逯 鵬,潘 虹,馬春蕾,3,施 真*
(1.濱州醫(yī)學(xué)院煙臺(tái)附屬醫(yī)院,山東 煙臺(tái) 264100; 2.濱州醫(yī)學(xué)院生理學(xué)教研室,山東 煙臺(tái) 264003; 3.山東省腦中風(fēng)重點(diǎn)實(shí)驗(yàn)室,山東 煙臺(tái) 264003)
下丘腦室旁核NMDAR介導(dǎo)大鼠促炎因子增強(qiáng)高血壓 交感活動(dòng)的作用
逯 鵬1,潘 虹2,馬春蕾2,3,施 真2*
(1.濱州醫(yī)學(xué)院煙臺(tái)附屬醫(yī)院,山東 煙臺(tái) 264100; 2.濱州醫(yī)學(xué)院生理學(xué)教研室,山東 煙臺(tái) 264003; 3.山東省腦中風(fēng)重點(diǎn)實(shí)驗(yàn)室,山東 煙臺(tái) 264003)
研究報(bào)告
目的研究自發(fā)性高血壓大鼠(spontaneously hypertensive rat, SHR)下丘腦室旁核促炎性細(xì)胞因子是否促進(jìn)交感神經(jīng)活動(dòng)過度增強(qiáng),以及N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor, NMDAR)是否介導(dǎo)其上述作用。方法本研究采用成年SHR以及正常血壓的Wistar-Kyoto(WKY)大鼠。應(yīng)用蛋白質(zhì)免疫印跡分析技術(shù)(Western blot)和酶聯(lián)免疫吸附測定法(ELISA)分別測定下丘腦室旁核(paraventricular nucleus, PVN)腫瘤壞死因子(TNF)和白細(xì)胞介素(IL)-1β受體IL-1RI蛋白表達(dá)以及TNF-α和IL-1β水平。并應(yīng)用腦立體定位進(jìn)行PVN微量藥物注射。腎交感神經(jīng)活動(dòng)(renal sympathetic nerve activity, RSNA)的測定采用Powerlab系統(tǒng)記錄腎交感神經(jīng)干電活動(dòng),并進(jìn)行積分處理,比較給藥前后的RSNA變化。頸動(dòng)脈插管經(jīng)壓力傳感器與PowerLab系統(tǒng)連接記錄和分析平均動(dòng)脈血壓(mean arterial pressure, MAP)。結(jié)果與WKY大鼠相比,SHR PVN中TNF-α及IL-1β水平,以及TNF-α受體p55TNFR、p75TNFR和IL-1β受體IL-1RI蛋白表達(dá)均顯著升高(P< 0.05)。PVN微量注射Etanercept 或IL-1ra阻斷TNF-α和IL-1β效應(yīng)在SHR組更顯著的降低交感神經(jīng)活動(dòng)水平(P< 0.05)。PVN微量注射NMDAR拮抗劑DL-2-amino-5-phosphonovaleric acid(APV)或MK-801(Dizocilpine)在SHR和WKY組大鼠均降低RSNA和MAP(P< 0.05),并且在SHR組該效應(yīng)更顯著(P< 0.05);另外,APV或MK-801預(yù)處理阻斷PVN中NMDA受體均顯著減弱PVN微量注射TNF-α或IL-1β增強(qiáng)SHR和WKY組大鼠 RSNA和升高M(jìn)AP的效應(yīng)(P< 0.05),與WKY組大鼠相比,該效應(yīng)在SHR組更顯著(P< 0.05)。結(jié)論SHR PVN促炎性細(xì)胞因子TNF-α、IL-1β及其受體均表達(dá)增加,PVN中NMDA受體介導(dǎo)SHR大鼠PVN 中TNF-α、IL-1β促進(jìn)交感活動(dòng)增強(qiáng)和血壓升高的效應(yīng)。
自發(fā)性高血壓;NMDA受體;交感神經(jīng)活動(dòng);促炎性細(xì)胞因子
