3.9%,在盛鈴期至吐絮期平均比常規(guī)滴灌高8.4%~10.1%,說明有限滴灌有利于提高盛鈴期后的葉綠素含量。無論何種滴灌模式下,高密度處理盛鈴期的葉綠素含量比其他密度高16.9%~18.8% ,其他時期各密度間差異較小。圖2
研究表明,有限滴灌處理的SOD活性在盛鈴期平均比常規(guī)滴灌大44.7%;且以有限滴灌高密度為最高;在吐絮期,有限滴灌條件下高密度處理的SOD活性平均比其他處理高47.8%~52.8%。顯著性分析表明,滴灌模式對SOD活性影響顯著,種植密度及種植密度和滴灌模式互作對SOD活性影響均不顯著。表2
圖2 不同滴灌模式和種植密度下棉花不同生育期葉綠素含量變化
Fig.2 Chlorophyll content in cotton as affected by drip irrigation pattern and plant density表2 不同滴灌模式和種植密度下棉花不同生育期葉片SOD活性變化
Table 2 Superoxide dismutase activity in cotton leaves as affected by drip irrigation pattern and plant density
滴灌模式Irrigationmode(I)種植密度Plantingdensity(D)盛蕾期Fullsquaringstage初花期Fullfloweringstage盛鈴前期Prophasefullboll盛鈴期Fullbollstage吐絮期Bollopeningstage常規(guī)滴灌(I1)Conventionaldripirrigation低密度(D1)71.9ab209.3a174.4ab72.4bc126.2b中密度(D2)87.1a197.8a188.0a100.0ab126.1b高密度(D3)63.3b225.4a179.7ab62.0c167.9a有限滴灌(I2)Limiteddripirrigation低密度(D1)27.9c218.4a174.7ab109.0a79.6c中密度(D2)22.9c211.9a157.1bc115.0a72.9c高密度(D3)11.2d204.4a147.2c115.3a136.3b各因子間差異顯著性Significantoffactors滴灌模式(I)*ns******種植密度(D)**nsnsns**滴灌模式×種植密度(I×D)**nsnsnsns
注:同列中標的相同字母表示5%水平上沒有顯著性差異;“ns”表示差異不顯著;* 代表5%水平上顯著,**代表1%水平上極顯著,下同
Values in each column followed by the same letter are not significantly different (P=0.05) according to Duncan’s multiple range test. ns indicates non-significant. * and ** indicate significantly different (P=0.05,P=0.01). The same as below
研究表明,有限滴灌處理的POD活性平均比常規(guī)滴灌大10.1%,無論何種滴灌模式下,POD活性都隨種植密度的增加呈上升趨勢;且有限滴灌高密度在全生育期平均比其他處理高8.6%~48.9%。在盛鈴期,有限滴灌的高密度比中密度大65.4%,吐絮期比中密度大15.5%,說明有限滴灌高密度在生育后期有較高的POD活性。顯著性分析表明,滴灌模式對POD活性影響顯著,種植密度對POD活性影響不顯著,種植密度與滴灌模式互作對POD活性的影響差異顯著。表3
研究表明,有限滴灌處理,初花期MDA含量平均比常規(guī)滴灌大4.2 %,盛鈴期比常規(guī)滴灌小29.1%,吐絮期比常規(guī)滴灌小12.7%,說明有限滴灌能有效降低生育后期的MDA含量。在盛鈴期,有限滴灌高密度的MDA含量與中密度無顯著差異,在吐絮期高密度比中密度減少15.4%。顯著性分析表明,滴灌模式對MDA含量影響顯著,種植密度與滴灌模式互作在初花期、吐絮期對MDA含量的影響差異極顯著。表4
Pr含量與調節(jié)細胞滲透勢有關,能抵抗逆境脅迫對植株造成的傷害[16]。研究表明,在盛鈴期,有限滴灌下高密度的Pr含量比其他密度高22.5%~173.6%,吐絮期高密度的Pr含量比其他密度高7.4%~122.6%,說明有限滴灌高密度在生育后期有較高的Pr含量。顯著性分析表明,滴灌模式、種植密度,以及種植密度與滴灌模式互作對Pr含量影響差異顯著。表5
表3 不同滴灌模式和種植密度下棉花不同生育期葉片POD變化
Table 3 Peroxidase activity in cotton leaves as affected by drip irrigation pattern and plant density
