吳昆鵬,陳 瑩,黃治家*,言彩紅
(1.南華大學(xué)附屬第二醫(yī)院,重癥醫(yī)學(xué)科,湖南 衡陽(yáng) 421001; 2.南華大學(xué)附屬第二醫(yī)院,麻醉科,湖南 衡陽(yáng) 421001)
燕麥β-葡聚糖對(duì)膿毒癥小腸損傷相關(guān)基因表達(dá)的影響
吳昆鵬1,陳 瑩2,黃治家1*,言彩紅1
(1.南華大學(xué)附屬第二醫(yī)院,重癥醫(yī)學(xué)科,湖南 衡陽(yáng) 421001; 2.南華大學(xué)附屬第二醫(yī)院,麻醉科,湖南 衡陽(yáng) 421001)
研究報(bào)告
目的探索燕麥β-葡聚糖對(duì)膿毒癥小腸損傷相關(guān)基因表達(dá)的影響。方法SD大鼠隨機(jī)分為正常對(duì)照組(NC組),實(shí)驗(yàn)對(duì)照組(TC組),燕麥β-葡聚糖組(Oglu組)。TC組和Oglu組以盲腸結(jié)扎穿孔(cecal ligation and puncture,CLP)法建立膿毒癥模型。Oglu組以不同劑量燕麥β-葡聚糖灌胃。12 h后收集各組小腸組織,Western blot檢測(cè)小腸組織損傷基因表達(dá)。結(jié)果1)燕麥β-葡聚糖減輕膿毒癥誘導(dǎo)的小腸損傷,降低膿毒癥大鼠小腸組織中TNF-α、IL-1β及IL-6水平(P< 0.05);(2)膿毒癥組小腸損傷相關(guān)蛋白Bcl-2表達(dá)下調(diào),Bax、caspase-3、Toll樣、凋亡基因FAS和FASL、NF-κB表達(dá)明顯增加;(3)燕麥β-葡聚糖組小腸粘膜Bax、caspase-3、Toll樣、凋亡基因FAS和FASL、NF-κB的表達(dá)低于明顯膿毒癥組,而B(niǎo)cl-2表達(dá)較高。結(jié)論燕麥β-葡聚糖調(diào)控膿毒癥大鼠小腸損傷基因的表達(dá),保護(hù)小腸上皮免受膿毒癥的損傷。
燕麥β-葡聚糖;膿毒癥;腸粘膜
目前認(rèn)為腸道是膿毒癥發(fā)生發(fā)展的始動(dòng)因素[1],膿毒癥時(shí)造成腸黏膜上皮水腫,上皮細(xì)胞膜及細(xì)胞間連接斷裂,細(xì)胞壞死,上皮從絨毛頂端開(kāi)始脫落,甚至黏膜全層脫落而形成潰瘍,造成腸道通透性增加、腸屏障功能受損,腸道細(xì)菌及其毒素得以吸收進(jìn)入循環(huán)系統(tǒng)而發(fā)生細(xì)菌移位,使全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)加劇、失控,嚴(yán)重時(shí)誘發(fā)多器官功能障礙綜合征(multiple organ dysfunction syndrome,MODS),甚至危及患者生命[2]。故腸功能的保護(hù)是膿毒癥治療中極為重要的論題。早在上世紀(jì)80年代,國(guó)外學(xué)者就發(fā)現(xiàn)燕麥和大麥中富含的水溶性β-葡聚糖對(duì)人體腸道的保護(hù)作用[3,4],但主要強(qiáng)調(diào)營(yíng)養(yǎng)膳食方面,對(duì)腸道基因影響方面的研究極少。為此,我們建立大鼠膿毒癥模型,研究燕麥β-葡聚糖對(duì)小腸損傷過(guò)程中基因表達(dá)的影響。
60只清潔級(jí)SD雄性大鼠,6~8周齡,體重280~320 g,由南華大學(xué)實(shí)驗(yàn)動(dòng)物部提供[SCXK(湘)2015-0001][SYXK(湘)2015-0001]。通過(guò)口服管飼法每天處理小鼠,并單獨(dú)飼養(yǎng)在25℃和55%(相對(duì)濕度)的籠中。
T試劑盒、Trizol、PCR試劑盒購(gòu)自Promega公司;Taq聚合酶、RNase inhibitor購(gòu)自TaKaRa公司;腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)、白細(xì)胞介素-6(interleukin-6,IL-6)、ELISA試劑盒購(gòu)自美國(guó)Pierce公司;兔抗鼠Bcl-2、Bax、caspase-3、FAS、FASL、p65、β-actin和TPB抗體購(gòu)自Santa Cruz。
1.3.1 燕麥β-葡聚糖的提取
