亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多發(fā)性硬化癥及實(shí)驗(yàn)性自身免疫性腦脊髓炎免疫療法的研究進(jìn)展①

        2017-12-20 03:03:46夏玲芝沈傳來
        中國免疫學(xué)雜志 2017年12期
        關(guān)鍵詞:多肽抗原活化

        夏玲芝 沈傳來

        (南京金域醫(yī)學(xué)檢驗(yàn)所自身免疫性疾病檢測中心,南京 210061)

        ·專題綜述·

        多發(fā)性硬化癥及實(shí)驗(yàn)性自身免疫性腦脊髓炎免疫療法的研究進(jìn)展①

        夏玲芝 沈傳來②

        (南京金域醫(yī)學(xué)檢驗(yàn)所自身免疫性疾病檢測中心,南京 210061)

        多發(fā)性硬化癥(MS)是一種慢性進(jìn)行性中樞神經(jīng)系統(tǒng)(CNS)脫髓鞘的炎癥性自身免疫病,主要由自身反應(yīng)性CD4+T細(xì)胞對(duì)髓鞘自身抗原發(fā)生免疫應(yīng)答所致,自身反應(yīng)性CD8+T細(xì)胞[1]和B細(xì)胞[2]等也參與免疫損傷作用。小鼠、大鼠或豚鼠的實(shí)驗(yàn)性自身免疫性腦脊髓炎(EAE)是目前最廣泛使用的MS動(dòng)物模型,與MS有相似的組織病理變化和疾病進(jìn)程、相同的髓鞘蛋白抗原,如髓鞘堿性蛋白(MBP)、髓鞘蛋白脂蛋白(PLP)、髓鞘少突膠質(zhì)細(xì)胞糖化蛋白(MOG)等,以及很多已被明確的相同或相似的優(yōu)勢T細(xì)胞表位。近年來對(duì)EAE和MS的免疫療法研究繁多,本文刪繁就簡,根據(jù)免疫機(jī)制不同自行將之歸納為非特異性療法、“間接”特異性療法和“直接”特異性療法等三大類共14種治療策略進(jìn)行全面總結(jié)和綜合述評(píng)。

        1 非特異性療法

        即沒有使用自身抗原,而是使用其他免疫制劑,非特異性地靶向炎癥細(xì)胞因子、T細(xì)胞、B細(xì)胞、抗原提呈細(xì)胞(APC)或其他固有免疫細(xì)胞,抑制機(jī)體的整體免疫功能。根據(jù)靶向的目標(biāo)不同可分為如下主要策略。

        1.2靶向CD4+T細(xì)胞 靜脈輸注anti-CD127,封閉CD4+T細(xì)胞膜上的IL-7Ra,從而阻止TH0細(xì)胞向TH1分化,抑制后者所介導(dǎo)的細(xì)胞免疫反應(yīng)[9];利用聚乳酸-羥基乙酸納米顆粒(PLGA-NPs)做載體,里面包裹KN93(鈣-鈣調(diào)蛋白依賴性蛋白激酶-4的小分子抑制劑),表面覆蓋脂質(zhì)層并包被anti-CD4,制備成納米膠(Nanolipogel),腹腔注射治療EAE和狼瘡樣疾病,靶向結(jié)合CD4+T細(xì)胞并在局部緩釋KN93,以旁分泌方式靶向抑制TH0細(xì)胞向TH17分化,降低炎癥反應(yīng)的發(fā)生[10];經(jīng)凋亡細(xì)胞處理的樹突狀細(xì)胞(DC),具有致耐受性DC(Tolerogenic DC)的特性,靜脈輸注后可以非特異性地抑制效應(yīng)性記憶CD4+T細(xì)胞(TEM)的發(fā)育和分化,阻止EAE發(fā)展,但對(duì)中樞記憶性CD4+T細(xì)胞(TCM)沒有影響[11];鼠或人β-防衛(wèi)素(mBD14,hBD3)是一種抗菌肽,經(jīng)靜脈輸注后能非特異性地促使CD4+T細(xì)胞向調(diào)節(jié)性T細(xì)胞(Treg)分化,治療接觸性過敏和EAE顯示有效[12]。這類策略靶向抑制CD4+T細(xì)胞向TH1、TH17或TEM分化,促進(jìn)其向Treg分化,抑制機(jī)體的細(xì)胞免疫和炎癥反應(yīng),屬主動(dòng)免疫抑制療法,缺點(diǎn)是不具備自身抗原的特異性,必定影響機(jī)體針對(duì)其他病原體、腫瘤等抗原的CD4+T細(xì)胞的特異性免疫應(yīng)答能力。

        1.3靶向抗原提呈細(xì)胞 用PLGA-NPs包裹PHCCC(一種小分子谷氨酸受體增強(qiáng)劑),靜脈注射后被DC吞噬,改變DC代謝谷氨酸的方式,降低DC的活化和抗原提呈能力,并使其細(xì)胞因子的分泌發(fā)生偏移,誘導(dǎo)TH0向Treg分化、抑制TH17分化并減少炎癥因子的釋放,從而推遲EAE進(jìn)程,減輕癥狀[13];GABA(γ-氨基丁酸)或γ-乙烯氨基丁酸(抗癲癇藥)口服或腹腔注射,抑制抗原提呈細(xì)胞(APC)活性,降低IL-6、TNF-α等水平,也能抑制EAE發(fā)展[14]; B7分子結(jié)合肽(CD80CAP1、B7AP、sF2)[15]或CTLA-4-Ig[16]靜脈輸注后能非特異性地阻斷APC細(xì)胞膜上的B7分子與T細(xì)胞膜上CD28分子的結(jié)合,抑制T細(xì)胞活化,用于治療EAE、類風(fēng)濕關(guān)節(jié)炎(RA)和腎移植排斥等。靶向APC療法主要是一種間接影響CD4+T細(xì)胞活化的策略,不但缺少抗原特異性,而且其中不可控因素較多。