滴灌模式Irrigationmode(I)種植密度Plantingdensity(D)盛蕾期Fullsquaringstage初花期Fullfloweringstage盛鈴前期Prophasefullboll盛鈴期Fullbollstage吐絮期Bollopeningstage常規(guī)滴灌(I1)Conventionaldripirrigation低密度(D1)101.5d353.5ab186.4b281.5c277.4c中密度(D2)184.0bc307.6b244.6ab312.8bc372.5a高密度(D3)116.9d326.1b198.2b372.8b312.1ab有限滴灌(I2)Limiteddripirrigation低密度(D1)167.6c308.4b238.4ab331.2bc370.0a中密度(D2)200.6ab381.3ab275.8a286.7c297.4c高密度(D3)219.3a418.8a281.8a474.1a343.4ab各因子間差異顯著性Significantoffactors滴灌模式(I)**ns***ns種植密度(D)**nsns**ns滴灌模式×種植密度(I×D)***ns***
表4 不同滴灌模式和種植密度下棉花不同生育期葉片MDA變化
Table 4 Malondialdehyde content in cotton leaves as affected by drip irrigation pattern and plant density
滴灌模式Irrigationmode(I)種植密度Plantingdensity(D)盛蕾期Fullsquaringstage初花期Fullfloweringstage盛鈴前期Prophasefullboll盛鈴期Fullbollstage吐絮期Bollopeningstage常規(guī)滴灌(I1)Conventionaldripirrigation低密度(D1)2.70b3.35c3.07a2.98b2.99a中密度(D2)3.23a3.65ab3.04ab3.39a1.85d高密度(D3)2.25cd3.27c2.83b3.44a2.65b有限滴灌(I2)Limiteddripirrigation低密度(D1)1.91d3.43bc3.01ab2.18c1.61d中密度(D2)2.40bc3.78a2.98ab2.31c2.67b高密度(D3)2.79b2.87d3.03ab2.46c2.26c各因子間差異顯著性Significantoffactors滴灌模式(I)**nsns****種植密度(D)****ns**ns滴灌模式×種植密度(I×D)****nsns**
表5 不同滴灌模式和種植密度下棉花不同生育時期葉片Pr變化
Table 5 Soluble protein content in cotton leaves as affected by drip irrigation pattern and plant density
滴灌模式Irrigationmode(I)種植密度Plantingdensity(D)盛蕾期Fullsquaringstage初花期Fullfloweringstage盛鈴前期Prophasefullboll盛鈴期Fullbollstage吐絮期Bollopeningstage常規(guī)滴灌(I1)Conventionaldripirrigation低密度(D1)2.53b1.89d0.58a0.55ab0.28c中密度(D2)2.36b3.42a0.75a0.66a0.44b高密度(D3)2.57b3.53a0.37b0.67a0.62a有限滴灌(I2)Limiteddripirrigation低密度(D1)2.28b2.68b0.71a0.20c0.23c中密度(D2)2.29b1.96d0.08c0.45b0.48b高密度(D3)3.48a2.28c0.20bc0.55ab0.52ab各因子間差異顯著性Significantoffactors滴灌模式(I)*******ns種植密度(D)**********滴灌模式×種植密度(I×D)*******ns
研究表明,棉花營養(yǎng)器官和生殖器官的干物質量在盛花期至盛鈴期迅速積累,至吐絮期達到最大,不同處理下棉花生殖器官的干物質量占總干重的比率在56.1%~67.4%,其中以常規(guī)滴灌中密度和有限灌溉高密度為最大,分別為67.4%和65.9%。有限滴灌低密度和中密度與常規(guī)滴灌相比TDW降低了9.4%和13.0%,而高密度增大了13.7%,說明在適宜密度下有限滴灌能增加棉田的TDW。隨種植密度的增加,單位面積的植株總干重增大,且中、高密度處理的植株總干重均顯著高于低密度處理。滴灌模式和種植密度互作的TDW表現(xiàn)為,I2D3>I1D2>I1D3>I2D2>I1D1>I2D1。圖3
