周先榮
(江蘇蘇州木瀆實(shí)驗(yàn)中學(xué) 215000)
目前,很多初中的數(shù)學(xué)診斷性考試評(píng)價(jià)名目繁多,有期初考、期中考、期末考、月考、單元考等等,且評(píng)價(jià)內(nèi)容過多倚重學(xué)科知識(shí),評(píng)價(jià)標(biāo)準(zhǔn)過份強(qiáng)調(diào)共性,評(píng)價(jià)方法一張?jiān)嚲?為此,本文通過PISA與中考數(shù)學(xué)的對(duì)比[1],就初中數(shù)學(xué)紙筆診斷性考試評(píng)價(jià)(簡(jiǎn)稱診斷考試)的內(nèi)容、方式進(jìn)行了膚淺的探索.不足之處,請(qǐng)方家指教!
PISA(國際學(xué)生評(píng)估項(xiàng)目)是由OECD(經(jīng)濟(jì)合作與發(fā)展組織)統(tǒng)籌的學(xué)生能力的國際評(píng)價(jià)計(jì)劃,是一項(xiàng)以改善教育政策為導(dǎo)向的跨國測(cè)評(píng)研究項(xiàng)目.為了便于比較,我們選擇蘇州2012中考數(shù)學(xué)試題(120分鐘,29個(gè)題,選擇題分值占23.07%)和PISA2012數(shù)學(xué)測(cè)試題(60分鐘,26個(gè)題,選擇題占50.00%),在主題內(nèi)容和認(rèn)知要求兩個(gè)維度進(jìn)行對(duì)比分析.主題內(nèi)容分為數(shù)感、運(yùn)算、測(cè)量、消費(fèi)者應(yīng)用、基礎(chǔ)代數(shù)、幾何概念、數(shù)據(jù)展示、統(tǒng)計(jì)、概率、分析、三角幾何、函數(shù)和教學(xué)基礎(chǔ);認(rèn)知要求分為回憶、執(zhí)行程序、展示理解、推測(cè)/概括/證明、解決非常規(guī)問題/建立聯(lián)系.其中,差距比較大(超過3%)的幾項(xiàng)見表1、表2.
表1 PISA2012和蘇州市2012中考數(shù)學(xué)主題內(nèi)容差距較大的分布
表2 PISA2012和蘇州市2012中考數(shù)學(xué)認(rèn)知要求差距較大的分布
兩份試卷的一致性指數(shù)僅為0.46,說明存在很大差異.主題內(nèi)容方面,測(cè)量、數(shù)據(jù)展示、統(tǒng)計(jì)這幾項(xiàng)我們的測(cè)試比重相對(duì)較少,幾何三角、函數(shù)方面測(cè)試比重相對(duì)較大;在認(rèn)知要求方面,存在較大差異,其中“問題情景”差異驚人.
目前,存在一種不正常的現(xiàn)象,就是初中各級(jí)考試的內(nèi)容都瞄準(zhǔn)中考,甚至照搬中考題.中考是選拔考試,是對(duì)三年學(xué)習(xí)的終結(jié)性測(cè)量與評(píng)價(jià).而平時(shí)的考試更多是階段性的診斷考試,特別是初一、初二的診斷考試,其更重要的功能是形成較為準(zhǔn)確的教育判斷,以利改進(jìn)教師教學(xué)和管理,促進(jìn)學(xué)生學(xué)習(xí).診斷考試內(nèi)容過分局限于考察學(xué)生的式感、空間觀念、計(jì)算能力、思維能力與推理能力等核心問題,削弱了考試的調(diào)節(jié)、導(dǎo)向、激勵(lì)、育人功能是不可取的.因此,平時(shí)診斷考試應(yīng)該關(guān)注學(xué)生的發(fā)展性和核心素養(yǎng),在重視數(shù)學(xué)的生活性、情景性和過程性以外,還突出個(gè)體對(duì)數(shù)學(xué)的認(rèn)識(shí)和態(tài)度的評(píng)價(jià).諸如數(shù)學(xué)史、數(shù)學(xué)文化、數(shù)學(xué)審美、數(shù)學(xué)應(yīng)用等體現(xiàn)個(gè)人數(shù)學(xué)修為的內(nèi)容,在平時(shí)診斷考試中應(yīng)更加豐富.
