張 琪,楊光華,葛志鵬,丁家杉,黃志強(qiáng),鄭 陽,張國志,王長友*
(1.華北理工大學(xué)附屬醫(yī)院,河北 唐山 063000; 2.華北理工大學(xué)臨床醫(yī)學(xué)院,河北 唐山 063000)
羅格列酮對HT29、HCT116結(jié)腸癌細(xì)胞凋亡影響 及機(jī)制探究
張 琪1,楊光華1,葛志鵬1,丁家杉2,黃志強(qiáng)1,鄭 陽1,張國志1,王長友1*
(1.華北理工大學(xué)附屬醫(yī)院,河北 唐山 063000; 2.華北理工大學(xué)臨床醫(yī)學(xué)院,河北 唐山 063000)
研究報告
目的探討羅格列酮對結(jié)腸癌HT29、HCT116細(xì)胞增殖、凋亡情況的影響以及AKT/GSK3β信號通路的變化。方法HT29、HCT116結(jié)腸癌細(xì)胞經(jīng)不同濃度羅格列酮(20.0 μmol/L,40.0 μmol/L,80.0 μmol/L)處理后,采用MTT法檢測細(xì)胞增殖能力的變化,annexin-V FITC/PI試劑盒檢測細(xì)胞凋亡情況,Western blot檢測Bcl2、Bax以及Akt、GSK3β表達(dá)情況。結(jié)果與空白對照組相比,不同濃度的羅格列酮對HT29、HCT116結(jié)腸癌細(xì)胞的增殖均有影響(P< 0.01),并且影響呈劑量依賴關(guān)系;不同濃度的羅格列酮對HT29、HCT116細(xì)胞均有誘導(dǎo)凋亡的作用(P< 0.01),且誘導(dǎo)HT29、HCT116細(xì)胞凋亡呈劑量依賴性;羅格列酮處理細(xì)胞48 h后,與空白對照組相比Bcl2/Bax表達(dá)水平、P-GSK3β、P-Akt表達(dá)水平明顯下降(P< 0.01),Akt、GSK3β表達(dá)水平較空白對照組差異無顯著性(P> 0.05)。結(jié)論羅格列酮可能通過抑制Akt/GSK3β通路的激活,改變Bcl2/Bax 情況,發(fā)揮抑制細(xì)胞增殖、誘導(dǎo)凋亡的作用。
羅格列酮;結(jié)腸癌;凋亡;Bcl2;Bax;Akt;GSK3β
由于人口結(jié)構(gòu)和飲食習(xí)慣的改變,結(jié)腸癌在我國的發(fā)病率呈逐年上升趨勢[1]。在世界范圍內(nèi),結(jié)腸癌的發(fā)病率分別位列女性和男性腫瘤的第二位和第三位[2],因此對于結(jié)腸癌的防治研究尤為重要。噻唑烷二酮類藥物羅格列酮(rosiglitazone, ROZ)是一種PPARγ特異性配體。作為胰島素增敏劑,本身具備較少、較輕的藥物毒副作用,同時已有許多研究證實(shí)在肝癌、乳腺癌、結(jié)腸癌等多種腫瘤細(xì)胞的生物學(xué)行為有明顯的抑制作用,但是對于結(jié)腸癌細(xì)胞的抑制作用研究甚少,具體發(fā)揮作用的信號通路尚不可知[3]。因此,我們進(jìn)行體外研究,采用HT29、HCT116人結(jié)腸癌細(xì)胞系,予以不同濃度的羅格列酮,探討結(jié)腸癌細(xì)胞的凋亡情況以及AKT/GSK3β信號通路的變化。
人結(jié)腸癌細(xì)胞株HT29、HCT116,購買于中國科學(xué)院干細(xì)胞庫;DMEM培養(yǎng)基 (Gibco公司);四季青胎牛血清(浙江天杭生物公司);抗體Bcl-2、Bax、P-Akt、Akt、P-GSK3β、GSK3β、annexin-V FITC/PI染料試劑盒(Sigma公司);HR標(biāo)記山羊抗兔IgG二抗、β-actin抗體、MTT試劑盒、DAB顯影液(上海碧云天生物技術(shù)研究所);BCA 蛋白濃度測定試劑盒、RIPA裂解液、PMSF、SDS-PAGE凝膠配制試劑盒(北京索萊寶科技有限公司);酶標(biāo)儀、濕轉(zhuǎn)系統(tǒng)(上海Bio-Rad公司);流式細(xì)胞儀(FACS Calibur,BD公司);羅格列酮(上海三維制藥有限公司)。
1.2.1 細(xì)胞培養(yǎng)