圖3 不同滴灌模式和種植密度下棉花不同生育期干物質積累與分配
Fig.3 Dry matter accumulation and distribution of cotton as affected by drip irrigation pattern and plant density
研究表明,Pr、SOD與LAI之間呈極顯著正相關,相關系數(shù)r分別為;r=0.743**,r=0.485**,說明提高棉花葉片中的SOD和Pr有利于提高LAI。LAI與生殖器官干重和總干物質重極顯著正相關,相關系數(shù)分別為:r=0.721**,r=0.859**。說明提高LAI有利于提高生殖器官干重和總干物質重。圖4,圖5
圖4 棉花葉片中Pr和SOD與葉面積指數(shù)相關性
Fig.4 Relation analysis between the soluble protein content, superoxide dismutase activity in cotton leaves and leaf area under different treatments
圖5 棉花葉面積指數(shù)與生殖器官和總干物質量相關性
Fig.5 Relation analysis between dry matter weight of reproductive organs, total dry matter weight and leaf area under different treatments
干物質的積累是作物產(chǎn)量形成的物質基礎[17]。增加種植密度雖然能夠有效提高干物質量,但群體干物質累積量并非隨密度增加而增大[18]。此外,棉花的干物質量隨著灌水量的減少而顯著下降[19]。研究發(fā)現(xiàn),有限滴灌高密度TDW和BDW均顯著高于常規(guī)滴灌高密度,表明高密度種植條件下,在棉花水分不敏感時期(盛蕾期至初花期、盛鈴后期至吐絮期)降低灌溉量并不總降低干物質量。相關分析表明,LAI與棉株總干重和生殖器官干物質重均呈極顯著正相關。前人研究認為,作物在生育中后期保持較高的LAI和葉綠素含量有利于提高了干物質積累量[20-21]。因此,有限滴灌條件下增加種植密度有利于維持盛鈴期后充足的光合色素和光合面積,從而為獲得較高干物質積累提供了保證。
葉片是作物進行光合作用的主要器官,葉面積的大小對棉花物質生產(chǎn)有著重要的影響。隨著灌溉量和密度的減少,作物LAI呈降低趨勢[22-23]。試驗結果表明,有限滴灌高密度顯著提高了盛鈴前期以后的LAI,延緩了LAI的衰減速度。由相關性分析可得,棉花LAI與葉片中SOD活性和Pr有顯著正相關。前人研究表明,造成葉片衰老的主要原因是活性氧失調,而保護性酶系統(tǒng)能有效的清除細胞內(nèi)過剩的活性氧,進而延緩葉片衰老[24]。有限滴灌下盛鈴期的SOD活性保持較高水平,可能是其在生育后期維持較高光合面積的主要原因。
葉綠素含量高低在一定程度上決定著光合速率的大小[25],逆境條件下植物體內(nèi)的活性氧大量產(chǎn)生,破壞了細胞內(nèi)葉綠體的結構,減少了葉綠素的合成,降低葉綠素含量[26]。試驗研究表明,有限滴灌并未降低棉花葉片中的葉綠素含量,并且維持了盛鈴期至吐絮期較高的葉綠素含量,說明在盛蕾期至盛花期適度干旱會使棉花產(chǎn)生一定的補償效應,使生育后期的葉綠素含量增加,進而增加葉片生育后期的光合能力;而密度對葉綠素的影響不顯著。環(huán)境脅迫致使活性氧在植物體內(nèi)累積,導致葉綠素合成受到影響,并且活性氧積累使細胞膜脂過氧化傷害加劇[27-29],然而SOD和POD能有效的清除細胞內(nèi)的活性氧[30]。試驗中,有限滴灌高密度下,棉花葉片中SOD活性、POD活性盛鈴期保持較高水平,可能是生育后期葉綠素衰減延緩的原因。
與常規(guī)滴灌相比,有限滴灌處理降低了LAI以及盛鈴期葉片中的MDA含量,且增加了盛鈴期后葉綠素含量及葉片SOD活性、POD活性和可溶性蛋白Pr含量。隨種植密度增加,LAI和群體干物質累積量均呈現(xiàn)逐漸增大的趨勢。提高棉花葉片中的SOD和Pr有利于提高LAI,而提高LAI有利于提高生殖器官干重和總干物質重。因此,有限滴灌條件下高密度處理最終獲得了較高的生殖器官和群體干物質累積量主要得益于增加盛鈴期后葉片中SOD和Pr含量,進而延長LAI最大持續(xù)期。該處理可作為促進早熟棉區(qū)棉花高產(chǎn)節(jié)水的一項調控技術。
參考文獻(References)
[1] 趙文賽, 孫永林, 劉西平. 干旱-復水-再干旱處理對玉米光合能力和生長的影響[J]. 植物生態(tài)學報, 2016, 40(6):594-603.