交感神經(jīng)過度激活是高血壓病的重要特征之一[1, 2],在其病程發(fā)展和器官損害中起重要作用,但其機(jī)制仍不清楚。下丘腦室旁核(paraventricular nucleus,PVN)是心血管活動(dòng)整合的重要中樞結(jié)構(gòu)之一,在交感神經(jīng)活動(dòng)調(diào)控中發(fā)揮關(guān)鍵作用[3,4]。與炎癥有關(guān)的細(xì)胞因子即炎性細(xì)胞因子,又可分為促炎性細(xì)胞因子(PICs),如腫瘤壞死因子(TNF)-α、白細(xì)胞介素(IL)-1β等和抗炎性細(xì)胞因子(AICs),如IL-4、IL-10 等。有研究發(fā)現(xiàn),疾病狀態(tài)下中樞升高的PICs促進(jìn)交感神經(jīng)活動(dòng)的增強(qiáng)[5,6]。但PVN中PICs通過何種機(jī)制調(diào)控交感活動(dòng)促進(jìn)高血壓仍不清楚。近來研究表明PVN中離子型谷氨酸受體調(diào)控交感傳出活動(dòng)[7, 8]。PVN的谷氨酸能緊張性在自發(fā)性高血壓大鼠異常升高,這是通過突觸前谷氨酸遞質(zhì)釋放增加和突觸后N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor, NMDAR)活動(dòng)增強(qiáng)導(dǎo)致的[9]。本研究旨在觀察SHR PVN中TNF、IL-1β受體IL-1RI蛋白表達(dá)以及TNF-α、IL-1β水平變化,藥物阻斷二者對SHR交感神經(jīng)活動(dòng)和血壓的影響,以及TNF-α、IL-1β的上述效應(yīng)是否通過NMDAR介導(dǎo)。
實(shí)驗(yàn)采用16周齡雄性自發(fā)性高血壓大鼠(spontaneously hypertensive rat, SHR)和16周齡雄性正常血壓的Wistar-Kyoto(WKY)大鼠。體重260~280 g,清潔級(jí),在濱州醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心進(jìn)行實(shí)驗(yàn)[SYXK(魯) 2013-0020]。實(shí)驗(yàn)動(dòng)物購自上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司[SCXK(滬)2012-0002]。飼養(yǎng)期間給予嚙齒類動(dòng)物標(biāo)準(zhǔn)顆粒飼料(由實(shí)驗(yàn)動(dòng)物中心提供)及自由飲水,12 h循環(huán)燈光,恒定濕度,室溫(23±2)℃。本實(shí)驗(yàn)所有操作均符合中華人民共和國《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》。
Etanercept、IL-1ra、DL-2amino-5-phosphonovaleric acid(APV)、MK-801(Dizocilpine)購自Sigma公司;TNF-α、IL-1β購自Peprotech公司;TNF-α、IL-1β測定所需ELISA試劑盒購自R&D公司;Western blot所需抗體購自Santa Cruz公司;蛋白定量試劑盒購自南京建成生物工程研究所;TNF-α和IL-1β測定所需ELISA試劑盒購自R&D公司。
1.3.1 PVN中 TNF-α、IL-1β和p55TNFR、p75TNFR、IL-1RI蛋白水平測定
WKY和 SHR組各6只苯巴比妥鈉(40 mg/kg)麻醉后斷頭取腦,液氮速凍后保存于-70℃低溫冰箱中。用冰凍切片機(jī)(Leica CM 1900-1-1,Germany)在PVN冠狀面水平做連續(xù)切片,用內(nèi)徑1.0 mm打孔針頭分別取出PVN和同一冠狀面皮層部位相同大小組織塊,組織放置于0.1 mL RIPA lysis 緩沖液中勻漿并提取總蛋白。利用酶聯(lián)免疫吸附測定法(enzyme-linked immunosorbent assay,ELISA),按大鼠ELISA 試劑盒(R&D Systems; Oxfordshire, UK)說明書中所述操作步驟分別檢測PVN TNF-α、IL-1β水平。Western blotting法測定PVN中的p55TNFR、p75TNFR、IL-1RI受體蛋白。