HT29、HCT116、細(xì)胞用含10% FBS的DMEM培養(yǎng)基,37.0℃,5% CO2條件下培養(yǎng),每2 d傳代1次。
1.2.2 細(xì)胞增殖能力檢測
采用MTT法,取對數(shù)生長期的細(xì)胞,制備成單細(xì)胞懸液,按 5×103/孔接種于3個96孔板中,細(xì)胞貼壁后以不含F(xiàn)BS的培養(yǎng)基培養(yǎng)12 h同步化細(xì)胞。棄去培養(yǎng)基,配置ROZ終濃度為20.0 μmol/L、40.0 μmol/L、80.0 μmol/L的含10% FBS的完全培養(yǎng)基處理各組細(xì)胞,空白對照組為不含ROZ的完全培養(yǎng)基。每組設(shè)9個復(fù)孔,培養(yǎng)24 h、48 h。各孔加入 5 mg/mL MTT 溶液 10 μL,繼續(xù)培養(yǎng)箱中反應(yīng) 4 h,棄培養(yǎng)基,每孔加入DMSO 100 μL,置于培養(yǎng)箱中反應(yīng)15 min。用酶標(biāo)儀在波長570 nm處測定各孔吸光度值(OD值)。因OD值與孔內(nèi)存活細(xì)胞數(shù)呈正比,故用OD值表示細(xì)胞增殖能力。
1.2.3 Anneixin-V/ PI染色檢測羅格列酮對細(xì)胞凋亡影響
取對數(shù)生長期細(xì)胞,制備成單細(xì)胞懸液,接種于6孔板中,同步化細(xì)胞。按空白對照組,以及不同濃度的ROZ分組,每孔加入2 mL培養(yǎng)基。37℃,5% CO2條件下培養(yǎng)48 h,胰酶消化,1000 r/min離心5 min,棄上清,PBS重懸細(xì)胞,1000 r/min離心5 min,棄上清,加入185 μL annexin V-FITC 結(jié)合液重懸細(xì)胞后,加入 5 μL annexin V-FITC、10 μL PI染色液混勻。室溫避光孵育10 min,1 h內(nèi)上機(jī)進(jìn)行流式細(xì)胞儀檢測分析,以早期凋亡和晚期凋亡細(xì)胞的含量合計為凋亡細(xì)胞,3次獨(dú)立的重復(fù)實(shí)驗(yàn)獲得以下數(shù)據(jù)。
1.2.4 Western blot檢測相關(guān)蛋白表達(dá)
兩株細(xì)胞經(jīng)濃度為40.0 μm/L ROZ處理48 h后,RIPA裂解液充分裂解細(xì)胞,離心收集蛋白。BCA法定量總蛋白,加入等體積2×蛋白上樣緩沖液后100℃變性5 min,-80℃保存?zhèn)溆谩_M(jìn)行SDS-PAGE蛋白電泳,再分別進(jìn)行轉(zhuǎn)膜(90 V,90 min),10%脫脂奶封閉,一抗孵育過夜(1∶1000),二抗(1∶100)37℃ 孵育2 h,熒光顯色。Image J軟件分析灰度值。相關(guān)蛋白表達(dá)量計算=(所測蛋白灰度值/內(nèi)參灰度值)×100%。
MTT結(jié)果顯示,培養(yǎng)24 h、48 h、72 h后不同濃度的ROZ對兩株結(jié)腸癌細(xì)胞的增殖均有影響,并且影響呈劑量依賴關(guān)系。ROZ濃度越高,對細(xì)胞增殖影響越大,20.0 μmol/L、40.0 μmol/L、80.0 μmol/L組與空白對照組相比差異有顯著性(P< 0.01)。(見表1)
通過annexin-V/ PI染色檢測細(xì)胞凋亡,結(jié)果顯示,濃度為20.0 μmol/L、40.0 μmol/L、80.0 μmol/L的ROZ對HT29、HCT116細(xì)胞均有誘導(dǎo)凋亡的作用,各組凋亡率均高于空白對照組,差異有顯著性(P< 0.01)。且ROZ誘導(dǎo)HT29、HCT116細(xì)胞凋亡呈劑量依賴性,兩兩比較LSD檢驗(yàn)組間差異有顯著性(P< 0.01)。(見圖1,表2)
表1 各組不同時間OD值檢測Tab.1 OD values of different cells at different time points
注:與空白對照組比,*P< 0.01。
Note.Compared with the control group,*P< 0.01.