現(xiàn)代數(shù)學(xué)教育,是將數(shù)學(xué)置于人類文化大背景下對(duì)其進(jìn)行哲學(xué)的反思,它是人類文化的重要組成部分,對(duì)人類智力、美學(xué)和道德方面有著培養(yǎng)的功能.數(shù)學(xué)文化已經(jīng)超越了專業(yè)研究范疇,廣泛進(jìn)入基礎(chǔ)教育,也就有了迫切的診斷考試要求,高考也明確提出要增加數(shù)學(xué)文化的考試內(nèi)容.如何把數(shù)學(xué)文化轉(zhuǎn)化為診斷考試形態(tài),以下幾個(gè)方面值得關(guān)注.
2.1.1數(shù)學(xué)典籍為背景,讓考題助力數(shù)學(xué)史的傳承
初中數(shù)學(xué)考試的命題在重視考查學(xué)生運(yùn)用觀察、分析、計(jì)算、計(jì)劃、方法、思維,綜合運(yùn)用所學(xué)知識(shí)與技能解決問題的能力的同時(shí),有責(zé)任滲透性考察學(xué)生數(shù)學(xué)文化方面的認(rèn)識(shí),提醒學(xué)生在社會(huì)文化的大背景下,去看待數(shù)學(xué)和理解數(shù)學(xué),領(lǐng)略數(shù)學(xué)審美,透過數(shù)學(xué)的規(guī)則體會(huì)理智與自律,經(jīng)歷數(shù)學(xué)的嚴(yán)謹(jǐn)學(xué)會(huì)敬業(yè)與求真,通過科學(xué)與人文相濟(jì),發(fā)展數(shù)學(xué)教育應(yīng)有的育人功能,這其中數(shù)學(xué)典籍的作用尤為重要.如,在檢測(cè)解二元一次方程時(shí),為了了解二元一次方程的幾何解法,了解古人的“代數(shù)幾何”思想,我們?cè)O(shè)計(jì)了這樣的考題.
命題1在歐幾里得的《幾何原本》中記錄了很多“數(shù)形結(jié)合”的經(jīng)典問題.在第二卷中的命題11中記錄了方程ax+x2=a2的幾何解法.如圖,作邊長(zhǎng)為a的正方形ABCD,E是線段DA中點(diǎn),以E為圓心,EB為半徑畫圓,與DA的延長(zhǎng)線交于F點(diǎn),作正方形AFGH,延長(zhǎng)GH交于DC于K.“我們將把一個(gè)與給定的正方形ABCD(面積)相等的矩形DFGK(一邊)置于線段AD上,并多出一個(gè)正方形AFGH”.這樣,AF的長(zhǎng)的數(shù)值就是方程x2+ax-a2=0的一個(gè)解.請(qǐng)你參考上述方法,給出方程x2+2x-4=0的正數(shù)解(近似值)是.
本題旨在不通過求根公式,而是借助畫圖通過測(cè)量手段來解方程.考后,很多學(xué)生在談?wù)摗稁缀卧尽?,談?wù)摓槭裁匆懊娣e相等”等等.事實(shí)上,考試不是讓學(xué)生機(jī)械答題,更重要的作用是引起學(xué)生自發(fā)的談?wù)摂?shù)學(xué).引起學(xué)生了解數(shù)學(xué)史料,增強(qiáng)考后閱讀數(shù)學(xué)典籍內(nèi)容的意識(shí).
2.1.2數(shù)學(xué)名題為背景,彰顯古代名題的現(xiàn)代教育價(jià)值.
如果說數(shù)學(xué)文化是浩瀚的宇宙,那么數(shù)學(xué)名題就是閃爍的星星.數(shù)學(xué)名題都是歷史的積淀,在當(dāng)時(shí)的歷史條件下名噪一時(shí),也給數(shù)學(xué)打上了濃厚的文化烙印.事實(shí)上,一個(gè)好的問題可能改變一個(gè)人的人生軌跡.如:歐拉(Euler)受“哥尼斯堡七橋問題”的啟發(fā)發(fā)明了“圖論”;泊松(Poisson)因?yàn)閷?duì)“三個(gè)瓶子分啤酒”問題的研究而癡迷于數(shù)學(xué),成為一代數(shù)學(xué)大師.有些歷史名題與課程目標(biāo)密切相關(guān),打開塵封已久的記憶,重現(xiàn)這些問題的現(xiàn)代數(shù)學(xué)價(jià)值,實(shí)際上是揭示數(shù)學(xué)科學(xué)中的人文精神,使學(xué)生得到優(yōu)秀文化的熏陶,更是提高學(xué)習(xí)興趣的源泉.如,考察一元一次方程應(yīng)用的時(shí)候,我們就挪移了古代的問題設(shè)計(jì)了這樣的考題.