1.3.2 記錄動(dòng)脈血壓
用充有肝素生理鹽水溶液的PE-50聚乙烯管插入右側(cè)頸總動(dòng)脈,經(jīng)壓力傳感器與四通橋式放大器(QUAD Bridge,AD Instruments,Australia)相連,經(jīng)PowerLab數(shù)據(jù)分析處理系統(tǒng)(8SP型, AD Instruments, Australia)記錄動(dòng)脈血壓,并對血壓信號(hào)進(jìn)行處理,同步記錄動(dòng)脈血壓和MAP。
1.3.3 記錄RSNA和基礎(chǔ)交感神經(jīng)水平測定
經(jīng)腰部縱行切口沿腹膜后路徑暴露左側(cè)腎臟、腎動(dòng)脈和腎神經(jīng),于接近腹主動(dòng)脈處的腎動(dòng)脈和腎靜脈附近仔細(xì)游離出腎交感神經(jīng),并浸入溫石蠟油中,安放銀絲電極引導(dǎo)RSNA,經(jīng)交流/直流差分放大器(Model 3000,A-M System Inc.,USA)放大后(低端截止頻率設(shè)置在60 Hz,高端截止頻率設(shè)置在2 kHz),用PowerLab數(shù)據(jù)分析處理系統(tǒng)(8SP型, AD Instruments, Australia)記錄RSNA,并對RSNA進(jìn)行積分處理,同步記錄原始RSNA和RSNA積分值。實(shí)驗(yàn)結(jié)束時(shí)切斷腎神經(jīng)中樞端以消除腎交感神經(jīng)傳出活動(dòng),記錄噪音水平,RSNA積分值減去噪音積分值即為實(shí)際RSNA積分值。比較各種干預(yù)引起的RSNA變化的百分比值[10]。
靜脈注射六烴季銨(30 mg/kg)引起短暫而強(qiáng)烈的降低血壓效應(yīng),動(dòng)脈血壓降至60 mmHg以下低于壓力感受器的閾值時(shí),反射性的引起RSNA增強(qiáng)到最大值(RSNAmax),同時(shí)伴有動(dòng)脈血壓回升。記錄注射六烴季銨之前的RSNA(RSNA before)以及注射六烴季銨后RSNAmax,計(jì)算基礎(chǔ)RSNA?;A(chǔ)RSNA=(RSNA before/ RSNAmax)×100%[11]。同時(shí),比較各組之間六烴季銨對MAP和RSNA的影響,其中降壓持續(xù)時(shí)間為降壓效應(yīng)開始至MAP恢復(fù)到最大降壓水平20%的時(shí)間。
1.3.4 PVN立體定位和微量注射
將大鼠頭部固定于立體定位儀上,暴露前囟,根據(jù)Paxinos和Watson的大鼠立體定位圖譜,行雙側(cè)PVN插管(AP:-1.8 mm,RL:0.4 mm,H:7.9 mm),插管外徑0.6 mm, 內(nèi)徑0.3 mm。雙側(cè)PVN微量注射藥液體積均為50 nL,于1 min內(nèi)注射完畢。WKY和 SHR組各24只,分別隨機(jī)分為兩亞組每組12只。其中一亞組PVN微量注射Etanercept(n=6)或IL-1ra(n=6)預(yù)處理觀察對靜脈應(yīng)用六烴季銨測定的基礎(chǔ)交感水平的影響;另外一亞組PVN微量注射NMDAR拮抗劑APV(n=6)、MK-801(n=6)預(yù)處理觀察對PVN 微量注射TNF-α、IL-1β引起的RSNA增強(qiáng)和MAP升高的影響。實(shí)驗(yàn)結(jié)束時(shí)雙側(cè)PVN分別注射50 nL的0.25%伊文思藍(lán)溶液,過量麻醉處死大鼠,取腦,將其放入10%的福爾馬林溶液中固定一周后,腦組織切片鑒定注射位點(diǎn)。注射位點(diǎn)不在PVN范圍內(nèi)的實(shí)驗(yàn)數(shù)據(jù)不予統(tǒng)計(jì)處理。
與WKY組大鼠相比,SHR組大鼠PVN中TNF-α、IL-1β(圖1)和p55TNFR、p75TNFR、IL-1RI蛋白水平(圖2)均顯著升高(P< 0.05)。