        1.4靶向B細(xì)胞 Anti-CD20(如Rituximab、Ocrelizumab、Automumab等)、Anti-CD19(如MEDI-551)、Anti-BAFF-R(如VAY736)等單抗已被用于MS的臨床試驗(yàn),非特異性地靶向清除和抑制B細(xì)胞[2]。其抑制體液免疫反應(yīng)的能力很強(qiáng),療效顯著,但非特異性地清除B細(xì)胞必然引起整體免疫功能下降。未來應(yīng)更多考慮病變組織局部的給藥治療和B細(xì)胞不同分化階段的靶向療法,以降低對(duì)整體B細(xì)胞庫的損傷。

        1.5靶向其他固有免疫樣細(xì)胞 利用硫脂抗原靶向抑制NKT細(xì)胞(包括invariant NKT和variant NKT),間接抑制TH1、TH17和細(xì)胞毒T細(xì)胞(CTL)分化,降低炎性細(xì)胞因子水平,同時(shí)促進(jìn)Treg細(xì)胞分化增殖及IL-10、TGF-β等調(diào)節(jié)性細(xì)胞因子釋放,但具體作用機(jī)制不明,在EAE治療中有很多矛盾的結(jié)果報(bào)道,可能與使用劑量、模型鼠遺傳背景等因素有關(guān)[17,18]。但是,a-GalCer(KRN7000)和OCH(a-GalCer anologue)等已廣泛用于臨床前和臨床研究,在抗腫瘤和抗肝炎病毒感染的治療中有明確的效果[19];利用淀粉纖維如糊精Amylin28-33經(jīng)腹腔注射治療EAE,非特異性活化腹腔B1a細(xì)胞(CD19hi/CD5+)和巨噬細(xì)胞(CD11bhiF4/80+),使其細(xì)胞膜上表達(dá)抑制性細(xì)胞受體如BTLA、IRF4、Siglec G等,同時(shí)分泌IL-10等調(diào)節(jié)性因子[20]。

        2 “間接”特異性療法

        使用了髓鞘自身抗原或多肽,但可能的主要機(jī)制是被APC攝取、提呈,通過選擇性活化途徑誘導(dǎo)致耐受性DC等抑制性APC細(xì)胞形成,從而間接抑制抗原特異性T細(xì)胞(AST)的分化和效應(yīng)功能。主要策略如下。

        2.1可溶性多肽療法(Peptide immunotherapy,PIT) 如將MBP85-99、PLP139-151和MOG35-55等多肽混合物經(jīng)真皮注射治療MS患者顯示有效,Treg、IL-10、TGF-β等上升,TH1、TH17、IFN-γ等下降[21,22];更多的髓鞘抗原多肽經(jīng)靜脈、真皮和口服等途徑治療EAE顯示有效,但口服方式在MS治療中不成功[23]??扇苄远嚯牡淖饔脵C(jī)制有爭議,主要可能經(jīng)APC攝取和提呈途徑影響AST細(xì)胞,但也可能部分地直接與AST細(xì)胞上的TCR結(jié)合,誘導(dǎo)T細(xì)胞凋亡、無能或功能抑制等[24];利用改變個(gè)別氨基酸的抗原多肽(Altered peptide ligand,APL)可以進(jìn)一步避免多肽療法引起的過敏反應(yīng)[25-27];格拉默(Glatiramer acetate)是目前唯一被FDA批準(zhǔn)的治療MS的多肽藥物,是模擬髓鞘蛋白的四個(gè)氨基酸無規(guī)則聚合物,但只對(duì)少數(shù)患者有效。抗原性多肽制備容易,但已明確的種類有限,是否與患者高度多態(tài)性的HLA等位基因相匹配值得進(jìn)一步考慮。

        2.2可溶性多肽鏈療法(Soluble antigen arrays,SAgAs) 如將PLP139-151多肽和LABL(一種ICAM-1分子的抑制性多肽,來自LFA-1分子)偶聯(lián)到線性結(jié)構(gòu)的透明質(zhì)酸聚合物(HA)上。LABL能與APC等細(xì)胞膜上的黏附因子ICAM-1結(jié)合,經(jīng)皮下或靜脈注射后有利于SAgAs靶向于APC,從而被攝取或與APC表面結(jié)合,但具體作用機(jī)制不明[28];將PLP139-151多肽和能與B7分子結(jié)合的CD28或CTLA-4分子模擬多肽(B7AP、CD80-CAP、sF2)偶聯(lián)到HA上,則可利用這些模擬肽靶向結(jié)合APC上的B7分子,從而阻斷或封閉APC細(xì)胞與T細(xì)胞間的B7/CD28信號(hào)途徑[29]。這種攜帶多種抗原肽和抑制性信號(hào)分子的線性聚合物制備較容易,而且具有將抗原肽靶向提呈給APC并抑制APC活化的雙功能,但其療效往往取決于該可溶性聚合物的物理化學(xué)特征。聚合物大小、免疫分子的親和力、鏈纏結(jié)(Chain entanglement)等因素直接決定免疫反應(yīng)的走向:免疫原性或免疫耐受性。目前眾多探索發(fā)現(xiàn)SAgAs 療法能顯著降低EAE的臨床評(píng)分,推遲發(fā)病日期(Day of onset)以及降低發(fā)病率;同時(shí)顯示:T細(xì)胞活化的雙信號(hào)同時(shí)同地提呈給T細(xì)胞能顯著減輕EAE癥狀,但是不連接在一起的兩個(gè)信號(hào)成分的混合物(如混合多肽或多肽與HA混合物)則不能有效減輕EAE[28,30]。