ZHAO Wen-sai, SUN Yong-ling, LIU Xi-ping. (2016). Effects of drought-rewatering-drought on photosynthesis and growth of maize [J].ChineseJournalofPlantEcology, 40(6): 594-603. (in Chinese)
[2] Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive.AustralianJournalofAgriculturalResearch, 56(11): 1,159-1,168.
[3] Constable, G. A., & Bange, M. P. (2015). The yield potential of cotton (gossypiumhirsutum, l.).FieldCropsResearch, 182: 98-106.
[4]楊傳杰, 羅毅, 孫林,等. 水分脅迫對覆膜滴灌棉花根系活力和葉片生理的影響[J]. 干旱區(qū)研究, 2012, 29(5):802-810.
YANG Chuan-jie, LUO Yi, SUN Ling, et al. (2012). Effect of Water Stress on Root Vigor and Leaf Physiology of Cotton under Mulch Drip Irrigation [J].AridZoneResearch, 29(5):802-810. (in Chinese)
[5] 閆映宇, 趙成義, 盛鈺,等. 膜下滴灌對棉花根系、地上部分生物量及產(chǎn)量的影響[J]. 應用生態(tài)學報, 2009, 20(4):970-976.
YAN Yin-yu, ZHAO Chen-yi, SHENG Yu, et al. (2009). Effects of drip irrigation under mulching on cotton root and shoot biomass and yield [J].ChineseJournalAppliedEcology, 20(4):970-976. (in Chinese)
[6] 杜明偉, 羅宏海, 張亞黎,等. 新疆超高產(chǎn)雜交棉的光合生產(chǎn)特征研究[J]. 中國農(nóng)業(yè)科學, 2009, 42(6):1 952-1 962.
DU Ming-wei, LUO Hong-hai, ZHANG Ya-li, , et al. (2009). Photosynthesis Characteristics of Super-High-Yield Hybrid Cotton in Xinjiang [J].ScientiaAgriculturaSinica, 42(6):1,952-1,962. (in Chinese)
[7] 薛延豐, 劉兆普. 鈣離子對鹽脅迫下菊芋幼苗的生長、生理反應和光合能力的影響理論[J]. 農(nóng)業(yè)工程學報, 2006, 22(9):44-47.
XUE Yan-feng, LIU Zhao-pu. (2006). Effects of calcium ion on growth, physiological responses and photosynthetic ability in salt-stressed Jerusalem artichoke (HelianthustuberosusL.) seedlings [J].TransCSAE, 22(9): 44-47. (in Chinese)
[8] Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: ii. purification and quantitative relationship with water-soluble protein in seedlings.PlantPhysiology, 59(2): 315.
[9] 張宏芝, 干秀霞, 虎曉兵,等. 膜下滴灌水氮運籌方式對棉花葉片衰老及產(chǎn)量和品質的影響[J]. 石河子大學學報(自科版), 2010, 28(6):661-667.
ZHANG Hong-zhi, GAN Xiu-xia, HU Xiao-bing, et al. (2010). Effects of Irrigation and Nitogen Application Regimes on Leaf Senesecence and Yield and Fiber Quality of Cotton in Plastic Mulched/Drip Irrigated Systems [J].JournalofShiheziUniversity(NaturalScience) , 28(6):661-667. (in Chinese)
[10] Eltayeb, M. A. (2015). Differential response of two vicia faba cultivars to drought: growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity.ActaAgronomicaHungarica, 54(54): 25-37.