山西產(chǎn)燕麥品種:晉燕8號(hào),山西省農(nóng)科院高寒作物研究所提供。燕麥原料經(jīng)布勒磨粉機(jī)分離燕麥麩皮和燕麥粉。收集麩皮并粉碎過(guò)篩后冷藏備用。根據(jù)Bhatty[5]和Ahmad[6]所述的方法,從燕麥麩中提取高分子量β-葡聚糖,不同之處在于固體:液體比例為1∶8,pH 7.0。通過(guò)控制酸水解時(shí)間(HCl,pH 1.0,80℃),從初始分離物獲得中等分子量的β-葡聚糖和低分子量β-葡聚糖的樣品。然后將分離物進(jìn)行徹底透析3 d,并通過(guò)冷凍干燥濃縮。通過(guò)AOAC官方方法995.16,使用測(cè)定試劑盒(Megazyme International,Bray,Ireland)測(cè)定每種樣品的總β-葡聚糖含量。通過(guò)具有多角度激光散射(SEC-LLS)的尺寸排阻色譜法測(cè)定β-葡聚糖樣品的分子量的值。使用凱氏定氮法測(cè)定蛋白質(zhì)的量。通過(guò)在121℃的真空烘箱中將稱(chēng)重的樣品干燥5 h并測(cè)量重量損失來(lái)分析水分。使用Ubbelohde毛細(xì)管粘度計(jì),在37℃下測(cè)定各β-葡聚糖溶液的特性粘度[η],并根據(jù)Huggins方程進(jìn)行計(jì)算。3%(w/v)燕麥β-葡聚糖溶液進(jìn)行流變學(xué)測(cè)量。通過(guò)配有錐板幾何形狀(4,20 mm)的受控應(yīng)變流變儀(TA Instrument,USA)測(cè)量粘度,并且在37℃從0.1/s~100/s的剪切速率下進(jìn)行穩(wěn)定剪切速率掃描。
1.3.2 實(shí)驗(yàn)分組與處理
60只大鼠隨機(jī)分為正常對(duì)照組(NC組,n=20),實(shí)驗(yàn)對(duì)照組(TC組,n=20),燕麥β-葡聚糖組(Oglu組,n=20)。實(shí)驗(yàn)前均適應(yīng)性喂養(yǎng)3 d。TC組和Oglu組以CLP法[7,8]建立膿毒癥模型。建模方法:實(shí)驗(yàn)大鼠用氯胺酮(60 mg/kg,肌注)麻醉,仰面固定四肢在操作臺(tái)上,隨后在腹部中線(xiàn)行一個(gè)2 cm切口,暴露盲腸,找到回盲瓣的遠(yuǎn)端,用18號(hào)針頭穿刺兩次,并擠出少許糞便,將腸管返回腹腔。逐層縫合腹部傷口,術(shù)后用立即30 mL / kg生理鹽水復(fù)蘇,然后將動(dòng)物放回籠內(nèi)。Oglu組經(jīng)口灌胃給予3%的Oglu溶液,依據(jù)文獻(xiàn)給予不同劑量[9]:500 mg/(kg·d);1000 mg/(kg·d);2000 mg/(kg·d)。TC組予以糖鹽水喂養(yǎng),實(shí)驗(yàn)12 h后三組分別處死10只大鼠[8],取各組大鼠全部小腸組織,分為3部分:一部分用蒸餾水漂洗,浸泡于多聚甲醛中,進(jìn)行病理切片觀(guān)察[10];一部分用0.9%生理鹽水按10%濃度制成勻漿,3000 r/min離心10 min,取上清液,冷凍于液氮中,用ELISA試劑盒檢測(cè)炎癥因子TNF-α、IL-1β及IL-6,依據(jù)文獻(xiàn),以小腸粘膜病理?yè)p傷及炎癥因子確認(rèn)膿毒癥模型[11]。
1.3.3 RNA提取與實(shí)時(shí)定量PCR
采用實(shí)時(shí)定量PCR法檢測(cè)腸道組織細(xì)胞膜外Toll樣受體(Toll-like receptors, TLR2、TLR4、TLR5、TLR6)基因表達(dá)。即將腸組織制成勻漿后,采用TRIzol試劑提取細(xì)胞總RNA,并將其逆轉(zhuǎn)錄為cDNA。加入10 mmol/L 正向和反向引物以及SYBR后(Invitrogen, Carlsbad, CA),實(shí)時(shí)定量PCR于A(yíng)BI 7500上進(jìn)行擴(kuò)增。擴(kuò)增條件:94℃預(yù)變性10 min,隨后進(jìn)入以下35個(gè)循環(huán):94℃ 1 min,58℃ 1 min,72℃ 3 min。