        2.3多肽或抗原共價(jià)結(jié)合的凋亡細(xì)胞療法(Ag-apoptotic cells) 凋亡細(xì)胞經(jīng)靜脈輸注后到達(dá)脾臟邊緣區(qū),經(jīng)凋亡途徑降解后的細(xì)胞碎片被邊緣區(qū)巨噬細(xì)胞表面的清道夫受體SRBⅡ識(shí)別而后被吞噬。APC攝取這些凋亡細(xì)胞成分后通過選擇性活化途徑形成致耐受性APC而不是致炎癥性APC,分泌IL-10、TGF-β,誘導(dǎo)Treg升高,從而間接調(diào)節(jié)AST細(xì)胞,抑制TH細(xì)胞向TH1和TH17分化。比如,將格拉默多肽藥裝載于用絲裂酶素處理的DC或脾細(xì)胞,靜脈給藥治療EAE,則炎性細(xì)胞因子(IL-2、4、6、12、17,IFN-γ,TNF-α)分泌降低,抑制性細(xì)胞因子(TGF-β、IL-10)表達(dá)升高,T細(xì)胞增殖能力減弱[31,32];將完整蛋白分子(PLP、MOG、MBP)、混合多肽(PLP139-151、PLP178-191、MBP84-104、MOG92-106)或脊髓組織勻漿等脈沖處理經(jīng)ECDI(Ethylenecar-bodiimide)固定后的脾細(xì)胞,ECDI可致細(xì)胞凋亡,靜脈給藥,已進(jìn)行MS的臨床Ⅱ期治療研究。這種抗原結(jié)合的脾細(xì)胞可能直接將抗原肽提呈給T細(xì)胞,但由于沒有共刺激分子的作用,將誘導(dǎo)AST細(xì)胞無能;或者通過間接提呈方式,即負(fù)載有抗原的凋亡脾細(xì)胞碎片被體內(nèi)APC細(xì)胞攝取,誘導(dǎo)致耐受性DC的形成,從而介導(dǎo)T細(xì)胞耐受而不是介導(dǎo)免疫應(yīng)答反應(yīng)。但是,這種負(fù)載抗原的凋亡細(xì)胞經(jīng)腹腔、皮下和口服等途徑治療MS或EAE則顯示無效[33-35];新近,有人用雙功能交聯(lián)劑SMCC代替ECDI,將MOG35-55分別偶聯(lián)到凋亡的和活的脾細(xì)胞上,然后經(jīng)靜脈注射治療EAE。結(jié)果顯示,在主動(dòng)EAE、被動(dòng)EAE、再刺激EAE(re-challenged)模型中以及在EAE的防護(hù)性和治療性研究中,脊髓組織局部炎性細(xì)胞浸潤減少、脫髓鞘和軸突丟失現(xiàn)象減輕、CD4+T細(xì)胞的體外增殖能力減弱、Treg升高、IFN-γ和IL-17減少等。但是這兩種脾細(xì)胞形式得到了相似的治療效果,即抗原負(fù)載凋亡脾細(xì)胞與抗原負(fù)載活脾細(xì)胞的療效沒有顯著區(qū)別,提示不一定需要凋亡細(xì)胞才能在血中被APC吞噬而誘導(dǎo)自身免疫抑制或耐受,具體作用機(jī)制有待進(jìn)一步研究[36]。

        2.4多肽修飾或包裹的仿生納米顆粒療法(Antigen-decorated or encapsulated nanoparticles,Ag-NPs) 利用直徑400~500 nm的仿生納米顆粒模擬和代替凋亡細(xì)胞,將PLP139-151共價(jià)偶聯(lián)到羧化物聚苯乙烯或聚乳酸-羥基乙酸(PLG)納米顆粒表面,靜脈注射治療EAE,被脾臟邊緣區(qū)巨噬細(xì)胞膜上MARCO分子識(shí)別而被巨噬細(xì)胞和DC所吞噬,從而促使巨噬細(xì)胞和DC分泌IL-10和TGF-β,并進(jìn)一步誘導(dǎo)APC表面PD-L1的上調(diào)表達(dá);這些致耐受性APC提呈抗原肽給自身抗原特異性T細(xì)胞,介導(dǎo)AST細(xì)胞克隆清除、無能或流產(chǎn)活化,從而誘導(dǎo)抗原特異性的耐受;同時(shí),IL-10和TGF-β誘導(dǎo)產(chǎn)生的Treg可能起到保持長期耐受的作用。這種被稱為致耐受性NPs的體內(nèi)作用機(jī)制尚未完全清楚,但在對(duì)EAE模型的預(yù)防和治療研究中可以使發(fā)病推遲、臨床評(píng)分降低、中樞神經(jīng)系統(tǒng)淋巴細(xì)胞、APC和小膠質(zhì)細(xì)胞浸潤減少,共培養(yǎng)中分泌INF-γ和IL-17的TH1和TH17細(xì)胞降低。該Ag-NPs經(jīng)靜脈輸注才能誘導(dǎo)T細(xì)胞耐受,腹腔注射只能誘導(dǎo)部分T耐受,皮下注射或口服則基本無效[37,38];將芳香烴受體激動(dòng)劑ITE和MOG35-55共包被金納米顆粒,在治療EAE中誘導(dǎo)致耐受性DC,進(jìn)而促進(jìn)Treg產(chǎn)生,抑制EAE的發(fā)生和發(fā)展[39];將多肽和雷帕霉素共包裹在PLG納米顆粒里面,靜脈或皮下給藥治療EAE或超敏反應(yīng),抑制抗原特異性CD4+T和CD8+T細(xì)胞的活化,同時(shí)誘導(dǎo)抗原特異性的Treg和Breg(調(diào)節(jié)性B細(xì)胞)產(chǎn)生,且可以使B細(xì)胞產(chǎn)生針對(duì)多種免疫原的、持久性的耐受。這種致耐受性納米顆粒經(jīng)靜脈注射后聚集于肝、脾,并與巨噬細(xì)胞和DC共定位,皮下接種后集中于淋巴結(jié)[40]。裝載抗原肽的納米材料被APC吞噬,誘導(dǎo)致耐受性APC的形成,從而間接抑制自身抗原特異性T細(xì)胞的活化是這類策略的基本原理,但是否抑制其他抗原特異性T細(xì)胞的反應(yīng)能力需要進(jìn)一步明確。