類似這樣的問題在《九章算術(shù)》中有很多,《九章算術(shù)》是數(shù)學(xué)家向帝王提出如何“丈量田畝、征取稅金、攤派徭役、計(jì)算土方”等實(shí)用數(shù)學(xué)問題的總結(jié),其中的一些問題到現(xiàn)在依然具有生命力.這些問題的重現(xiàn),重在引發(fā)數(shù)學(xué)思考,在對(duì)問題進(jìn)行提煉和加工的過程中,生成學(xué)生的自主探究、自主發(fā)現(xiàn),揭示問題背后的數(shù)學(xué)本質(zhì)、思想.讓古老的實(shí)用問題交融于現(xiàn)代的數(shù)學(xué)學(xué)習(xí),使思維更加理性,這也是我們應(yīng)有的教育行為.
2.1.3 趣味數(shù)學(xué)為背景,讓考題怡情怡性.
生活中流傳著許多膾炙人口的趣味數(shù)學(xué)故事.如:中國古代的“雞兔同籠”、“九宮圖”等,都是孩子喜歡鉆研的,對(duì)學(xué)生的激勵(lì)價(jià)值是不言而喻的.現(xiàn)代生活中,也有許多學(xué)生喜歡的趣味數(shù)學(xué)故事,有些是非常好的考試情景.通過數(shù)學(xué)趣味題,可以欣賞數(shù)學(xué)之美,享受數(shù)學(xué)之趣,領(lǐng)略數(shù)學(xué)的魅力.如初一上學(xué)期的期中考試,我們?cè)O(shè)計(jì)了這樣的考題.
命題3一百零八塔是中國現(xiàn)存的大型古塔群之一,位于銀川市南60公里的青銅峽水庫西岸崖壁下,塔群坐西面東,依山臨水.佛塔依山勢(shì)自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇數(shù)排列成十二行,總計(jì)108座,形成總體平面呈三角形的巨大塔群.現(xiàn)要求重新設(shè)計(jì)一座塔,使塔的總數(shù)是133個(gè),共13行,每行塔數(shù)為奇數(shù)且只允許兩行中的塔數(shù)重復(fù)(如題中已有的3,3,5,5),則各行的塔數(shù)從小到大依次為(重復(fù)的塔數(shù)一起寫出,設(shè)計(jì)一種即可).
有人認(rèn)為此題與當(dāng)時(shí)學(xué)段的學(xué)習(xí)聯(lián)系不密切,其實(shí)不然,它延續(xù)了小學(xué)的“數(shù)感”,對(duì)初中學(xué)生的直觀、分析、猜想要求很高,學(xué)生也非常感興趣.問題也與佛學(xué)的知識(shí)相連,有一定文化相通的氣息,對(duì)學(xué)生的精神追求,提高“數(shù)學(xué)情商”很有意義.
現(xiàn)代課程知識(shí)“交匯”非常頻繁,要在不同知識(shí)體系的交匯處適當(dāng)加強(qiáng)檢測(cè),逐步提高學(xué)生對(duì)知識(shí)“整合”的意識(shí).通常情況下,課本上不同的知識(shí)體系間往往蘊(yùn)涵著某些本質(zhì)的聯(lián)系,只要注意引導(dǎo),學(xué)生完全可以利用自己的力量把這種關(guān)系揭示出來.特別的,引導(dǎo)學(xué)生在不同學(xué)科的交匯處發(fā)現(xiàn)問題,實(shí)際上是培養(yǎng)學(xué)生對(duì)不同學(xué)科的跨界“相互利用”能力,這種高層次的學(xué)科融合、學(xué)科滲透正越來越受到人們的關(guān)注.如,提起對(duì)稱性,多數(shù)學(xué)生首先反應(yīng)出的是幾何圖形的對(duì)稱,其實(shí)對(duì)稱存在于每個(gè)學(xué)科和生活的每個(gè)角落,為了引領(lǐng)學(xué)生欣賞這種對(duì)稱美,我們?cè)O(shè)計(jì)了這樣的考題.