本研究所用的引物如下:TLR2:forward 5′- GCTCCTGTGACTTCCTGTCC-3′, reverse 5′- CCG AAAGCACAAAGATGGTT-3′; TLR4: forward 5′- AG GCAGCCATAACTTCTCCA-3′, reverse 5′- GGTTGAG TAGGGGCATTTGA-3′;TLR5:forward 5′- AACGCTTT GCTCAAACACCT-3′, reverse 5′- ACCCTCTGATGGA CTGATGC-3′;TLR6:forward 5′- ACTGACCTTCCTGG ATGTGG-3′, reverse 5′- GCACCACTCACTCTGGACA A-3′;β-actin, forward 5′-ACC CAC ACT GTG CCC ATC TA-3′, reverse 5′-CGG AAC CGCTCA TTG CC-3′。結(jié)果以2-ΔΔCt表示。
1.3.4 蛋白提取與Western blot分析
采用Western blot檢測(cè)小腸組織Bcl-2、Bax、caspase-3、FAS和FASL基因的表達(dá)以及NF-κB的核轉(zhuǎn)位。即采用Pierce提供的試劑盒提取細(xì)胞總蛋白和核蛋白。測(cè)定其濃度后,將加入等體積的2×SDS上樣緩沖液煮沸5 min,取20 μL蛋白用于SDS-PAGE。電泳結(jié)束后,將其電轉(zhuǎn)印到硝酸纖維素膜上。用5%脫脂奶粉室溫封閉2 h,后,加入兔抗鼠Bcl-2、Bax、Caspase-3、FAS、FASL以及p65或β-actin或TPB一抗(Santa Cruz)4℃孵育過(guò)夜,并采用ECL發(fā)光(Millipore,Billerica,MA)、顯影(VL Chemi-Smart 3000,Viogene Biotek, CA)。
病理學(xué)分析顯示正常組腸粘膜完整(圖1 A)。 膿毒癥組中,上皮細(xì)胞間隙增大,絨毛上皮細(xì)胞和隱窩細(xì)胞數(shù)量減少,絨毛上皮排列紊亂,大量炎性細(xì)胞浸潤(rùn)(圖1B)。相比之下,在燕麥β-葡聚糖組中,上皮細(xì)胞間隙僅在少數(shù)區(qū)域擴(kuò)大,隱窩上皮細(xì)胞豐富,炎性細(xì)胞減少(圖1C)。
膿毒癥組小腸組織中TNF-α、IL-1β及IL-6水平顯著高于正常對(duì)照組及燕麥β-葡聚糖組(P< 0.05);燕麥β-葡聚糖組仍高于正常對(duì)照組(P< 0.05)。(表1)
2.3.1 燕麥β-葡聚糖對(duì)膿毒癥大鼠小腸組織Bcl-2和Bax蛋白表達(dá)的影響
與正常對(duì)照組相比,膿毒癥組(TC組)Bcl-2 蛋白表達(dá)下調(diào),Bax表達(dá)明顯增加,燕麥β-葡聚糖處理后Bcl-2蛋白表達(dá)上調(diào),而B(niǎo)ax蛋白表達(dá)下降,并且隨燕麥β-葡聚的劑量增加而下降明顯。見(jiàn)圖2。
2.3.2 燕麥β-葡聚糖對(duì)膿毒癥大鼠小腸組織Caspase-3活化表達(dá)的影響
注:A:對(duì)照組;B:膿毒癥組;C:Oglu組。圖1 各組空腸組織病理學(xué)檢查(Bar=100 μm)Note.A:Control group;B:Sepsis group;C:Oglu group.Fig.1 Histopathological examination of jejunum in each group.HE staining表1 各組小腸組織中TNF-α、IL-1β及IL-6水平(pg/mg)Tab.1 TNF-α, IL-1β and IL-6 levels in the small intestine
炎癥因子Inflammatoryfactor正常對(duì)照組Controlgroup 膿毒癥組Sepsisgroup燕麥β?葡聚糖組OglugroupTNF?α102±010472±044?280±031?#IL?1β019±001626±071?379±023?#IL?6 052±001589±078?392±027?#
注:與正常對(duì)照組比較,*P< 0.05;與膿毒癥組比較,#P< 0.05。
Note.Compared with the normal control group,*P< 0.05; compared with the sepsis group,#P< 0.05.