        2.5重組TCR配體療法(Recombinant TCR ligand,RTL) 即制備MHCⅡ類分子α1β1功能區(qū)與特定抗原肽的單鏈蛋白,經(jīng)皮下或靜脈給藥,治療MS和EAE。如RTL1000是HLA-DR2-α1β1-hMOG35-55的重組單鏈蛋白,已用于MS患者的臨床Ⅰ期治療研究[41];RTL551(I-Ab-α1β1-mMOG35-55)[42]、RTL401(I-As-α1β1-mPLP139-151)[43]和RTL200 (ratRT1.B-α1β1-ratMBP69-89)[44]等用于EAE治療。這類多肽與MHCⅡ類分子復(fù)合物的部分結(jié)構(gòu)體的體內(nèi)作用機(jī)制尚未完全明確,主要是通過其β1結(jié)構(gòu)區(qū)與單核、巨噬細(xì)胞膜上的CD74分子結(jié)合,導(dǎo)致其表達(dá)下調(diào),阻斷移動(dòng)抑制因子(MIF)與CD74結(jié)合,導(dǎo)致局部單核細(xì)胞數(shù)量減少,誘導(dǎo)M2型單核細(xì)胞和少膠質(zhì)細(xì)胞產(chǎn)生,進(jìn)而抑制下游炎性反應(yīng)的發(fā)生;同時(shí)也可能與TCR結(jié)合,阻斷CD4信號(hào)途徑,部分抑制T細(xì)胞效應(yīng)[45]。

        3 “直接”特異性療法

        即利用MHC分子與自身抗原肽的復(fù)合體(pMHC)直接靶向AST細(xì)胞,誘導(dǎo)其凋亡、無能或抑制。目前此類研究在MS和EAE中極少見,但在Ⅰ型糖尿病、類風(fēng)濕關(guān)節(jié)炎、同種移植和超敏反應(yīng)模型中已有所報(bào)道,主要策略如下。

        3.1可溶性pMHC多聚體療法(pMHC multimers) 制備I-Ag7-Ig與胰島反應(yīng)性CD4+T 細(xì)胞(BDC2.5)的模擬肽1040-31相嵌合的MHC-Ⅱ類分子二聚體,在體外或NOD鼠體內(nèi)能有效誘導(dǎo)BDC2.5CD4+T死亡、分泌IL-10的Tr1樣細(xì)胞增殖,有效預(yù)防和抑制Ⅰ型糖尿病(T1D)的發(fā)生和發(fā)展[46,47];可溶性HLA-DR0401-Ig/GAD65271-285二聚體在體外與T1D患者的外周血單個(gè)核細(xì)胞(PBMC)共培養(yǎng)中也能誘導(dǎo)分泌IL-10的Tr1樣細(xì)胞增殖[48];攜帶毒性物質(zhì)如皂草素、Ⅰ型核糖體滅活蛋白等的pMHCⅠ類分子的四聚體經(jīng)靜脈輸注可以選擇性地清除抗原特異性CD8+T細(xì)胞[49,50],并在抑制移植排斥和推遲T1D發(fā)展中顯示效應(yīng)[51-53]??扇苄詐MHC多聚體可直接靶向抗原特異性T細(xì)胞,誘導(dǎo)凋亡或殺傷,但是其體內(nèi)使用劑量可能較大,制備成本較高,而且需要新的保護(hù)策略以避免被蛋白酶降解。

        3.2pMHC多聚體修飾的仿生納米顆粒療法(pMHC-NPs) 將pMHC-Ⅰ類多聚體負(fù)載在葡聚糖納米粒表面(114 nm),靜脈輸注后可以保護(hù)NOD小鼠免于T1D的發(fā)生,也可以在新發(fā)病的T1D小鼠中治療胰島炎癥和維持正常的血糖量[54]。主要機(jī)制是:pMHC-NPs可以清除高親和力的自身反應(yīng)性CD8+T細(xì)胞;更能擴(kuò)增該抗原表位特異性的、低親和力的、具有記憶表型的自身調(diào)節(jié)性CD8+T細(xì)胞,而后者可以抑制或殺傷攜帶多種自身抗原的APC,從而抑制多種自身抗原的提呈,最終抑制多克隆自身反應(yīng)性T細(xì)胞的活化,而沒有裝載自身抗原的APCs不會(huì)被自身調(diào)節(jié)性CD8+T細(xì)胞所抑制或殺傷[55,56]。但是,pMHC-NPs是否適合其他的自身免疫病如MS,包被pMHCⅡ類分子的NPs是否可以擴(kuò)增自身調(diào)節(jié)性CD4+T細(xì)胞,在體內(nèi)是否易于被吞噬,pMHC的親和力、包被濃度以及NPs的種類、尺寸和注射劑量是否影響其功能等問題都需要進(jìn)一步研究[57]。與Ag-NPs主要作用于APC不同,pMHC-NPs主要直接靶向于抗原特異性T細(xì)胞,但面臨著如何避免被APC吞噬的問題。

        3.3殺傷性抗原提呈細(xì)胞(KAPCs) 人們通過基因轉(zhuǎn)導(dǎo)技術(shù)使遞呈有靶抗原的DC[58]、單核細(xì)胞[59]、B細(xì)胞[60]、成纖維母細(xì)胞[61]、造血干細(xì)胞[62]或其他細(xì)胞系[63]等表達(dá)FasL,在體外培養(yǎng)[64]和體內(nèi)實(shí)驗(yàn)中,通過細(xì)胞膜上的pMHC分子靶向結(jié)合抗原特異性T細(xì)胞,同時(shí)通過膜上的FasL與活化后T細(xì)胞膜上的Fas分子結(jié)合誘導(dǎo)T細(xì)胞凋亡,在同種移植排斥[61-63,65]、類風(fēng)濕關(guān)節(jié)炎[66]及變態(tài)反應(yīng)[67]等的動(dòng)物模型中都有良好的治療效果。但是,KAPCs療法同時(shí)也遭到諸多質(zhì)疑:除了生物安全性和原代DC等細(xì)胞的大規(guī)模制備困難外,更重要的是FasL在載體細(xì)胞膜上的表達(dá)水平難以均勻控制。未表達(dá)或過低表達(dá)FasL的細(xì)胞會(huì)促進(jìn)抗原特異性T細(xì)胞活化擴(kuò)增;過高表達(dá)FasL又會(huì)導(dǎo)致非特異性殺傷;部分殺傷性細(xì)胞還能分泌可溶性FasL,誘導(dǎo)自身及其他表達(dá)Fas分子的組織細(xì)胞發(fā)生凋亡;另外還可引起嚴(yán)重的中性粒細(xì)胞反應(yīng)。因此表達(dá)FasL的殺傷性抗原遞呈細(xì)胞成為一種“雙刃劍”,在不少的治療實(shí)驗(yàn)中出現(xiàn)矛盾或相反的結(jié)果[68,69]。