命題4下列四個(gè)選項(xiàng)中,有的句子、單詞字母具有對(duì)稱規(guī)律.其中沒有這種規(guī)律的一項(xiàng)是( )
A.清水池里池水清 B.有志者事競(jìng)成
C.上海自來水來自海上 D. level
D選項(xiàng)仿照A、C選項(xiàng),是以語文中的“回文句”為背景,這種題加深理解生活中的軸對(duì)稱現(xiàn)象,題目新穎,妙趣橫生.
考題情景是指為考題特別設(shè)定的某個(gè)具體(生活)問題,在問題解決的過程中顯化數(shù)學(xué)能力,閱讀理解能力、數(shù)學(xué)表述能力、推理和論證能力、制定解決問題策略的能力、使用符號(hào)化、公式化、技術(shù)性語言和運(yùn)算能力以及使用數(shù)學(xué)工具的能力等.依據(jù)主要是荷蘭著名數(shù)學(xué)家和教育家費(fèi)賴登塔爾(H.Freudenthal)的“數(shù)學(xué)來源于現(xiàn)實(shí),且寓于現(xiàn)實(shí)中.”考題情境的構(gòu)建要能夠在問題的解決過程中掌握“數(shù)學(xué)化”的方法.并尋找數(shù)學(xué)知識(shí)在客觀世界中的實(shí)際背景材料,把大量的數(shù)學(xué)好題置于學(xué)生所熱愛的生活情境之中,讓學(xué)生親身體驗(yàn)數(shù)學(xué)的實(shí)際創(chuàng)造過程,從而提高學(xué)生從生活中發(fā)現(xiàn)數(shù)學(xué)的意識(shí).
從統(tǒng)計(jì)看,我們中考17.70%的考題有情景,而PISA測(cè)試的所有問題都有情景.應(yīng)該說,PISA考題情景的構(gòu)建形式和內(nèi)容對(duì)我們有很大的啟發(fā)和借鑒作用,在此不再例贅舉.筆者認(rèn)為考題情景的構(gòu)建應(yīng)關(guān)注以下幾個(gè)方面:①關(guān)聯(lián)性.首先,問題的本身要有一定的數(shù)學(xué)內(nèi)涵,體現(xiàn)出一定的數(shù)學(xué)價(jià)值.其次,問題要有針對(duì)性,與考查的目標(biāo)有“魚與水”的關(guān)聯(lián),很容易切中考試目標(biāo)、切中問題的要害;②趣味性.情景符合學(xué)生的心理特點(diǎn),引起學(xué)生的興趣,關(guān)鍵是考后還能引起學(xué)生談?wù)摂?shù)學(xué)的激情;③可及性.生活經(jīng)驗(yàn)和情景之間要緊密聯(lián)系,由情景到問題解決的思維“維度”不能太大,要有“臺(tái)階”,讓學(xué)生“跳起來摘桃子”;④時(shí)代性.情景貼近時(shí)代生活,及時(shí)從身邊的媒體、新聞事件及學(xué)生生活體驗(yàn)中發(fā)現(xiàn)情景價(jià)值,保持情景的新穎性,甚至可以從國家發(fā)展的熱點(diǎn)問題構(gòu)建情景,增加學(xué)生愛國熱情.
診斷考試要想讓學(xué)生從生搬硬套上升到靈活思考,需要盡量規(guī)避一些一看就知道是“做過了”的記憶性問題.為達(dá)到這個(gè)目的,除了增加問題的情景外,還可增加問題的開放性,減少一問一答機(jī)械命題模式.比如,本文的命題3,結(jié)果不唯一具有探索性,是較為開放的問題.有時(shí),可以給出考題條件讓學(xué)生創(chuàng)設(shè)問題結(jié)果,也可以給出問題的結(jié)果讓學(xué)生補(bǔ)充條件等等,讓問題更加開放.
命題5如圖,ABCD中,E、F是對(duì)角線AC上的兩個(gè)點(diǎn),請(qǐng)你適當(dāng)添加一些條件,并依據(jù)這些條件提出一個(gè)正確的結(jié)論.