各組大鼠靜脈注射六烴季銨降低MAP并增強(qiáng)RSNA。WKY和SHR兩組的組間降壓幅度無顯著差異的情況下(圖3 A),SHR組降壓持續(xù)時(shí)間延長, 而Etanercept或IL-1ra預(yù)處理的SHR組降壓持續(xù)時(shí)間顯著縮短(P< 0.05)(圖3B)。如圖3C所示,SHR組大鼠RSNA增強(qiáng)程度顯著減弱,Etanercept或IL-1ra預(yù)處理顯著阻止SHR的上述變化(P< 0.05)。以注射SNP后的最大RSNA變化百分比表示基礎(chǔ)RSNA,與WKY組大鼠相比,SHR組基礎(chǔ)RSNA顯著增強(qiáng)(P< 0.05);而Etanercept或IL-1ra預(yù)處理顯著阻止SHR的上述變化(P< 0.05)(圖3D)。圖3E,F代表性的原始記錄圖,記錄曲線自上而下依次為動(dòng)脈血壓(ABP)、平均動(dòng)脈壓(MAP)、腎交感神經(jīng)活動(dòng)(RSNA)和積分處理的RSNA。
注:與WKY組相比,* P< 0.05。圖1 PVN中TNF-α、IL-1β水平(n=6)Note.Compared with the WKY group,* P< 0.05.Fig.1 TNF-α and IL-1β levels in the paraventricular nucleus
注:與WKY組相比,* P< 0.05。圖2 PVN 中p55TNFR、p75TNFR、IL-1RI蛋白水平(n=6)Note.Compared with the WKY group,* P< 0.05.Fig.2 p55TNFR, p75TNFR and IL-1RI protein levels in the paraventricular nucleus
WKY和SHR組PVN微量注射TNF-α、IL-1β均顯著增強(qiáng)RSNA(圖4)和升高M(jìn)AP(圖5),SHR組的變化更顯著(P< 0.05);PVN微量注射APV或MK-801阻斷NMDAR在WKY和SHR均降低RSNA(圖4)和MAP(圖5),SHR組變化更顯著(P< 0.05);另外,APV或MK-801預(yù)處理均減弱TNF-α或IL-1β增強(qiáng)WKY和SHR交感神經(jīng)活動(dòng)(圖4)和升高血壓(圖5)的效應(yīng),在SHR組改效應(yīng)更顯著(P< 0.05)。
注:與WKY-Saline組相比,* P< 0.05;與WKY-Etanercept組相比,?P< 0.05;與WKY-IL-1ra組相比,P< 0.05。圖3 抑制PVN中TNF-α、IL-1β對基礎(chǔ)RSNA水平的影響(n=6)Note.Compared with WKY group,* P < 0.05. Compared with WKY-Etanercept group,?P<0.05. Compared with WKY-IL-1ra group,P < 0.05.Fig.3 Effects of inhibition of TNF-α or IL-1β in PVN on the basal RSNA levels
注:與Saline相比,* P< 0.05;與TNF-α相比,?P< 0.05;與IL-1β相比,P< 0.05。與WKY相同處理組相比,#P< 0.05。圖4 PVN中NMDAR介導(dǎo)TNF-α、IL-1β 增強(qiáng)RSNA效應(yīng)(n=6)Note.Compared with saline,* P< 0.05. Compared with TNF-α, ?P< 0.05. Compared with IL-1β,P< 0.05. Compared with the same treatment group of WKY rats,#P< 0.05.Fig.4 PVN NMDA receptor mediated the effects of TNF-α and IL-1β on increasing RSNA