        3.4殺傷性人工抗原提呈細(xì)胞(KaAPCs) 以非細(xì)胞性仿生材料做載體,標(biāo)記pMHC多聚體和FasL,制備成殺傷性微米顆粒,靶向結(jié)合AST細(xì)胞并誘導(dǎo)其凋亡。2008年, Schutz等[70]用anti-Fas和HLA-A2/肽二聚體共同標(biāo)記細(xì)胞大小的磁珠(4.5 μm),替代殺傷性抗原提呈細(xì)胞療法。CMVpp65-殺傷性磁珠或MART127-35-殺傷性磁珠在體外共培養(yǎng)中均可選擇性地誘導(dǎo)85%~87%的特異性CTL細(xì)胞株凋亡,而沒有標(biāo)記anti-Fas的對(duì)照磁珠只有3%~13%的凋亡率。這種殺傷性磁珠不能活化靜止的CTL,只能使已經(jīng)活化的CTL凋亡。2010 年,Schutz等[71]綜合述評(píng)了這種靶向殺傷性載體的現(xiàn)狀和前景,提出它具有殺傷性細(xì)胞所沒有的明顯優(yōu)勢:可以在GMP條件下標(biāo)準(zhǔn)化和規(guī)?;a(chǎn),MHC抗原和FasL的包被量可自由控制,質(zhì)量均一,從而可有效控制毒副作用;沒有B7等共刺激分子和黏附分子,不能使靜止T細(xì)胞形成免疫突觸而活化,只能使已經(jīng)活化的T細(xì)胞凋亡,適合在自身免疫病、移植排斥和超敏反應(yīng)等患者體內(nèi)對(duì)過度活化T細(xì)胞進(jìn)行清除;不能加工遞呈其他抗原而引起非病原性T細(xì)胞的損傷;不能分泌可溶性FasL而引起自分泌和旁分泌殺傷,也不易被受者的CTL識(shí)別為靶細(xì)胞而被攻擊等。2011年,本文作者將H-2Kb單體和anti-Fas負(fù)載至4.5 μm膠乳微球表面,經(jīng)靜脈輸注治療小鼠皮膚移植排斥,證實(shí)KaAPCs在體內(nèi)能選擇性使脾細(xì)胞中H-2Kb同種反應(yīng)性T細(xì)胞頻率下降60%;皮膚移植物存活期延長6 d;移植物局部的炎性細(xì)胞、T細(xì)胞都顯著減少;而整體免疫功能沒有明顯下降[72]。2015年,用可生物降解、無毒性的聚乳酸-羥基乙酸(PLGA)微球代替膠乳微球,得到相似的療效[73]。2016年,將H-2Kb-Ig/OVA257-264二聚體和anti-Fas偶聯(lián)于4.5 μm PLGA微球表面,在體外和OT-1 TCR轉(zhuǎn)基因鼠體內(nèi)系統(tǒng)研究了KaAPCs靶向殺傷OVA257-264特異性CD8+T細(xì)胞的能力和機(jī)制;經(jīng)尾靜脈輸注后,48 h時(shí)PBMC中OVA257-264特異性CD8+T細(xì)胞減少90%以上,殺傷效應(yīng)維持4 d;體內(nèi)滯留時(shí)間48 h;利用H-2Kb-Ig二聚體和anti-Fas共負(fù)載PLGA微球,在單個(gè)MHC基因位點(diǎn)錯(cuò)配的皮膚移植鼠內(nèi)(C57BL/6和bm1供受對(duì)),三次靜脈注射導(dǎo)致皮膚移植物成活期延長41.5 d[74]。這些同種移植排斥的體內(nèi)實(shí)驗(yàn)結(jié)果提示了KaAPCs療法在自身免疫病,尤其是MS、RA等以T細(xì)胞介導(dǎo)為主的自身免疫病中有很好的治療潛能。

        上述三大類免疫療法各有優(yōu)點(diǎn),也有各自的不足。每一類療法中的各種治療策略更是如此。非特異性療法中免疫制劑的制備相對(duì)較容易,大多為細(xì)胞因子或抗體,免疫抑制效果明顯而且作用范圍廣。但其主要不足是能抑制機(jī)體的整體免疫功能,由此導(dǎo)致機(jī)體抗感染能力、抗腫瘤能力減弱等副作用。“間接”特異性療法雖然使用了髓鞘自身抗原或其多肽,但并非直接靶向于自身反應(yīng)性T細(xì)胞,而是被APC攝取,通過選擇性活化途徑誘導(dǎo)致耐受性APC形成,分泌IL-10、TGF-β,誘導(dǎo)Treg產(chǎn)生,間接抑制TH1和TH17產(chǎn)生等。其主要不足有:在體內(nèi)誘導(dǎo)致耐受性APC存在不確定性,牽涉多種因素如APC的種類、組織特異性和表面受體、免疫制劑大小和抗原量等,不精確的靶向(如靶向漿細(xì)胞樣DCs的NPs[75],皮下接種的NPs[38,40])反而會(huì)增強(qiáng)免疫應(yīng)答,加重疾??;另外此類EAE研究極少涉及自身反應(yīng)性CD8+T細(xì)胞的免疫調(diào)節(jié)?!爸苯印碧禺愋辕煼壳吧袠O少見于MS和EAE的治療研究。在同種移植排斥中,供受者間MHC的差異能夠明確鑒定,因此移植抗原較為明確, 所以“直接”特異性療法在治療同種移植排斥中有優(yōu)勢。但是,在自身免疫病中,大多數(shù)自身抗原及其抗原表位尚不清楚,因此pMHC多聚體的制備受限于已知抗原表位肽較少,其靶向殺傷或抑制的自身反應(yīng)性T細(xì)胞克隆數(shù)則較少,臨床療效受限。未來的發(fā)展方向應(yīng)考慮整合上述多種免疫療法,相互取長補(bǔ)短,開拓新型的更有效的綜合免疫治療策略。

        [1] Mars LT,Saikali P,Liblau RS,etal.Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models[J].Biochim Biophys Acta,2011,1812(2):151-161.