圖1 羅格列酮對HT29、HCT116細(xì)胞凋亡率的影響Fig.1 Effect of ROZ on the apoptosis rate of HT29 and HCT116 cells表2 羅格列酮對HT29、HCT116細(xì)胞凋亡率的影響Tab.2 Effect of ROZ on the apoptosis rate ofHT29 and HCT116 cells
組別Groups凋亡率/%ApoptosisrateHT29HCT116對照組Controlgroup257±036350±036ROZ200μmol/L487±038▲596±052▲ROZ400μmol/L737±112▲954±105▲ROZ800μmol/L1356±101▲1593±055▲
注:與空白對照組比,▲P< 0.01。
Note.Compared with the control group,▲P< 0.01.
Western blot進(jìn)行相關(guān)凋亡蛋白表達(dá)量的檢測,結(jié)果顯示(圖3),與空白對照組相比,抗凋亡蛋白Bcl2表達(dá)水平降低,促凋亡蛋白Bax表達(dá)水平上升,差異有顯著性(P< 0.01)。這表示,ROZ誘導(dǎo)HT29、HCT116結(jié)腸癌細(xì)胞凋亡可能與Bcl-2/Bax表達(dá)水平下降有關(guān)系。(見圖2)
細(xì)胞經(jīng)濃度為40.0 μm/L的ROZ處理48 h后,消化收集細(xì)胞提取蛋白。在驗(yàn)證了細(xì)胞發(fā)生凋亡了之后,我們驗(yàn)證了Akt及其下游GSK3β的表達(dá)情況。結(jié)果顯示,各組總Akt,GSK3β的表達(dá)含量不變,與對照組相比差異無顯著性(P> 0.05),但各組p-Akt和p-GSK3β的表達(dá)含量下降明顯,與對照組相比差異有顯著性(P< 0.01)。p-Akt減少可以使GSK3β磷酸化下降,導(dǎo)致GSK3β失活減少,從而促進(jìn)凋亡。這表明在ROZ誘導(dǎo)細(xì)胞凋亡的過程中,Akt/GSK3β信號通路可能起到了重要的作用。(見圖3)
圖2 ROZ對HT29、HCT116細(xì)胞凋亡蛋白表達(dá)的影響Fig.2 Effect of ROZ on apoptosis protein expression in HT29 cells and HCT116 cells detected by Western blot
圖3 ROZ對HT29、HCT116細(xì)胞AKT/GSK3β蛋白表達(dá)的影響Fig.3 Effect of ROZ on protein expressions of AKT/GSK3β of HT29 cells and HCT116 cells detected by Western blot
結(jié)腸癌發(fā)病原因及機(jī)制尚不清楚,目前研究認(rèn)為,結(jié)腸癌的發(fā)生是由環(huán)境、飲食、生活習(xí)慣以及遺傳因素等共同作用的結(jié)果[4, 5]。目前對于結(jié)腸癌的治療依然是以手術(shù)治療為主并結(jié)合放化療,但治療效果并不理想,面對著復(fù)發(fā)轉(zhuǎn)移、抗藥性同時以及輔助治療時嚴(yán)重的副作用等問題[6, 7]。
既往大量研究發(fā)現(xiàn)PPARγ在腫瘤組織中表達(dá)均有不同程度的上調(diào),PPARγ配體可以抑制腫瘤細(xì)胞生長從而達(dá)到腫瘤的化學(xué)預(yù)防和治療的作用[8-11]。Chen等[12]研究證明PPARγ配體抑制HT29細(xì)胞生長和誘導(dǎo)其凋亡是通過下調(diào)bcl-2的表達(dá)來實(shí)現(xiàn)的。許多研究證實(shí)Bcl-2家族不僅調(diào)節(jié)細(xì)胞凋亡而且能改變化療藥物對腫瘤的敏感性[13, 14]。誘導(dǎo)細(xì)胞凋亡是目前大多數(shù)抗癌藥物的主要作用位點(diǎn),這也成為評價抗癌藥物能力的指標(biāo)[15]。本次實(shí)驗(yàn)通過MTT,流式細(xì)胞儀檢測細(xì)胞凋亡,Western blot檢測相關(guān)凋亡蛋白表達(dá)證實(shí)了ROZ可以通過凋亡途徑抑制HT29和HCT116細(xì)胞,并且呈劑量依賴性。Western blot 結(jié)果顯示抗凋亡蛋白Bcl-2表達(dá)下調(diào),促凋亡蛋白Bax表達(dá)上調(diào),我們推測ROZ促進(jìn)HT29、HCT116細(xì)胞凋亡可能是通過Bcl-2/Bax表達(dá)水平下降來實(shí)現(xiàn)的。
Akt/GSK3β信號通路是一個重要的抗凋亡、促增殖的信號通路,在多種人類腫瘤中都可檢測到該信號通路的異常[16-18], GSK3β的磷酸化可以抑制Bax線粒體轉(zhuǎn)位和Bcl-2的降解,從而抑制凋亡,故干擾Akt/GSK3β的表達(dá)可誘導(dǎo)腫瘤細(xì)胞凋亡的發(fā)生[19-21]。因此本實(shí)驗(yàn)探究了ROZ對Akt/GSK3β信號通路的影響。