注:1:NC組;2:TC組;3∶500 mg/kg·d Oglu組;4∶1000 mg/kg·d Oglu組;5∶2000 mg/kg·d Oglu組。圖2 各組大鼠小腸組織Bcl-2和Bax蛋白表達(dá)Note.1:NC group; 2:TC group; 3∶500 mg/kg·d Oglu group; 4∶1000 mg/kg·d Oglu group; 5∶2000 mg/kg·d Oglu group.Fig.2 Expression of Bcl-2 and Bax proteins in the small intestine of rats
注:A:各組大鼠小腸組織細(xì)胞膜外Toll樣受體表達(dá);B:實(shí)時(shí)定量PCR擴(kuò)增曲線(xiàn);1:正常對(duì)照組;2:膿毒癥組;3∶500 mg/kg·d Oglu組;4∶1000 mg/kg·d Oglu組;5∶2000 mg/kg·d Oglu組。;與正常對(duì)照組相比,* P< 0.05;與膿毒癥組相比,#P< 0.05。圖4 各組大鼠小腸組織細(xì)胞膜外Toll樣受體表達(dá)及PCR擴(kuò)增Note.A:Expression of Toll-like receptor in the small intestine tissue of rats in each group;B:Real-time quantitative PCR amplification curve;1:Normal control group; 2:TC group; 3∶500 mg/kg·d Oglu group; 4∶1000 mg/kg·d Oglu grop; 5∶2000 mg/kg·d Oglu grop;Compared with the normal control group, *P < 0.05; compared with the TC group,#P < 0.05.Fig.4 Expression and proliferation of Toll-like receptors and PCR amplification in the small intestine of rats in each group
與正常對(duì)照組相比,膿毒癥組(TC組)Caspase-3蛋白表達(dá)明顯增加,燕麥β-葡聚糖處理后Caspase-3蛋白表達(dá)下降,并且隨燕麥β-葡聚有劑量增加而下降明顯。見(jiàn)圖3。
注:1:NC組;2:TC組;3∶500 mg/kg·d Oglu組;4∶1000 mg/kg·d Oglu組;5∶2000 mg/kg·d Oglu組。圖3 各組大鼠小腸組織Caspase-3活化表達(dá)Note.1:NC group; 2:TC group; 3∶500 mg/kg·d Oglu group; 4∶1000 mg/kg·d Oglu group; 5∶2000 mg/kg·d Oglu group.Fig.3 Expression of caspase-3 in the small intestine of rats in each group
2.3.3 燕麥β-葡聚糖對(duì)膿毒癥大鼠腸道組織細(xì)胞膜外Toll樣受體(TLR2、TLR4、TLR5、TLR6)基因表達(dá)的影響
與正常對(duì)照組相比,膿毒癥組(TC組)Toll樣受體2,4,5表達(dá)明顯增加,燕麥β-葡聚糖處理后各Toll樣受體表達(dá)下降,并且隨燕麥β-葡聚有劑量增加而下降明顯。見(jiàn)圖4。
2.3.4 燕麥β-葡聚糖對(duì)膿毒癥大鼠小腸細(xì)胞凋亡時(shí)FAS和FASL基因表達(dá)的影響
膿毒癥大鼠小腸細(xì)胞凋亡基因FAS和FASL表達(dá)明顯增加,而燕麥β-葡聚糖下調(diào)FAS和FASL凋亡基因的表達(dá),隨麥β-葡聚糖劑量增加,兩者表達(dá)明顯減少。見(jiàn)圖5。
2.3.5 燕麥β-葡聚糖對(duì)膿毒癥大鼠小腸組織NF-κB p65亞基核轉(zhuǎn)位的影響