        [2] Agahozo MC,Peferoen L,Baker D,etal.CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis-Targeting T or B cells?[J].Mult Scler Relat Disord,2016,9:110-117.

        [3] Brod SA.Ingested(oral)anti-IL-12/23 inhibits EAE[J].J Neurol Sci,2016,361:19-25.

        [4] Yeilding N,Szapary P,Brodmerkel C,etal.Development of the IL-12/23 antagonist ustekinumab in psoriasis:past,present,and future perspectives --an update[J].Ann N Y Acad Sci,2012,1263:1-12.

        [5] Ritchlin C,Rahman P,Kavanaugh A,etal.Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody,ustekinumab,in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy:6-month and 1-year results of the phase 3,multicentre,double-blind,placebo-controlled,randomised psummit 2 trial[J].Ann Rheum Dis,2014,73:990-999.

        [6] Lunemann JD,Nimmerjahn F,Dalakas MC.Intravenous immunoglobulin in neurology --mode of action and clinical efficacy[J].Nat Rev Neurol,2015,11(2):80-89.

        [7] Quast I,Keller CW,Weber P,etal.Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation[J].J Neuroinflammation,2016,13:42.

        [8] Lünemann JD,Quast I,Dalakas MC.Efficacy of intravenous immunoglobulin in neurological diseases[J].Neurotherapeutics,2016,13(1):34-46.

        [9] Ashbaugh JJ,Brambilla R,Karmally SA,etal.IL7Ra contributes to experimental autoimmune encephalomyelitis through altered T cell responses and nonhematopoietic cell lineages[J].J Immunol,2013,190(9):4525-4534.

        [10] Otomo K,Koga T,Mizui M,etal.Cutting edge:nanogel-based delivery of an inhibitor of CaMK4 to CD4+T cells suppresses experimental autoimmune encephalomyelitis and lupus-like disease in mice[J].J Immunol,2015,195(12):5533-5537.

        [11] Zhou F,Zhang GX,Rostami A.Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4+effector memory T cells[J].Immunol Res,2016,64(1):73-81.

        [12] Bruhs A,Schwarz T,Schwarz A.Prevention and mitigation of experimental autoimmune encephalomyelitis by murine β-defensins via induction of regulatory T cells[J].J Invest Dermatol,2016,136(1):173-181.

        [13] Gammon JM,Tostanoski LH,Adapa AR,etal.Controlled delivery of ametabolic modulator promotes regulatory T cells and restrains autoimmunity[J].J Control Release,2015,210:169-178.

        [14] Prud′homme GJ,Glinka Y,Wang Q.Immunological GABAergic interactions and therapeutic applications in autoimmune diseases[J].Autoimmun Rev,2015,14(1):1048-1056.

        [15] Dudhgaonkar SP,Janardhanam SB,Kodumudi KN,etal.CD80 blockade enhance glucocorticoidinduced leucine zipper expression and suppress experimental autoimmune encephalomyelitis[J].J Immunol,2009,183(11):7505-7513.

        [16] Yao S,Zhu Y,Chen L.Advances in targeting cell surface signalling molecules for immune modulation[J].Nat Rev Drug Discov,2013,12(2):130-146.

        [17] Van Kaer L,Wu L,Parekh W.Natural killer T cells in multiple sclerosis and its animal model,experimental autoimmune encephalomyelitis[J].Immunology,2015,146(1):1-10.

        [18] Maricic I,Halder R,Bischof F,etal.Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis[J].J Immunol,2014,193(3):1035-1046.

        [19] Van Kaer L,Parekh W,Wu L.Invariant NK T cells:potential for immunotherapeutic targeting with glycolipid antigens[J].Immunotherapy,2011,3(1):59-75.

        [20] Kurnellasa MP,Bou Ghosnb EE,Schartnerc JM,etal.Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease[J].Proc Natl Acad Sci U S A,2015,112(49):15016-15023.

        [21] Jurynczyk M,Walczak A,Jurewicz A,etal.Immune regulation of multiple sclerosis by transdermally applied myelin peptides[J].Ann Neurol,2010,68(5):593-601.

        [22] Walczak A,Siger M,Ciach A,etal.Transdermal application of myelin peptides in multiple sclerosis treatment[J].JAMA Neurol,2013,70(9):1105-1109.

        [23] Szczepanik M,Majewska-Szczepanik M.Transdermal immunot-herapy:Past,present and future[J].Pharmacol Rep,2016,68(4):773-781.

        [24] Anderton SM.Peptide immunotherapy in experimental autoimmune encephalomyelitis[J].Biomed J,2015,38(3):206-214.

        [25] Wegmann KW,Archie Bouwer HG,Whitham RH,etal.Eluding anaphylaxis allows peptide-specific prevention of the relapsing stage of experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2014,274(1-2):46-52.

        [26] Deraos G,Rodi M,Kalbacher H,etal.Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis[J].Eur J Med Chem,2015,101:13-23.

        [27] Perera CJ,Lees JG,Duffy SS,etal.Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation[J].J Neuroimmunol,2015,286:59-70.

        [28] Hartwell BL,Hall AS,Swafford D,etal.Molecular dynamics of multivalent soluble antigen arrays support a two-signal co-delivery mechanism in the treatment of experimental autoimmune encephalomyelitis[J].Mol Pharm,2016,13(2):330-343.

        [29] Northrup L,Sestak JO,Sullivan BP,etal.Co-delivery of autoantigen and B7 pathway modulators suppresses experimental autoimmune encephalomyelitis[J].AAPS J,2014,16(6):1204-1213.

        [30] Sestak JO,Sullivan BP,Thati S,etal.Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis[J].Mol Ther Methods Clin Dev,2014,1:14008.

        [31] Van Brussel I,Lee WP,Rombouts M,etal.Tolerogenic dendritic cell vaccines to treat autoimmune diseases:can the unattainable dream turn into reality?[J].Autoimmun Rev,2014,13(2):138-150.

        [32] Kleist C,Mohr E,Gaikwad S,etal.Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis[J].J Transl Med,2016,14:99.