本次實(shí)驗(yàn)結(jié)果顯示ROZ處理HT29、HCT116細(xì)胞48 h后,GSK3β、Akt的活化產(chǎn)物P-GSK3β、P-Akt表達(dá)水平明顯降低,因此推測ROZ可能通過抑制Akt/GSK3β通路的激活,破壞Bcl-2/Bax 比例,發(fā)揮抑制細(xì)胞增殖、誘導(dǎo)凋亡的作用。但Akt/GSK3β可能不是ROZ誘導(dǎo)HT29、HCT116細(xì)胞凋亡的唯一通路,其對凋亡的影響及其中具體的作用機(jī)制需后續(xù)實(shí)驗(yàn)進(jìn)一步深入研究。
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015, 136(5): E359-E386.
[3] Goel H, Tikoo K, Arun Karpe P, et al. Ameliorated chemotherapeutic potential of diverse dose flouropyrimidine therapy by etodolac via NF-ΚB pathway, PPAR-γ expression and COX-II inhibition in DMH induced colon cancer rats [J]. Clin Cancer Drugs, 2016, 3(2): 109-120.
[4] Vargas AJ, Thompson PA. Diet and nutrient factors in colorectal cancer risk [J]. Nutr Clin Pract, 2012, 27(5): 613-623.
[5] 張海燕, 孫勇, 夏惠, 等. 脫氧紫色桿菌素抑制結(jié)腸癌TH29細(xì)胞增殖及誘導(dǎo)凋亡作用與機(jī)制[J]. 中國比較醫(yī)學(xué)雜志, 2017, 27(05): 89-93.
[6] Laszlo L. Predictive and prognostic factors in the complex treatment of patients with colorectal cancer [J]. Magy Onkol, 2010, 54(4): 383-394.
[7] Zhang Q, Sha S, Xu B, et al. Prevalence of colorectal cancer in patients with ulcerative colitis: A retrospective, monocenter study in China [J]. J Cancer Res Ther, 2015, 11(4): 899-903.
[8] Galli A, Ceni E, Mello T, et al. Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis B virus-transgenic mice by peroxisome proliferator-activated receptor gamma-independent regulation of nucleophosmin [J]. Hepatology, 2010, 52(2): 493-505.
[9] Rageul J, Mottier S, Jarry A, et al. KLF4-dependent, PPARγ-induced expression of GPA33 in colon cancer cell lines [J]. Int J Cancer, 2009, 125(12): 2802-2809.
[10] Toaldo C, Pizzimenti S, Cerbone A, et al. PPARγ ligands inhibit telomerase activity and hTERT expression through modulation of the Myc/Mad/Max network in colon cancer cells [J]. J Cell Mol Med, 2010, 14(6A): 1347-1357.
[11] Tencer L, Burgermeister E, Ebert MP, et al. Rosiglitazone induces caveolin-1 by PPARγ-dependent and PPRE-independent mechanisms: the role of EGF receptor signaling and its effect on cancer cell drug resistance [J]. Anticancer Res, 2008, 28(2A): 895-906.