注:與Saline相比,* P< 0.05;與TNF-α相比,?P< 0.05;與IL-1β相比,P< 0.05。與WKY相同處理組相比,#P< 0.05。圖5 PVN中NMDAR介導(dǎo)TNF-α、 IL-1β升高M(jìn)AP效應(yīng)(n=6)Note.Compared with saline,* P< 0.05. Compared with TNF-α,?P< 0.05. Compared with IL-1β,P< 0.05. Compared with the same treatment group of WKY rats,#P< 0.05.Fig.5 PVN NMDA receptor mediated the effects of TNF-α and IL-1β on increasing MAP
本研究發(fā)現(xiàn)SHR PVN 中PICs,包括TNF-α和IL-1β及其受體p55TNFR、p75TNFR、IL-1RI蛋白表達(dá)均顯著升高。PVN 微量注射Etanercept或IL-1ra藥物阻斷TNF-α或IL-1β作用均能顯著降低SHR的基礎(chǔ)交感神經(jīng)活動(dòng),且SHR PVN 應(yīng)用NMDAR阻斷劑APV或MK-801預(yù)處理均顯著削弱PVN 微量注射TNF-α或IL-1β引起的RSNA增強(qiáng)和MAP升高效應(yīng)。這些結(jié)果表明SHR PVN中促炎性細(xì)胞因子作用增強(qiáng)在過度增強(qiáng)的交感神經(jīng)活動(dòng)中起重要作用,并且PVN中NMDAR介導(dǎo)其增強(qiáng)交感神經(jīng)活動(dòng)和升高血壓的效應(yīng)。
國內(nèi)外最新研究進(jìn)展表明,交感神經(jīng)系統(tǒng)活動(dòng)過度激活在高血壓發(fā)生發(fā)展和并發(fā)癥形成中起了極其重要作用[1,2]。各種高血壓的動(dòng)物模型也均有顯著的交感神經(jīng)系統(tǒng)激活特征,包括自發(fā)性高血壓大鼠(SHR)[9]、鹽敏感性高血壓大鼠[12]、等。本研究在SHR靜脈注射神經(jīng)節(jié)阻滯劑六烴季銨引起短暫而強(qiáng)烈的降低血壓效應(yīng),動(dòng)脈血壓降至60 mmHg以下低于壓力感受器的閾值時(shí),會(huì)反射性的引起RSNA增強(qiáng)到最大值(RSNAmax),同時(shí)伴有動(dòng)脈血壓回升。SHR基礎(chǔ)交感神經(jīng)活動(dòng)已經(jīng)處于過度增強(qiáng)水平,因此可反射性調(diào)節(jié)的范圍變小,因此SHR組觀察到RSNA增強(qiáng)幅度較WKY組明顯減小,記錄注射SNP之前的RSNA(RSNA before)以及注射SNP后RSNAmax,則基礎(chǔ)RSNA=(RSNA before/ RSNAmax)×100%[11],在SHR組顯著較WKY組升高,且SHR組的動(dòng)脈血壓回升所需時(shí)間也明顯延長。雖然已知交感神經(jīng)活動(dòng)主要受中樞神經(jīng)系統(tǒng)調(diào)控,但高血壓時(shí)交感神經(jīng)活動(dòng)增強(qiáng)的中樞機(jī)制尚不明確,是當(dāng)前迫切需要解決的關(guān)鍵問題。
炎性機(jī)制在高血壓和心血管疾病的發(fā)生、發(fā)展及轉(zhuǎn)歸中也扮演著極其重要的角色[13]。以往研究主要集中在外周炎性細(xì)胞因子在高血壓等心血管疾病中的作用,而最近越來越多證據(jù)表明炎性細(xì)胞因子在中樞神經(jīng)系統(tǒng)(CNS)也能夠合成和分泌,且發(fā)揮重要作用[6,14,15]。外周血源性炎性細(xì)胞因子分子量較大,不易被動(dòng)擴(kuò)散透過血腦屏障進(jìn)入CNS發(fā)揮作用。有研究發(fā)現(xiàn),冠狀動(dòng)脈結(jié)扎誘導(dǎo)急性心肌梗死大鼠幾分鐘內(nèi)即出現(xiàn)下丘腦TNF-α、IL-1β水平顯著升高,并且該升高是獨(dú)立于心肌組織和血漿PICs升高的,是源自神經(jīng)信號(hào)機(jī)制[14]。