添加的條件:
正確的結(jié)論:
有些重要圖形是研究很多問題的載體,要加大學(xué)生對(duì)這些圖形的探究力度.本題中的圖形,教材中多次出現(xiàn)并加以變化形成了相應(yīng)的問題鏈條.編擬此題的目的,就是讓學(xué)生依托這個(gè)基本圖形去提出問題,“提出一個(gè)問題往往比解決一個(gè)問題更重要.因?yàn)榻鉀Q問題也許僅是一個(gè)數(shù)學(xué)上或?qū)嶒?yàn)上的技能而已,而提出新的問題,卻需要有創(chuàng)造性的想象力,而且標(biāo)志著科學(xué)的真正進(jìn)步.”(愛因斯坦).考試的對(duì)象是學(xué)生、是人,是活生生的個(gè)體,考題不應(yīng)該都是唯一呆板的答案和機(jī)械的完成答卷,也應(yīng)該是火熱的創(chuàng)造過程.不在于學(xué)生答案的標(biāo)準(zhǔn)化,而在于學(xué)生能夠給出自己的想法,以激發(fā)學(xué)生的創(chuàng)新思維.對(duì)于開放性試題的評(píng)分不應(yīng)有很硬性的評(píng)分標(biāo)準(zhǔn),只要符合要求,具有一定的綜合水平就行.在量分的過程中,教師要以公正、寬容和發(fā)展的眼光看待學(xué)生的“作品”,將有獨(dú)特創(chuàng)意的答案給以高分.
為了終結(jié)性評(píng)價(jià)向過程性評(píng)價(jià)和發(fā)展性評(píng)價(jià)轉(zhuǎn)變,實(shí)現(xiàn)學(xué)生“指向目標(biāo)達(dá)成的自我學(xué)習(xí)力的提升”.可以運(yùn)用多樣的資料,諸如教學(xué)過程中產(chǎn)生出的學(xué)習(xí)卡片、作業(yè)、作品、表演、錄音、錄像、考試等資料與信息,多角度、綜合地評(píng)價(jià)學(xué)生,求得教學(xué)與評(píng)價(jià)的一體化.但在目前的環(huán)境下,這些評(píng)價(jià)如何操作還有待深入的研究.就現(xiàn)有紙筆考試而言,我們不必尋求對(duì)其進(jìn)行顛覆性變革,適當(dāng)配合口頭考試評(píng)價(jià)、操作考試評(píng)價(jià)、開放考試評(píng)價(jià)、合作考試評(píng)價(jià)、自主考試評(píng)價(jià)、分層考試評(píng)價(jià)等形式,在命題內(nèi)容、命題形式、命題人上都可以進(jìn)行新的探索.
布盧姆(Benjamin Bloom)把認(rèn)知領(lǐng)域的目標(biāo)分為六個(gè)領(lǐng)域:知識(shí)、領(lǐng)會(huì)、運(yùn)用、分析、綜合和評(píng)價(jià).其最高層次是學(xué)生能夠評(píng)價(jià)自己的學(xué)習(xí),針對(duì)學(xué)生如何才能自主評(píng)價(jià),我們進(jìn)行了嘗試.
第一種方式:自主命題,學(xué)生做自己的主考官.千年來,都是“主考官”考學(xué)生,學(xué)生能不能自己命題考自己呢?我們嘗試不再由老師命題考學(xué)生,而是讓學(xué)生自己考自己.首先,每個(gè)學(xué)生自主命題各自出一份試卷,交給老師審核并統(tǒng)一保管.然后,在統(tǒng)一的時(shí)間,在無人監(jiān)考的情況下,同位同學(xué)相互考對(duì)方出的試卷,或小組內(nèi)部采用“推磨式”考法,A考B出的試卷,B考C出的試卷……F考A出的試卷,考后分別交給命題的同學(xué)批改.
第二種方式:合作命題,小組互考也精彩.將班級(jí)分成若干學(xué)習(xí)小組,組間同質(zhì)組內(nèi)異質(zhì),小組之間隨機(jī)結(jié)對(duì)互考.每個(gè)小組內(nèi)部合作命題出一份試卷,在統(tǒng)一的時(shí)間考試,分別考另一個(gè)小組出的試卷,考后試卷按小組收齊,交由命題小組的小組長(zhǎng)集中批改.