[11] 羅宏海, 韓煥勇, 張亞黎,等. 干旱和復水對膜下滴灌棉花根系及葉片內(nèi)源激素含量的影響[J]. 應用生態(tài)學報, 2013, 24(4):1 009-1 016.
LUO Hong-hai, HAN Huan-yong, ZHANG Ya-li, et al. (2013). Effects of drought and re-watering on endogenous hormone contents of cotton roots and leaves under drip irrigation with mulch [J].ChineseJournalAppliedEcology, (24): 1,009-1,016. (in Chinese)
[12] 陳玉梁, 石有太, 羅俊杰,等. 干旱脅迫對彩色棉花農(nóng)藝、品質性狀和水分利用效率的影響[J]. 作物學報, 2013, 39(11):2 074-2 082.
CHEN Yu-liang, SHI You-tai, LUO Jun-jie, et al. (2013). Effect of Drought Stress on Agronomic Traits, Quality, and WUE in Different Colored Upland Cotton Varieties (Lines) [J].ActaAgronomicaSinica, 39(11):2,074-2,082. (in Chinese)
[13]解婷婷, 蘇培璽, 周紫鵑,等. 集群種植方式對棉花田間小氣候效應和產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學報, 2014, 23(3):55-61.
JIE Ting-ting, SU Pei-xi, ZHOU Zi-juan, et al. (2014). Effect of cluster planting on filed microclimate and yield of cotton[J].ActaAgriculturaeBoreali-occidentalisSinica, 23(3):55-61.(in Chinese)
[14] Luo, H. H., Zhang, Y. L., & Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch.Photosynthetica, 54(1): 65-73.
[15] 李合生. 植物生理生化實驗原理和技術[M]. 北京:高等教育出版社, 2000.
LI He-sheng. (2000).PrinciplesandTechniquesofPlantPhysiologicalandBiochemicalExperiment[M]. Beijing: Higher Education Press. (in Chinese)
[16]劉紅云, 梁宗鎖, 劉淑明,等. 持續(xù)干旱及復水對杜仲幼苗保護酶活性和滲透調節(jié)物質的影響[J]. 西北林學院學報, 2007, 22(3):55-59.
LIU Hong-yun, LIANG Zong-suo, Liu Shu-ming, et al. (2007). Effect of Progressive Drying and Rewatering on Protective Enzyme Activities and Osmoregulatory Molecules in Leaves of Eucommiaulmoides Seeding [J].JournalofNorthwestForestryUniversity, 22(3):55-59. (in Chinese)
[17]盧建武, 邱慧珍, 張文明,等. 半干旱雨養(yǎng)農(nóng)業(yè)區(qū)馬鈴薯干物質和鉀素積累與分配特性[J]. 應用生態(tài)學報, 2013, 24(2):423-430.
LU Jian-wu, QIU Hui-zhen, ZHANG Wen-ming, et al. (2013). Characteristics of dry matter and potassium accumulation and distribution in potato plant in semi-arid rainfedareas [J].ChineseJournalofAppliedEcology, 24(2):423-430.(in Chinese)
[18]劉瑞顯, 史偉, 徐立華,等. 種植密度對棉花干物質、氮素累積與分配的影響[J]. 江蘇農(nóng)業(yè)學報, 2011, 27(2):250-257.
LUI Rei-xian, SHI Wei, XU Li-hua, et al. (2011).Effects of planting density on dry matter and nitrogen accumulation and distribution of cotton [J].JiangsuJournalofAgriculturalSciences, 27(2):250-257. (in Chinese)
[19]羅宏海, 李俊華, 勾玲,等. 膜下滴灌對不同土壤水分棉花花鈴期光合生產(chǎn)、分配及籽棉產(chǎn)量的調節(jié)[J]. 中國農(nóng)業(yè)科學, 2008, 41(7):1 955-1 962.
LUO Hong-hai, LI Jun-hua, GOU Ling, et al. (2008). Regulation of Under-Mulch-Drip Irrigation on Production and Distribution of Photosynthetic Assimilate and Cotton Yield under Different Soil Moisture Contents During Cotton Flowering and Boll-Setting Stage [J].ScientiaAgriculturaSinica, 41(7):1,955-1,962. (in Chinese)
[20] 趙黎明, 李明, 鄭殿峰,等. 灌溉方式與種植密度對寒地水稻產(chǎn)量及光合物質生產(chǎn)特征的影響[J]. 農(nóng)業(yè)工程學報, 2015, 31(6): 159-169.