下丘腦室旁核(PVN)是心血管活動(dòng)整合的重要中樞結(jié)構(gòu)之一[3,4]。我們既往研究表明PVN中血管緊張素II[16]、活性氧[17]等多種神經(jīng)遞質(zhì)或信號(hào)分子介導(dǎo)或調(diào)控高血壓大鼠增強(qiáng)的心交感傳入反射和交感傳出活動(dòng),表明PVN是調(diào)控高血壓交感神經(jīng)活動(dòng)亢進(jìn)的關(guān)鍵核團(tuán),在高血壓發(fā)生、發(fā)展中起重要作用。本研究檢測SHR 中樞核團(tuán)PVN 中的TNF-α和IL-1β水平,以及其發(fā)揮作用的主要受體p55TNFR、p75TNFR、IL-1RI,結(jié)果發(fā)現(xiàn)這些促炎性因素均顯著增強(qiáng)。這與我們已往在SHR PVN中微量注射TNF-α或IL-1β能顯著增強(qiáng)RSNA和升高M(jìn)AP的研究結(jié)果相呼應(yīng)[18]。并且本研究在SHR PVN微量注射Etanercept或IL-1ra預(yù)處理阻斷TNF-α或IL-1β效應(yīng)后,發(fā)現(xiàn)SHR靜脈應(yīng)用六烴季銨引起血壓回升時(shí)間延長以及RSNA變化減少的效應(yīng)均得到顯著改善,這表明抑制PVN 中PICs能顯著減弱SHR增強(qiáng)的交感神經(jīng)活動(dòng)。
然而,高血壓中樞顯著增加的PICs在高血壓發(fā)病機(jī)制中的作用研究尚不明確。谷氨酸作為一種主要的興奮性神經(jīng)遞質(zhì)在中樞神經(jīng)系統(tǒng)(包括PVN)發(fā)揮調(diào)控交感神經(jīng)活動(dòng)的作用[9]。PVN存在大量的谷氨酸免疫活性突觸和NMDAR[19,20]。大鼠PVN中微量注射谷氨酸或NMDA均引起顯著的交感神經(jīng)活動(dòng)增強(qiáng)和血漿去甲腎上腺素水平升高[7,8]。本研究兩組大鼠PVN微量注射兩種NMDAR拮抗劑APV和MK-801 RSNA 和MAP均顯著降低。并且PVN應(yīng)用APV或MK-801預(yù)處理亦顯著削弱PVN 微量注射TNF-α或IL-1β引起的RSNA增強(qiáng)和MAP 升高效應(yīng)。以上研究表明PVN中NMDAR在PICs促進(jìn)高血壓交感神經(jīng)活動(dòng)增強(qiáng)中起重要作用。
對于高血壓的研究大多集中外周心臟和血管的病理改變在高血壓病發(fā)生、發(fā)展中的作用方面[21,22],但仍存在諸多問題,其發(fā)病機(jī)制至今不是十分清楚。本研究從神經(jīng)調(diào)控角度研究高血壓發(fā)病機(jī)制,初步觀察到中樞炎癥機(jī)制參與交感神經(jīng)過度增強(qiáng)促進(jìn)高血壓發(fā)生、發(fā)展。SHR PVN中的PICs,包括TNF-α、IL-1β及其受體均表達(dá)增加并促進(jìn)SHR基礎(chǔ)交感神經(jīng)活動(dòng)的增強(qiáng);PVN中NMDAR介導(dǎo)SHR PVN 中TNF-α、IL-1β促進(jìn)交感活動(dòng)增強(qiáng)和血壓升高的效應(yīng)。
[1] Di RD, Musiari G, Grova M, et al. The “neurocentric” approach to essential hypertension: how reliable is the paradigm of hyperkinetic hypertension? A focus on the sympathetic nervous system dysregulation in essential hypertensive patients with elevated resting heart rate [J]. Curr Pharm Des, 2017. doi: 10.2174/1381612823666170911102711.