        [33] Smith CE,Miller SD.Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities[J].J Autoimmun,2006,27(4):218-231.

        [34] Turley DM,Miller SD.Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis[J].J Immunol,2007,178(4):2212-2220.

        [35] Lutterotti A,Yousef S,Sputtek A,etal.Antigen-specific tolerance by autologous myelin peptide-coupled cells:a phase 1 trial in multiple sclerosis[J].Sci Transl Med,2013,5(188):188ra75.

        [36] Zhang L,Guo Y,Xia CQ.Infusion of sulfosuccinimidyl-4-[Nmaleimidomethyl]cyclohexane-1-carboxylate-conjugated MOG35-55-coupled spleen cells effectively prevents and reverses experimental autoimmune encephalomyelitis in mice[J].J Immunol Res,2015,2015:129682.

        [37] Getts DR,Martin AJ,McCarthy DP,etal.Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis[J].Nat Biotechnol,2012,30(12):1217-1224.

        [38] Hunter Z,McCarthy DP,Yap WT,etal.A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease[J].ACS Nano,2014,8(3):2148-2160.

        [39] Yeste A,Nadeau M,Burns EJ,etal.Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis[J].Proc Natl Acad Sci U S A,2012,109(28):11270-11275.

        [40] Maldonado RA,LaMothe RA,Ferrari JD,etal.Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance[J].Proc Natl Acad Sci U S A,2015,112(2):E156-165.

        [41] Offner H,Sinha S,Burrows GG,etal.RTL therapy for multiple sclerosis:A Phase I clinical study[J].J Neuroimmunol,2011,231(1-2):7-14.

        [42] Sinha S,Subramanian S,Proctor TM,etal.A promising therapeutic approach for multiple sclerosis:recombinant T-cell receptor ligands modulate experimental autoimmune encephalomyelitis by reducing interleukin-17 production and inhibiting migration of encephalitogenic cells into the CNS[J].J Neurosci,2007,27(46):12531-12539.

        [43] Sinha S,Miller L,Subramanian S,etal.Binding of recombinant T cell receptor ligands(RTL)to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2010,225(1-2):52-61.

        [44] Adamus G,Burrows GG,Vandenbark AA,etal.Treatment of autoimmune anterior uveitis with recombinant TCR ligands[J].Invest Ophthalmol Vis Sci,2006,47(6):2555-2561.

        [45] Benedek G,Vandenbark AA,Alkayed NJ,etal.Partial MHC class II constructs as novel immunomodulatory therapy for stroke[J].Neurochem Int,2017,107:138-147.

        [46] Casares S,Hurtado A,McEvoy RC,etal.Down-regulation of diabetogenic CD4+T cells by a soluble,dimeric peptide-MHC class II chimera[J].Nat Immunol,2002,3(4):383-391.

        [47] Masteller EL,Warner MR,Ferlin W,etal.Peptide-MHC class II dimers as therapeutics to modulate antigen-specific T cell responses in autoimmune diabetes[J].J Immunol,2003,171(10):5587-5595.

        [48] Preda I,McEvoy RC,Lin M,etal.Soluble,dimeric HLA DR4-peptide chimeras:An approach for detection and immunoregulation of human type-1 diabetes[J].Eur J Immunol,2005,35(9):2762-2775.

        [49] Hess PR,Barnes C,Woolard MD,etal.Selective deletion of antigen-specific CD8+T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin[J].Blood,2007,109(8):3300-3307.

        [50] Samanta D,Mukherjee G,Ramagopal UA,etal.Structural and functional characterization of a single-chain peptide-MHC molecule that modulates both naive and activated CD8+T cells[J].Proc Natl Acad Sci U S A,2011,108(33):13682-13687.

        [51] Hess SM,Young EF,Miller KR,etal.Deletion of naive T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance[J].Transpl Immunol,2013,29(1-4):138-145.

        [52] Vincent BG,Young EF,Buntzman AS,etal.Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+T cells and delay diabetes in nonobese diabetic mice[J].J Immunol,2010,184(8):4196-4204.

        [53] Gojanovich GS,Murray SL,Buntzman AS,etal.The use of peptide-major-histocompatibility-complex multimers in type 1 diabetes mellitus[J].J Diabetes Sci Technol,2012,6(3):515-524.

        [54] Tsai S,Shameli A,Yamanouchi J,etal.Reversal of autoimmunity by boosting memory-like autoregulatory T cells[J].Immunity,2010,32(4):568-580.

        [55] Clemente-Casares X,Tsai S,Yang Y,etal.Peptide-MHC-based nanovaccines for the treatment of autoimmunity:a “one size fits all” approach?[J].J Mol Med(Berl),2011,89(8):733-742.

        [56] Khadra A,Tsai S,Santamaria P,etal.On how monospecific memory-like autoregulatory CD8+T cells can blunt diabetogenic autoimmunity:a computational approach[J].J Immunol,2010,185(10):5962-5972.

        [57] Sugarman J,Tsai S,Santamaria P,etal.Quantifying the importance of pMHC valency,total pMHC dose and frequency on nanoparticle therapeutic efficacy[J].Immunol Cell Biol,2013,91(5):350-359.

        [58] Hoves S,Krause SW,Herfarth H,etal.Elimination of activated but not resting primary human CD4+and CD8+T cells by Fas ligand(FasL/CD95L)-expressing killer-dendritic cells[J].Immunobiology,2004,208(5):463-475.

        [59] Zhang HG,Su X,Liu D,etal.Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells[J].J Immunol,1999,162(3):1423-1430.

        [60] Kosiewicz MM,Krishnan A,Worthington MT,etal.B cells engineered to express Fas ligand suppress pre-sensitized antigen-specific T cell responses in vivo[J].Eur J Immunol,2002,32(6):1679-1687.

        [61] Lau HT,Yu M,Fontana A,etal.Prevention of isletallograft rejection with engineered myoblasts expressing FasL in mice[J].Science,1996,273(5271):109-112.

        [62] Whartenby KA,Straley EE,Kim H,etal.Transduction of donor hematopoietic stem-progenitor cells with Fas ligand enhanced short-term engraftment in a murine model of allogeneic bone marrow transplantation[J].Blood,2002,100(9):3147-3154.