膿毒癥模型組中細(xì)胞核內(nèi)NF-κB亞基p65含量明顯增高,而用不同濃度Oglu處理后,細(xì)胞核內(nèi)p65水平逐漸降低,表明NF-κB活性受到抑制。而細(xì)胞核內(nèi)參TBP(TATA盒結(jié)合蛋白)水平無(wú)明顯變化。見(jiàn)圖5。
注:1:NC組;2:TC組;3∶500 mg/kg·d Oglu組;4∶1000 mg/kg·d Oglu組;5∶2000 mg/kg·d Oglu組。圖5 各組大鼠小腸組織FAS和FASL表達(dá)Note.1:NC group; 2:TC group; 3∶500 mg/kg·d Oglu group; 4∶1000 mg/kg·d Oglu group; 5∶2000 mg/kg·d Oglu group.Fig.5 Expression of FAS and FASL in the small intestine of rats in each group
注:1:NC組;2:TC組;3∶500 mg/kg·d Oglu組;4∶1000 mg/kg·d Oglu組;5∶2000 mg/kg·d Oglu組。圖6 各組大鼠小腸組織NF-κB表達(dá)Note.1:NC group; 2:TC group; 3∶500 mg/kg·d Oglu group; 4∶1000 mg/kg·d Oglu group; 5∶2000 mg/kg·d Oglu group.Fig.6 Expression of NF-κB in the small intestine of rats in each group
大量的基礎(chǔ)及臨床研究均已表明燕麥β-葡聚糖對(duì)腸道有很好的保健作用[12,13],燕麥β-葡聚糖纖維在減少心血管疾病風(fēng)險(xiǎn)和控制血糖方面的作用已得到廣泛的確認(rèn),但其他潛在的益處,包括調(diào)節(jié)腸道微生物群和炎癥,仍在被探索[14]。膳食β-葡聚糖可能會(huì)改變幼豬腸組織反應(yīng),在斷奶后期特異性調(diào)控了腸段基因的選擇和形態(tài)的表達(dá)[15]。在給予回腸造口術(shù)患者富含燕麥β-葡聚糖飲食后發(fā)現(xiàn),其小腸和結(jié)腸細(xì)胞系免疫功能是增強(qiáng)的,這些對(duì)腸細(xì)胞的免疫刺激作用有可能有助于增強(qiáng)宿主對(duì)侵襲性病原體的抵抗能力[16]。
本研究建立膿毒癥模型,發(fā)現(xiàn)其膿毒癥能明顯誘導(dǎo)大鼠小腸損傷,而燕麥β葡聚糖能減輕膿毒癥誘導(dǎo)的小腸病理改變,能抑制炎癥反應(yīng),如膿毒癥模型大鼠中小腸組織中TNF-α、IL-1β和IL-6水平的降低所示。進(jìn)一步探索燕麥β葡聚糖保護(hù)小腸的分子機(jī)制,動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)燕麥β-葡聚糖對(duì)腸道功能的調(diào)節(jié)影響到基因?qū)哟?,其抑制長(zhǎng)鏈脂肪酸和膽固醇的體外腸吸收,是由于β-葡聚糖下調(diào)參與脂肪酸合成和膽固醇代謝的基因的表達(dá),減少腸道脂肪酸結(jié)合蛋白和脂肪酸轉(zhuǎn)運(yùn)蛋白4 mRNA[17]。同樣我們知道膿毒癥模型中存在大鼠小腸上皮細(xì)胞凋亡,Bcl-2家族基因Bcl-2表達(dá)下調(diào),而B(niǎo)ax表達(dá)升高[18,19]。Bcl-2蛋白是bcl-2原癌基因的編碼產(chǎn)物,是細(xì)胞存活促進(jìn)因子,Bcl-2蛋白家族是一個(gè)特別的家族,目前已發(fā)現(xiàn)25種Bcl-2家族同源蛋白,其成員中有些促進(jìn)凋亡,如Bad、Bid、Bax,有些成員阻止細(xì)胞凋亡,如Bcl-2、Bcl-x、Bcl-w、Bcl-2能夠阻止細(xì)胞色素C從線(xiàn)粒體釋放到細(xì)胞質(zhì),從而抑制了細(xì)胞凋亡。本研究使用燕麥β-葡聚糖干預(yù)后,RT-PCR顯示Bcl-2表達(dá)上調(diào),Bax表達(dá)下調(diào),Bax / Bcl-2比例有所改善,提示燕麥β-葡聚糖能明顯防止膿毒癥誘導(dǎo)的小腸上皮細(xì)胞凋亡,且增加燕麥β-葡聚糖劑量,能提升這種保護(hù)效應(yīng)。