[2] Hogarth AJ, Mackintosh AF, Mary DA. The sympathetic drive after acute myocardial infarction in hypertensive patients [J]. Am J Hypertens, 2006, 19(10): 1070-1076.
[3] Badoer E. Hypothalamic paraventricular nucleus and cardiovascular regulation [J]. Clin Exp Pharmacol Physiol, 2001, 28(1-2): 95-99.
[5] Guggilam A, Patel KP, Haque M, et al. Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus [J]. Eur J Heart Fail, 2008, 10(7): 625-634.
[6] Francis J, Zhang ZH, Weiss RM, et al. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction [J]. Am J Physiol Heart Circ Physiol, 2004, 287(2): H791-H797.
[7] Kannan H, Hayashida Y, Yamashita H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats [J]. Am J Physiol, 1989, 256(6 Pt 2): R1325-R1330.
[8] Katafuchi T, Oomura Y, Kurosawa M. Effects of chemical stimulation of paraventricular nucleus on adrenal and renal nerve activity in rats [J]. Neurosci Lett, 1988, 86(2):195-200.
[9] Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension [J]. Hypertension, 2007, 49(4): 916-925.
[10] Han Y, Zhang Y, Wang HJ, et al. Reactive oxygen species in paraventricular nucleus modulates cardiac sympathetic afferent reflex in rats [J]. Brain Res. 2005, 1058: 82-90.
[11] Liu JL, Irvine S, Reid IA, et al. Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II [J]. Circulation. 2000, 102: 1854-1862.
[12] Fujita M, Ando K, Nagae A, et al. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension [J]. Hypertension, 2007, 50(2): 360-367.
[13] 毛紅亞,劉云鵬, 王子皓, 等. 血小板通過炎癥反應(yīng)在鹽敏感性高血壓中的作用機(jī)制研究 [J]. 中國比較醫(yī)學(xué)雜志, 2017, 27(5): 23-30.
[14] Buchanan JB, Johnson RW. Regulation of food intake by inflammatory cytokines in the brain [J]. Neuroendocrinology, 2007, 86(3): 183-190.
[15] Kang YM, Zhang ZH, Xue B, et al. Brain pro-inflammatory cytokines contribute to sympathetic drive in heart failure [J]. Faseb J, 2007, 21(6): A1266.
[16] Zhu GQ, Xu Y, Zhou LM, et al. Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats [J]. Exp Physiol, 2009, 94(7): 785-794.
[17] Han Y, Fan ZD, Yuan N, et al. Superoxide anions in paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats [J]. J Appl Physiol, 2011, 110(3): 646-652.
[18] Shi Z, Jiang SJ, Wang GH, et al. Pro-inflammatory cytokines in paraventricular nucleus mediate the cardiac sympathetic afferent reflex in hypertension [J]. Auton Neurosci, 2014, 186: 54-61.
[19] Khan AM, Stanley BG, Bozzetti L, et al. N-methyl-D-aspartate receptor subunit NR2B is widely expressed throughout the rat diencephalon: an immunohistochemical study [J]. J Comp Neurol, 2000, 428(3): 428-449.