ZHAO Li-ming, LI Ming, ZHEN Dian-feng, et al.(2015). Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area [J].TransactionsoftheChineseSocietyofAgriculturalEngineering, 231(6): 159-169. (in Chinese)
[21]蔡易, 鄒德堂, 劉化龍,等. 不同灌溉方式對寒地粳稻抗旱生理性狀的影響[J]. 農(nóng)業(yè)現(xiàn)代化研究, 2012, 33(5):622-627.
CAI Yi, ZHOU De-tang, LIU Hua-long, et al. (2012). Effects of Different Irrigation Patterns on Drought-resistance Physiological Indexes of Japonica Rice in Cold Region [J].ResearchofAgriculturalModernization, 33(5):622-627. (in Chinese)
[22]孟兆江. 調虧灌溉對作物產(chǎn)量形成和品質性狀及水分利用效率的影響[D]. 南京:南京農(nóng)業(yè)大學博士專業(yè)論文, 2008.
MENG Zhao-jiang. (2008).EffecsofRegulatedDeficitIrrigationonformationofGrainYieldandGrainQualityTraitsandWaterUseEfficiencyinCrops[D]. PhD Thesis. Nanjing Agricultural University, Nanjing. (in Chinese)
[23]韓煥勇, 王方永, 陳兵,等. 不同種植密度下棉花葉面積指數(shù)與群體透光率的關系研究[J]. 中國棉花, 2014, 41(7):14-16.
HAN Huang-yong, WANG Fan-yong, CHEN Bin, et al. (2014). Study on Cotton Leaf Area Index and Transmittanca Application of Different Planting Density [J].ChinaCotton, 41(7):14-16. (in Chinese)
[24]馮佰利, 高小麗, 王長發(fā),等. 干旱條件下不同溫型小麥葉片衰老與活性氧代謝特性的研究[J]. 中國生態(tài)農(nóng)業(yè)學報, 2005, 13(4):74-76.
FENG Bai-li, GAO Xiao-li, WANG Chang-fa, et al. (2005). Leaf senescence and active oxygen metabolism of different-type wheat under drought [J].ChineseJournalofEco-Agriculture, 13(4):74-76. (in Chinese)
[25]俞世雄, 李芬, 李紹林,等. 水分脅迫對小麥新品系葉綠素含量的影響[J]. 云南農(nóng)業(yè)大學學報(自然科學版), 2014, 29(3):353-358.
YU Shi-xiong, LI Feng, LI Shao-ling, et al. (2014). Effects of Water Stress on Chlorophyll Contents of New Wheat Lines [J].JournalofYunnanAgriculturalUniversity, 29(3):353-358. (in Chinese)
[26]黃承建, 趙思毅, 王龍昌,等. 干旱脅迫對苧麻葉綠素含量的影響[J]. 中國麻業(yè)科學, 2012, 34(5):208-212.
HUANG Chen-jiang, ZHAO Si-yi, WANG Long-chang, et al. (2012). Effect of Drought Stress on Chlorophyll Contents in Ramie [J].PlantFiberSciencesinChina, 34(5):208-212. (in Chinese)
[27]張明生, 謝波, 談鋒, 等. 甘薯可溶性蛋白、葉綠素b及ATP含量變化與品種抗旱性關系的研究[J]. 中國農(nóng)業(yè)科學,2003, 36(1): 13-16.
ZHANG Ming-sheng, XIE Bo, TAN Feng, et al. (2003). Relationship Among Soluble Protein,Chlorophyll and ATP in Sweet potato Under Water Stress with Drought Resistance [J].ScientiaAgriculturaSinica, 36(1): 13-16. (in Chinese)
[28]趙天宏, 沈秀瑛, 楊德光, 等. 水分脅迫及復水對玉米葉片葉綠素含量和光合作用的影響[J]. 雜糧作物, 2003, 23(1): 33-35.