Caspase-3是細(xì)胞凋亡過(guò)程中最主要的終末剪切酶,也是細(xì)胞毒性T淋巴細(xì)胞(cytotoxic lymphocyte,CTL)殺傷機(jī)制的重要組成部分,細(xì)胞凋亡受到嚴(yán)格調(diào)控,在正常細(xì)胞caspase處于非活化的酶原狀態(tài),凋亡程序一旦開(kāi)始,caspase被活經(jīng)隨后發(fā)生凋亡蛋白酶的層疊級(jí)聯(lián)反應(yīng),發(fā)生不可逆的凋亡,在腸上皮細(xì)胞凋亡中發(fā)揮重要作用[20]。我們的研究中發(fā)現(xiàn),膿毒癥模型小腸組織caspase-3表達(dá)增加,喂食燕麥β-葡聚糖后能明顯抑制caspase-3的表達(dá),從而減少了小腸上皮細(xì)胞的凋亡,且在實(shí)驗(yàn)使用的劑量范圍內(nèi)有一定的劑量依賴(lài)性。
Toll樣受體是參與非特異性免疫(天然免疫)的一類(lèi)重要蛋白質(zhì)分子,當(dāng)微生物突破機(jī)體的物理屏障,如皮膚、粘膜等時(shí),TLR可以識(shí)別它們并激活機(jī)體產(chǎn)生免疫細(xì)胞應(yīng)答[21]。腸上皮細(xì)胞表達(dá)Toll樣受體,其在保守的微生物因子如脂多糖(LPS)上誘導(dǎo)上皮反應(yīng),包括上皮細(xì)胞增殖,分泌型IgA分泌到內(nèi)腔中并產(chǎn)生粘蛋白和抗微生物肽,從而促進(jìn)腸屏障功能[22]。在腸上皮細(xì)胞和對(duì)照魚(yú)的固有層細(xì)胞中,TLR2以低水平表達(dá)。腸上皮通過(guò)其促炎基因的表達(dá),炎性細(xì)胞因子的釋放和炎性細(xì)胞的募集直接參與粘膜免疫反應(yīng)。如在炎癥性腸病腸易激綜合征患者小腸粘膜中Toll樣受體2,4,5和9的表達(dá)明顯增加[23,24]。膿毒癥小腸粘膜存在炎癥反應(yīng),在本研究中,膿毒癥大鼠空腸組織中Toll樣受體2,4,5表達(dá)較正常對(duì)照組明顯增加,而在燕麥β-葡聚糖組表達(dá)下降,提示了燕麥β-葡聚糖可能導(dǎo)致腸黏膜TLRs的表達(dá)下降及其信號(hào)轉(zhuǎn)導(dǎo)通路活化減弱,從而減輕腸粘膜炎癥。
Fas/FasL作為可直接啟動(dòng)細(xì)胞凋亡的信號(hào)途徑,也是是負(fù)向調(diào)節(jié)介導(dǎo)腸上皮細(xì)胞細(xì)胞凋亡最為重要的膜蛋白分子[25]。在本研究中,膿毒癥組小腸組織Fas/FasL基因表達(dá)明顯增加,而燕麥β-葡聚糖組Fas和Fasl凋亡基因的表達(dá)明顯下調(diào),隨燕麥β-葡聚糖劑量增加,這種效應(yīng)更加明顯。前面的研究均提示燕麥β-葡聚糖可以調(diào)節(jié)腸道免疫反應(yīng),富含燕麥β-葡聚糖的糞便水刺激細(xì)胞因子誘導(dǎo)的腸細(xì)胞免疫反應(yīng)[16]。使用燕麥β-葡聚糖的小鼠在腸細(xì)胞中表現(xiàn)出增加的腸NF-κB反式激活,特別是在小腸近端(回腸),但是在結(jié)腸中未被激活[26]。本研究膿毒癥模型組中細(xì)胞核內(nèi)NF-κB亞基p65含量明顯增高,而用不同濃度燕麥β-葡聚糖處理后,p65水平逐漸降低,表明NF-κB活性受到抑制。
綜上所述,燕麥β-葡聚糖能通過(guò)不同途徑抑制膿毒癥大鼠的小腸細(xì)胞凋亡,從而實(shí)現(xiàn)其膿毒癥腸道保護(hù)作用,但是如在動(dòng)物和人體中觀(guān)察到的,燕麥β-葡聚糖對(duì)腸道免疫的影響研究還處在初期,從宏觀(guān)到微觀(guān)的潛在機(jī)制,都需要進(jìn)一步評(píng)估。
[1] Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis[J]. Biochim Biophys Acta,2017,1863(10):2574-2583.