        [63] Strauss G,Osen W,Knape I,etal.Membrane-bound CD95 ligand expressed on human antigen-presenting cells prevents alloantigen-specific T cell response without impairment of viral and third-party T cell immunity[J].Cell Death Differ,2007,14(3):480-488.

        [64] Schutz C,Hoves S,Halbritter D,etal.Alloantigen specific deletion of primary human T cells by Fas ligand(CD95L)-transduced monocyte-derived killer-dendritic cells[J].Immunology,2011,133(1):115-122.

        [65] Yolcu ES,Askenasy N,Singh NP,etal.Cell membrane modification for rapid display of proteins as a novel means of immunomodulation:FasL-decorated cells prevent islet graft rejection[J].Immunity,2002,17(6):795-808.

        [66] Kim SH,Kim S,Oligino TJ,etal.Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL[J].Mol Ther,2002,6(5):584-590.

        [67] Chuang YH,Suen JL,Chiang BL.Fas ligand-expressing adenovirus-transfected dendritic cells decrease allergen-specific T cells and airway inflammation in a murine model of asthma[J].J Mol Med,2006,84(7):595-603.

        [68] Kusuhara M,Matsue H.Limitations of CD95 ligand-transduced killer dendritic cells to prevent graft rejections[J].Exp Dermatol,2005,14(4):273-280.

        [69] Askenasy N,Yolcu ES,Yaniv I,etal.Induction of tolerance using Fas ligand:a double-edged immunomodulator[J].Blood,2005,105(4):1396-1404.

        [70] Schutz C,Fleck M,Machensen A,etal.Killer-artificial-antigen-presenting-cells(KaAPC):a novel strategy to delete specific T cells[J].Blood,2008,111(7):3546-3552.

        [71] Schutz C,Oelke M,Schneck JP,etal.Killer artificial antigen-presenting cells:the synthetic embodiment of a ‘guided missile′[J].Immunotherapy,2010,2(4):539-550.

        [72] Shen C,He Y,Cheng K,etal.Killer artificial antigen-presenting cells deplete alloantigen-specific T cells in a murine model of alloskin transplantation[J].Immunol Lett,2011,138(2):144-155.

        [73] Wang W,Fang K,Wang X,etal.Antigen-specific killer polylactic-co-glycolic acid(PLGA)microspheres can prolong alloskin graft survival in a murine model[J].Immunol Invest,2015,44(4):385-399.

        [74] Wang W,Fang K,Li MC,etal.A biodegradable killer microparticle to selectively deplete antigen-specific T cells in vitro and in vivo[J].Oncotarget,2016,7(11):12176-12190.

        [75] Tel J,Sittig SP,Blom RA,etal.Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion[J].J Immunol,2013,191(10):5005-5012.

        10.3969/j.issn.1000-484X.2017.12.028

        R741.05R744.3

        A

        1000-484X(2017)12-1881-07

        ①本文受國家自然科學(xué)基金面上項(xiàng)目(81172823,81372448)資助。

        ②東南大學(xué)醫(yī)學(xué)院病原生物學(xué)與免疫學(xué)系,南京 210009。

        夏玲芝(1970年-),女,主管檢驗(yàn)師,主要從事免疫學(xué)檢驗(yàn)技術(shù)和基礎(chǔ)研究。

        及指導(dǎo)教師:沈傳來(1968年-),男,博士,教授,博士生導(dǎo)師,主要從事腫瘤、移植排斥和自身免疫病的免疫生物治療和免疫學(xué)新技術(shù)方面的研究,E-mail:chuanlaishen@seu.edu.cn 。

        [收稿2017-05-18 修回2017-06-20]

        (編輯 倪 鵬)

        猜你喜歡
        多肽抗原活化
        無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
        小學(xué)生活化寫作教學(xué)思考
        高多肽含量苦瓜新品種“多肽3號(hào)”的選育
        抗HPV18 E6多肽單克隆抗體的制備及鑒定
        梅毒螺旋體TpN17抗原的表達(dá)及純化
        結(jié)核分枝桿菌抗原Lppx和MT0322人T細(xì)胞抗原表位的多態(tài)性研究
        胎盤多肽超劑量應(yīng)用致嚴(yán)重不良事件1例
        徐寒梅:創(chuàng)新多肽藥物研究與開發(fā)
        APOBEC-3F和APOBEC-3G與乙肝核心抗原的相互作用研究
        鹽酸克倫特羅人工抗原的制備與鑒定
        四虎成人精品在永久免费| 亚洲精品一区二区三区国产 | 久久精品国产亚洲精品色婷婷| 精品一区二区三区人妻久久福利| 精品国产乱码久久久久久婷婷| 成年无码aⅴ片在线观看| 亚洲av高清在线观看三区| 免费女女同黄毛片av网站| 日产精品99久久久久久| 丰满少妇被猛烈进入| 一本一本久久a久久精品综合| 中文字幕亚洲永久精品| 国产高清在线观看av片| 日日噜噜噜夜夜爽爽狠狠| 国产人成无码视频在线1000| 今井夏帆在线中文字幕| 国产欧美成人一区二区a片| 欲妇荡岳丰满少妇岳 | 老妇高潮潮喷到猛进猛出| 99久久精品费精品国产一区二区| 国产午夜激情视频自拍| 亚洲国产av一区二区不卡| 国产精品精品自在线拍| 精品人妻少妇一区二区不卡| 99热久久只有这里是精品| 国产精品网站91九色| 国产成人aaaaa级毛片| 亚洲国产香蕉视频欧美| 中文字幕人妻一区二区二区| 欧美精品videosse精子| 久久韩国漫画无删减漫画歪歪漫画| 国产天堂av手机在线| 亚洲综合av大全色婷婷| 香蕉视频在线精品视频| 人妻人妻少妇在线系列| 亚洲日本高清一区二区| 国产免费内射又粗又爽密桃视频| 一区二区三区日韩亚洲中文视频 | 国产片在线一区二区三区| 中文 在线 日韩 亚洲 欧美| 亚洲日韩图片专区小说专区|