這兩種考試形式的目的是讓學(xué)生自主命題,增加自主評(píng)價(jià)的能力,其關(guān)鍵是學(xué)生能夠出好一份試卷.為此,老師要做好以下工作:
其一,命題形式規(guī)范.首先,要做好學(xué)生和家長(zhǎng)的動(dòng)員工作,講清考試“分?jǐn)?shù)”和自我定位、自我評(píng)價(jià)、自我認(rèn)知的關(guān)系,讓學(xué)生從個(gè)人成長(zhǎng)的高度來出好試卷.其次,做好學(xué)生命題的培訓(xùn)工作,通過剖析試卷范例,對(duì)考試時(shí)間、內(nèi)容、題目數(shù)量、難度、梯度等,讓學(xué)生知道如何把握這些要素,逐步培養(yǎng)學(xué)生能出一份高質(zhì)量的試卷.
其二,命題內(nèi)容適切.題目的難易要符合命題人自己的學(xué)情,懂得如何選擇考題,如何進(jìn)行題型的搭配,鼓勵(lì)學(xué)生拓展、改編、編擬問題.
其三,適當(dāng)尋求幫助.命題過程中出現(xiàn)困難,比如畫圖操作等,可以尋求家長(zhǎng)和朋友幫助.特別是小組命題過程中,合作就顯得至為重要.
其四,做好跟蹤扶持.老師對(duì)學(xué)生命題的試卷考前要全部收繳檢查,對(duì)有問題的試卷及時(shí)給予個(gè)別扶持幫助.
其五,做好試卷自主批改的培訓(xùn)工作.輔導(dǎo)學(xué)生如何批改試卷,明晰步驟和得分點(diǎn),協(xié)助學(xué)生如何給出標(biāo)準(zhǔn)答案,如何建立分步評(píng)分標(biāo)準(zhǔn).
實(shí)踐證明,學(xué)生自主檢測(cè)是可行的,學(xué)生可以認(rèn)真負(fù)責(zé)的出好試卷,組織好考試并做好閱卷工作.特別是小組合作命題,普遍都能夠出一份很好的試卷.
學(xué)生自主檢測(cè),學(xué)生個(gè)人及小組的命題情況以及自我批改情況,老師都要跟蹤反饋評(píng)價(jià).老師評(píng)價(jià)學(xué)生,學(xué)生自我評(píng)價(jià),學(xué)生之間相互評(píng)價(jià),小組之間相互評(píng)價(jià),都要建立反饋評(píng)價(jià)機(jī)制.情感態(tài)度方面,教師要了解學(xué)生是認(rèn)真完成試卷命題,還是應(yīng)付完成,還是消極抵制,還是變相抄襲,掌握學(xué)生對(duì)自主命題的情感、態(tài)度及價(jià)值的認(rèn)識(shí).命題時(shí)間方面,要掌握學(xué)生完成命題大約花費(fèi)多少時(shí)間,不能變相加重學(xué)生負(fù)擔(dān).考題來源方面,對(duì)試卷中學(xué)生比較得意的題目,要追究學(xué)生問題的來源,是來自課本?來自復(fù)習(xí)資料?來自家長(zhǎng)朋友幫助?來自培訓(xùn)機(jī)構(gòu)?自己改編?還是自己編擬?等等.了解學(xué)生為什么選這個(gè)題,是否真正理解了這個(gè)問題的奧妙.對(duì)學(xué)習(xí)促進(jìn)方面,了解自主命題對(duì)學(xué)習(xí)的影響.通過自主命題對(duì)自己的學(xué)習(xí)起到什么作用,能否促進(jìn)自己梳理知識(shí)的系統(tǒng)性,從整體上提升自己的學(xué)力,還是沒有什么作用白白浪費(fèi)時(shí)間.學(xué)生也表示自己出題有趣、考試形式新穎,可以了解到其他學(xué)生的學(xué)習(xí)情況,也可以彌補(bǔ)自己學(xué)習(xí)的不足,對(duì)自己的學(xué)習(xí)有一定的幫助,特別是讓學(xué)生自己閱卷,增加了他們的責(zé)任心.