[12] Chen GG, Lee JF, Wang SH, et al. Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-κB in human colon cancer [J]. Life Sci, 2002, 70(22): 2631-2646.
[13] Wang J, Liu X, Jiang W. Co-transfection of MRP and bcl-2 antisense S-oligodeoxynucleotides reduces drug resistance in cisplatin-resistant lung cancer cells [J]. Chin Med J (Engl), 2000, 113(10): 957-960.
[14] Haddad JJ. On the antioxidant mechanisms of Bcl-2: a retrospective of NF-kappaB signaling and oxidative stress [J]. Biochem Biophys Res Commun, 2004, 322(2): 355-363.
[15] Safarzadeh E, Sandoghchian SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment [J]. Adv Pharm Bull, 2014, 4(Suppl 1): 421-427.
[16] Chiara F, Rasola A. GSK-3 and mitochondria in cancer cells [J]. Front Oncol, 2013, 3: 16.
[17] Ban KC, Singh H, Krishnan R, et al. GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma [J]. Cancer Lett, 2003, 199(2): 201-208.
[18] Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation [J]. Biochem Biophys Res Commun, 2005, 334(4): 1365-1373.
[19] Dan S, Yoshimi H, Okamura M, et al. Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G0/G1 arrest [J]. Biochem Biophys Res Commun, 2009, 379(1): 104-109.
[20] Sokolosky M, Chappell WH, Stadelman K, et al. Inhibition of GSK-3beta activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells [J]. Cell Cycle, 2014, 13(5): 820-833.
[21] Dinamarca MC, Sagal JP, Quintanilla RA, et al. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’ s disease [J]. Mol Neurodegener, 2010, 5: 4.
RosiglitazonepromotesapoptosisincoloncancerHT29andHCT116cellsthroughAKT/GSK3βsignallingpathway
ZHANG Qi1, YANG Guang-hua1, GE Zhi-peng1, DING Jia-shan2, HUANG Zhi-qiang1, ZHEN Yang1, ZHANG Guo-zhi1, WANG Chang-you1*
(1.Affiliated Hospital of North China University of Science and Technology,Tangshan 063000, China; 2.Clinical Medical School of North China University of Science and Technology, Tangshan 063000)
ObjectiveTo investigate the effect of rosiglitazone on the proliferation and apoptosis of colon cancer cells and the changes in the AKT/GSK3β signaling pathway.MethodsDifferent concentrations of rosiglitazone (20.0 μmol/L, 40.0 μmol/L, 80.0 μmol/L) were used to treat colon cancer HT29 cells and HCT116 cells. Cell proliferation was detected by MTT assay. Annexin V FITC/PI cell death detection kit was used to test the cell apoptosis rate. The expression of apoptotic protein Bcl-2, Bax and Akt, GSK3β were detected by Western blot.ResultsDifferent concentrations of rosiglitazone had different effect on the proliferation of colon cancer cells compared with the blank control group, and showed a dose dependence (P< 0.01). With the increase of rosiglitazone dose, the apoptosis-inducing effect was increased dose-dependently (P< 0.01). When the cells were treated with rosiglitazone for 48 h, the expressions of Bcl-2/Bax, p-GSK3β, and p-Akt were significantly decreased compared with the blank control group (P< 0.01), but the expression level of Akt and GSK3β was not significantly different compared with the blank control group (P> 0.05).ConclusionsRosiglitazone significantly induces apoptosis and inhibits the proliferation of HT29 cells. It may be via inhibiting Akt/GSK3β signaling pathway and change the ratio of Bcl-2/Bax.
Rosiglitazone; Colon cancer; Apoptosis; Bcl-2; Bax; Akt; GSK3β
2017年政府資助省級臨床醫(yī)學(xué)優(yōu)秀人才項(xiàng)目;中國煤炭工業(yè)協(xié)會2017年度科學(xué)技術(shù)研究指導(dǎo)性計劃項(xiàng)目(MTKJ2017-331)。
張琪(1992-),男,碩士研究生,研究方向:胃腸道腫瘤。E-mail: izhangqi1004@163.com
王長友(1971-),男,教授,碩士生,研究方向:胃腸道腫瘤。E-mail: fhbj-2004@163.com
R-33
A
1671-7856(2017) 12-0056-05
10.3969.j.issn.1671-7856. 2017.12.010