ZHAO Tian-hong, SHEN Xiu-ying, YANG De-guang, et al. (2003). Effects on Chlorophyll Content and Photosynthetic Rate of Maize Leaves under Water Stress and Rewatering [J].RainFedCrops, 23(1): 33-35. (in Chinese)
[29] 許潔, 曲東, 周莉娜. 硫營養(yǎng)對鋅和干旱脅迫下玉米葉片中葉綠素含量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2008, 26(2):33-37.
XU Jie, QU Dong, ZHOU Li-na. (2008). Effects of sulfur nutrition on the chlorophyll content of maize leaf under Zinc and drought stress [J].AridZoneResearch, 26(2):33-37. (in Chinese)
[30] Fridovich, I. (1978). The biology of oxygen radicals.Science, 201(4359):875-880.
EffectofDripIrrigationPatternandPlantingDensityonLeafSenescenceofCotton
MA Hui, NIU Yu-ping, XIA Jun, CHEN Zong-kui, LUO Hong-hai
(KeyLaboratoryofOasisEco-agricultureofXinjiangProductionandConstructionCorps,CollegeofAgronomy,ShiheziUniversityShiheziXinjiang832003,China)
ObjectiveTo explore the regulation of drip irrigation pattern and planting density on the cotton yield-forming stage of leaf senescence and dry matter production and provide evidence for regulation drip irrigation of cotton premature senescence and increase yield.MethodUsed Xinluzao 45 as the experimental material, field experiments were conducted with two drip irrigation patterns (I1, 600 nm and I2, 450 nm) and three levels of planting densities (D1, 12×104plant/hm2; 24×104plant/hm2; 36×104plant/hm2). The leaf area index, chlorophyll content, protective enzyme of cotton and dry matter accumulation were measured.ResultCompared with the conventional drip irrigation, limited drip irrigation treatment of leaf area index(LAI) decreased by 17.8%, but superoxide dismutase activity (SOD) and peroxidase activity (POD) increased by 8.4%, 44.7%, 12.9%, respectively. There was not significant difference between the two treatments in dry matter accumulation. With the increase of planting density, LAI, dry matter accumulation as well soluble protein (Pr), malondialdehyde (MDA) and chlorophyll content at full boll stage showed a trend of increase gradually. Correlation analysis showed that the SOD was very significant positive correlation between LAI and (r= 0.485**), LAI and reproductive organs dry and total dry matter were extremely significant positive correlation (r= 0.721**,r= 0.721**). Under limited drip irrigation condition, the high density treatment enhanced the leaves chlorophyll content, SOD activity, POD activity and Pr content after full boll stage, and extended LAI maximum duration, which finally achieved the highest total and reproductive dry matter accumulation.ConclusionTherefore, under the condition of limited drip irrigation a modest increase in planting density can be used as effective control measures to delay the cotton senescence and increase the production in arid areas.
cotton; drip irrigation pattern; planting density; leaf senescence; dry matter production
Supported by: Doctoral Program of Xinjiang Production and Construction Corps " Physiological regulation and control technology strategy for efficient water use in cotton under mulch drip irrigation based on water deficit compensation effect" (2014BB009) and Fok Ying Tung Education Foundation "Photosynthetic physiological compensation mechanism research for high yield cotton under limited irrigation in arid area" (15030)
LUO Hong-hai(1979-), male, native place: Hami, Xinjiang. doctoral student, associate professor. Reserch area: the yield and physiology of crops. (E-mail)luohonghai79@163.com
S562
A
1001-4330(2017)11-1972-11
2017-07-29
新疆兵團博士資金專項“基于缺水補償效應的膜下滴灌棉花高效用水生理調控技術研究”(2014BB009);霍英東教育基金會“干旱區(qū)有限灌溉棉花高產(chǎn)的光合生理補償機制研究”(151030)
馬卉(1993-),女,江蘇徐州人,碩士,研究方向為作物高產(chǎn)生理與節(jié)水栽培,(E-mail)865220593@qq.com
羅宏海(1979-),男,遼寧撫順人,副教授,博士,研究方向為作物高產(chǎn)生理與節(jié)水栽培,(E-mail)luohonghai79@163.com