“知人者智,自知之明.勝人者有力,自勝者強(qiáng).”(《道德經(jīng)》),通過跟蹤評(píng)價(jià),促進(jìn)元認(rèn)知生成.讓學(xué)生對(duì)自主考試有個(gè)自我反思,進(jìn)一步激發(fā)學(xué)生的潛能,使?jié)撃苻D(zhuǎn)化為現(xiàn)實(shí)的學(xué)習(xí)能力,從而更好地促進(jìn)學(xué)生下階段的學(xué)習(xí).比如,調(diào)查顯示,學(xué)生選擇考題的時(shí)候,絕大多數(shù)學(xué)生首先想的是“題目好不好”,而不是我“會(huì)不會(huì)”.整個(gè)自主考試過程學(xué)生跳出“分?jǐn)?shù)”的束縛,會(huì)非常認(rèn)真的享受自我評(píng)價(jià)的過程.再比如,以前的統(tǒng)計(jì)發(fā)現(xiàn),12.1%的命題來自課本原題,79.7%來自其它資料的原題,只有8.2%是其它問題稍加改動(dòng)的題.為此,我們針對(duì)性的訓(xùn)練學(xué)生如何利用課本問題去拓展、改編問題或者受其啟發(fā)編擬新問題.現(xiàn)在,這個(gè)比例大幅提升,一度達(dá)到23.7%.當(dāng)然,學(xué)生拓展、編擬的問題有時(shí)很幼稚,但點(diǎn)點(diǎn)滴滴都是學(xué)生創(chuàng)新思維的閃現(xiàn),長(zhǎng)期積累在學(xué)生思維更加厚重的同時(shí),也使學(xué)生的創(chuàng)新思維得到發(fā)展.
改變“千人一卷”的考試評(píng)價(jià)方式,讓學(xué)生出適合自己的測(cè)試卷,既增加學(xué)生的學(xué)習(xí)情感態(tài)度和價(jià)值觀,使學(xué)生能更主動(dòng)地投入以后的學(xué)習(xí).又寓考于樂,促進(jìn)學(xué)生元認(rèn)知能力生成,何樂而不為呢?可以講,老師對(duì)學(xué)生的信任換回了學(xué)生對(duì)老師的信任,也換回了學(xué)生對(duì)自己的負(fù)責(zé),這也是育人.
3.3一紙多卷,“考試內(nèi)容我做主”
在一些重要節(jié)點(diǎn)的考試中,嘗試一紙多卷分層檢測(cè),學(xué)生自主選擇自己的考試內(nèi)容.將試卷分成必做題和選做題兩部分,必做題為基礎(chǔ)部分,嚴(yán)格按照課程標(biāo)準(zhǔn)注重學(xué)生的基本知識(shí)、基本技能、基本過程、基本方法的考察,共60分.按照布魯姆的認(rèn)知分類,必做題只要達(dá)到“領(lǐng)會(huì)”層次.選做題分A、B、C三部分,學(xué)生只能且必須選擇其中的一部分進(jìn)行測(cè)試.這三部分既不同又相互關(guān)聯(lián),每部分40分.A部分達(dá)到“運(yùn)用”層次,B部分達(dá)到“分析”層次,C 部分達(dá)到“綜合”和“評(píng)價(jià)”的層次.
統(tǒng)計(jì)表明,有大約23%的學(xué)生選擇A卷,60%選擇B卷,17%選擇C卷,也符合學(xué)生學(xué)習(xí)狀況的正態(tài)分布,說明學(xué)生對(duì)自己還是有較為清醒的自我認(rèn)知和評(píng)價(jià)定位.這樣,學(xué)生根據(jù)自己情況各有所需各有發(fā)展.A考出自信,B考出燦爛,C考出驕傲,這不正是我們所期盼的嗎?
我們常說“授人以魚,不如授人以漁”.事實(shí)上,“授人以漁”首先要“近人以水”.只有近水嘗到了魚的鮮美,才有“臨淵羨魚”之念,進(jìn)而思索“退而結(jié)網(wǎng)”.此時(shí),根本不要老師“授人以漁”了 .通過考試讓學(xué)生思索如何去自己“結(jié)網(wǎng)”,如何才能結(jié)好網(wǎng),這比考出個(gè)分?jǐn)?shù)更重要.
在自主命題中發(fā)掘?qū)W生的潛能,在選擇性考試中滿足學(xué)生的需要.通過自我的選擇建立學(xué)生的自信,通過對(duì)學(xué)生自主考試的反思,促進(jìn)師生元認(rèn)知的生成,反過來再助推師生發(fā)展,這才能超越“考分”,進(jìn)入育人的范疇,此考之大者!