[20] Herman JP, Eyigor O, Ziegler DR, et al. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat [J]. J Comp Neurol, 2000, 422(3): 352-362.
[21] 鄭婧. 自發(fā)性高血壓大鼠心肌組織microRNA-97a與TGF-β1蛋白表達(dá)的改變及意義 [J]. 中國比較醫(yī)學(xué)雜志, 2016, 26(11): 72-76.
[22] 侯永蘭, 李石林, 劉玲玲. MicroRNA-137與Ang II在自發(fā)性高血壓大鼠心臟重構(gòu)中的作用 [J]. 中國比較醫(yī)學(xué)雜志, 2016, 26(7): 52-56.
NMDARinparaventricularnucleusmediatesenhancedsympatheticactivitiescausedbypro-inflammatorycytokinesinspontaneouslyhypertensiverats
LU Peng1, PAN Hong2, MA Chun-lei2,3, SHI Zhen2*
(1.Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; 2.Department of Physiology, Binzhou Medical University, Yantai 64003; 3.Shandong Province Key Laboratory of Stroke, Yantai 264003)
ObjectiveTo investigate whether pro-inflammatory cytokines (PICs) in the paraventricular nucleus (PVN) regulate the enhanced sympathetic activities in spontaneously hypertensive rats (SHR), and whether N-methyl-D-aspartate receptor (NMDAR) in PVN mediate the effects of PICs on sympathetic activities.MethodsSHR and normotensive wistar-Kyoto(WKY)rats were used in this experiment. TNF receptor and IL-1β receptor (IL-1RI) protein levels were measured by Western blot. PICs, including TNF-α and IL-1β levels were measured by ELISA. Rats were placed in a stereotaxic instrument to complete the microinjection of drugs. The coordinates for the PVN were determined according to the Paxinos and Watson rat atlas. The raw RSNA and integrated RSNA were simultaneously recorded on a PowerLab data acquisition system. The right carotid artery was cannulated for recording of mean arterial pressure (MAP).ResultsTNF-α receptor p55TNFR, p75TNFR and IL-1β receptor IL-1RI protein expression and TNF-α and IL-1β levels in PVN were all increased in SHR compared with WKY rats (P< 0.05). Bilateral microinjection of etanercept or IL-1ra into PVN to block the effects of TNF-α or IL-1β decreased the sympathetic activities in SHR rats significantly (P< 0.05). Bilateral microinjection of NMDAR blockers, both DL-2amino-5-phosphonovaleri acid (APV) and MK-801 (Dizocilpine) into PVN decreased the RSNA and MAP in both SHR and WKY rats. APV or MK 801 caused greater decreases in RSNA and MAP in SHR than WKY rats. In addition, pretreatment with APV or MK 801 attenuated the increased RSNA and MAP caused by microinjection of TNF-α or IL-1β into PVN to a lower level in SHR than in WKY rats (P< 0.05).ConclusionsTNF and IL-1β receptor protein as well as TNF-α and IL-1β cytokines levels in PVN are all increased in SHR rats. NMDAR in PVN mediates enhanced sympathetic activities and elevated blood pressure caused by TNF-α and IL-1β in SHR.
Spontaneously hypertensive rats; NMDA receptor; Sympathetic activities; Pro-inflammatory cytokines;Paraventricular nucleus
山東省醫(yī)藥衛(wèi)生科技發(fā)展計(jì)劃項(xiàng)目(2016WS0051);山東省自然科學(xué)基金(BS2015YY036)。
逯鵬(1981-),男,碩士,研究方向:心血管活動(dòng)的神經(jīng)調(diào)控。E-mail: bylupeng@163.com
施真(1981-),女,博士,副教授,碩士研究生導(dǎo)師,研究方向:心血管活動(dòng)的神經(jīng)調(diào)控。E-mail: zhen_shizhen@163.com
R-33
A
1671-7856(2017) 12-0021-07
10.3969.j.issn.1671-7856. 2017.12.004
2017-09-18