[2] Rombeau JL, Takala J.Summary of round table conference:gut dysfunction in critical illnesss[J].Intensive Care Med,1997,23(4):476-479.
[3] Estrada A, van Kessel A, Laarveld B.Effect of administration of oat beta-glucan on immune parameters of healthy and immunosuppressed beefsteers[J].Can J Vet Res,1999,63(4):261-268.
[4] Bourdon I, Yokoyama W, Davis P.Postprandial lipid,glucose,insulin,and cholecystokinin responses in men fed barley pasta enriched with beta-glucan[J].Am J Clin Nutr,1999,69(1):55-63.
[5] Bhatty RS.Laboratory and pilot plant extraction and purification of β-glucans from hull-less barley and oat brans[J]. J Cereal Sci, 1995, 22(2):163-170.
[6] Ahmad A, Anjum FM, Zahoor T,et al. Extraction and characterization of β-d-glucan from oat for industrial utilization[J]. Int J Biol Macromol,2010,46 (3):304-309.
[7] Siempos II, Lam HC, Ding Y, et al. Cecal ligation and puncture-induced sepsis as a model to study autophagy in mice[J]. J Vis Exp, 2014, (84):e51066.
[8] 王寧,周紅,郭毅斌,等.心導(dǎo)管留置術(shù)后盲腸結(jié)扎穿孔術(shù)(CLP)膿毒癥動(dòng)物模型的建立[J].中國(guó)比較醫(yī)學(xué)雜志,2008,18(10):12-14.
[9] Liu M, Zhang Y, Zhang H, et al. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide induced diabetic mice[J]. Int J Biol Macromol,2016, 91:1170-1176.
[10] 趙玉瓊,李瑞生,陳華.三種固定液對(duì)大、小鼠腸道組織石蠟切片質(zhì)量的影響[J].中國(guó)比較醫(yī)學(xué)雜志,2014,24(11):53-56.
[11] Wan SX, Shi B, Lou XL, et al. Ghrelin protects small intestinal epithelium against sepsis-induced injury by enhancing the autophagy of intestinal epithelial cells[J]. Biomed Pharmacother,2016, 83:1315-1320.
[12] Earnshaw SR, McDade CL, Chu Y, et al. Cost-effectiveness of maintaining daily intake of oat β-glucan for coronary heart disease primary prevention[J]. Clin Ther,2017,39(4):804-818.e3.
[13] Ryan PM, London LE, Bjorndahl TC, et al. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E- /- mice[J]. Microbiome,2017,5(1):30.
[14] Menon R, Gonzalez T, Ferruzzi M, et al. Oats-from farm to fork[J]. Adv Food Nutr Res,2016,77:1-55.
[15] Metzler-Zebeli BU, G?nzle MG, Mosenthin R, et al. Oat β-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflamma-tory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs[J]. J Nutr,2012,142(4):668-674.
[16] Ramakers JD, Volman JJ, Bi?rklund M, et al. Fecal water from ileostomic patients consuming oat beta-glucan enhances immune responses in enterocytes[J]. Mol Nutr Food Res,2007,51(2):211-220.
[17] Drozdowski LA, Reimer RA, Temelli F,et al. Beta-glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats[J]. J Nutr Biochem,2010,21(8):695-701.
[18] Fu H, Wang QS, Luo Q, et al. Simvastatin inhibits apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax[J]. World J Emerg Med,2014,5(4):291-297.
[19] Klingensmith NJ, Yoseph BP, Liang Z, et al. Epidermal growth factor improves intestinal integrity and survival in murine sepsis following chronic alcohol ingestion[J]. Shock,2017,47(2):184-192.
[20] Grossmann J, Walther K, Artinger M, et al. Induction of apoptosis before shedding of human intestinal epithelial cells[J]. Am J Gastroenterol,2002,97(6):1421-1428.
[21] Kim CH. B cell-helping functions of gut microbial metabolites[J]. Microb Cell,2016,3(10):529-531.
[22] Johnston DG, Corr SC. Toll-like receptor signalling and the control of intestinal barrier function[J]. Methods Mol Biol, 2016,1390:287-300.
[23] Tan Y, Zou KF, Qian W,et al. Expression and implication of toll-like receptors TLR2, TLR4 and TLR9 in colonic mucosa of patients with ulcerative colitis[J].J Huazhong Univ Sci Technolog Med Sci,2014,34 (5): 785-790.
[24] 郭文濤, 劉萍, 董麗娜, 等. 腹瀉型腸易激綜合征患者腸黏膜優(yōu)勢(shì)菌的改變與Toll 樣受體2和4基因表達(dá)的相關(guān)性研究[J]. 中華內(nèi)科雜志, 2016, 55(7): 541-543.
[25] Zimmerman MA, Singh N, Martin PM, et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells[J]. Am J Physiol Gastrointest Liver Physiol,2012,302(12):G1405-1415.
[26] Volman JJ, Mensink RP, Ramakers JD,et al. Dietary (1→3), (1→4)-β-D-glucans from oat activate nuclear factor-κB in intestinal leukocytes and enterocytes from mice[J]. Nutr Res,2010,30(1):40-48.
Effectsofoatβ-glucanontheexpressionofsmallintestineinjury-relatedgenesinsepticrats
WU Kun-peng1, CHEN Ying2, HUANG Zhi-jia1*, YAN Cai-hong1
(1.Department of Intensive Care Medicine,The Second Hospital Affiliated to South China University,Hengyang 421001,China; 2.Department of Anesthesia,The Second Hospital Affiliated to South China University,Hengyang 421001)
ObjectiveTo explore the effect of oat β-glucan on gene expression in small intestine injury in sepsis.MethodsSD rats were randomly divided into normal control group (NC group), experimental control group (TC group) and oat β-glucan group (Oglu group).TC group and Oglu group were used to establish sepsis model with CLP method ,and oglu group with different doses of oat β-glucan. After 12 h the small intestine tissue were collected. Western blot was used to detect gene expression in the small intestine tissue injury.Results1)Oat β-glucan reduced sepsis-induced small intestine injury,and reduced the TNF-α, IL-1β and IL-6 levels in small intestine of septic rats.(2) The expression of small intestinal injury-related proteins such as Bax, caspase-3, Toll-like, apoptotic genes FAS and FASL and NF-κB were significantly increased,and Bcl-2 expression was down-regulated in the TC group.(3)The expressions of Bax, caspase-3, Toll-like, apoptotic genes FAS and FASL and NF-κB in oat β-glucan-treated rats were lower than that in the septic rats, while Bcl-2 expression was higher than the TC group.ConclusionsOat β-glucan regulates the expression of small intestinal injury genes in septic rats and protects the small intestinal epithelium against sepsis-induced injury.
Oat β-glucan; Sepsis; Intestinal mucosa
2017-05-22
湖南省教育廳基金(15C1212)。
吳昆鵬(1980-),男,主治醫(yī)師,研究方向:膿毒癥。E-mail: iron_head@yeah.net
黃治家(1983-),男,主治醫(yī)師,研究方向:膿毒癥。E-mail: 35675205@qq.com
R-33
A
1671-7856(2017) 12-0039-07
10.3969.j.issn.1671-7856. 2017.12.007
〔收稿日期〕2017-05-30