亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Pickering乳液在藥物載體制備方面的研究進(jìn)展

        2017-12-14 00:58:23戈明亮湯微
        化工進(jìn)展 2017年12期
        關(guān)鍵詞:載藥油相微膠囊

        戈明亮,湯微

        ?

        Pickering乳液在藥物載體制備方面的研究進(jìn)展

        戈明亮,湯微

        (華南理工大學(xué),聚合物成型加工工程教育部重點(diǎn)實(shí)驗(yàn)室,聚合物新型成型裝備國(guó)家工程研究中心,廣東廣州510641)

        Pickering乳液具有成本低、穩(wěn)定性好、毒性小等優(yōu)點(diǎn),廣泛應(yīng)用于化妝品、食品、醫(yī)藥等方面。利用Pickering乳液制備藥物載體操作簡(jiǎn)單,可改善難溶藥物的溶出,對(duì)藥物具有一定的緩釋效果,其在藥物載體方面具有廣闊的發(fā)展前景。本文綜述了近些年P(guān)ickering乳液在藥物載體方面的研究進(jìn)展,首先簡(jiǎn)要介紹了藥物緩釋技術(shù)及Pickering乳液性質(zhì);然后重點(diǎn)分析了不同固體粒子穩(wěn)定的Pickering乳液在載藥微球制備中的研究;還探討了Pickering乳液在制備載藥凝膠、載藥多孔支架以及載藥乳劑等方面的應(yīng)用;最后對(duì)Pickering乳液制備藥物載體方面作出展望,隨著該技術(shù)相關(guān)研究的發(fā)展和成熟,藥物載體的穩(wěn)定性、生物相容性等問題的突破,利用Pickering乳液制備藥物載體的方法技術(shù)將更有利于藥物載藥體系的發(fā)展。

        Pickering乳液;固體粒子;藥物載體;緩釋

        大多數(shù)藥物不具備緩釋特性,需多次給藥才能保證血藥濃度足量以發(fā)揮治療效果,因此需要通過藥物緩釋技術(shù)來(lái)解決此問題[1]。藥物緩釋技術(shù)指通過載體以物理或化學(xué)方法裝載藥物,控制藥物進(jìn)入人體病變組織,將小分子藥物以適當(dāng)?shù)臐舛瘸掷m(xù)地釋放出來(lái)[2-3]。藥物緩釋技術(shù)能夠減少給藥次數(shù),增加藥物治療穩(wěn)定性,延長(zhǎng)藥物作用時(shí)間,有利于提高藥物療效、降低毒副作用[4-8]。微球或膠囊、多孔支架因其比表面積大、密度低、孔隙率高等特性,而被廣泛應(yīng)用于藥物載體領(lǐng)域[9]。以多孔支架、微球或膠囊為基體的藥物載體制備方法主要有溶膠-凝膠法[10]、層-層自組裝法[11]和乳液模板法[12]等,乳液模板法與溶膠-凝膠法和層-層自組裝法相比,操作簡(jiǎn)便而得到廣泛關(guān)注。根據(jù)乳液的類型,乳液模板法可分為傳統(tǒng)乳液模板法和Pickering乳液模板法。傳統(tǒng)乳液是指加入表面活性劑穩(wěn)定的乳液,傳統(tǒng)乳液模板制備的多孔材料具有連通的孔結(jié)構(gòu),但支架力學(xué)性能較差,表面活性劑用量較大,反應(yīng)條件要求嚴(yán)格。

        1903年RAMSDEN[13]研究發(fā)現(xiàn)水和懸浮有固體顆粒的石蠟混合攪拌,可得到由固體顆粒穩(wěn)定的乳液,隨后PICKERING[14]對(duì)其進(jìn)行了進(jìn)一步的研究,故稱由固體顆粒穩(wěn)定的乳液為Pickering乳液。固體粒子可被兩相潤(rùn)濕吸附在液液界面上,由于其潤(rùn)濕性的不同可形成油包水(W/O)或水包油 (O/W)型乳液[15-16]。固體粒子包括無(wú)機(jī)粒子、有機(jī)粒子和其他粒子,如SiO2、黏土納米粒子、苯乙烯(PS)、病毒等[17-20]。通過三相接觸角來(lái)評(píng)價(jià)固體粒子的潤(rùn)濕性,一般<90°易得到O/W乳液,>90°易得到W/O乳液,但是不能太大或太小,否則粒子分散在水相或油相中,不能得到穩(wěn)定的Pickering乳液[21]。目前,公認(rèn)的Pickering乳液的穩(wěn)定機(jī)理主要為固體顆粒在油水界面上形成固體顆粒膜,阻隔了乳液液滴之間的碰撞聚并,同時(shí)也增加了液滴之間的相互斥力,兩者共同作用穩(wěn)定乳 液[22-23]。利用Pickering乳液制備藥物載體操作簡(jiǎn)便,孔隙比較均勻,可以有效地防止液滴的聚結(jié),提高穩(wěn)定性;界面微粒層可以提高對(duì)藥物的保護(hù)和控制藥物的釋放,在改善難溶性藥物的溶出方面具有巨大潛力。因此,利用Pickering乳液制備藥物載體對(duì)藥物進(jìn)行緩釋具有廣闊的發(fā)展前景。

        1 載藥微球或膠囊

        微球或膠囊作為藥物載體,可以起到分散、保護(hù)和緩釋藥物的作用,尤其是具有生物相容性的微球或膠囊,在載藥及控制釋放方面具有廣闊的應(yīng)用空間[24-26]。當(dāng)載藥微球或膠囊進(jìn)入人體后,體液由孔道滲入載體內(nèi)部形成藥液,使得微球或膠囊內(nèi)外形成濃度差,導(dǎo)致內(nèi)部藥液不斷向微球或膠囊外釋放,實(shí)現(xiàn)藥物的釋放,通過控制例如載體孔徑、殼層厚度等可達(dá)到對(duì)藥物釋放速度的調(diào)節(jié)。通過選擇無(wú)機(jī)粒子、有機(jī)粒子或復(fù)合粒子穩(wěn)定Pickering乳液可制備出不同種類不同結(jié)構(gòu)的載藥微球或膠囊。

        1.1 無(wú)機(jī)粒子

        利用無(wú)機(jī)粒子穩(wěn)定的Pickering乳液制備載藥微球或膠囊的制備方法可分為乳液干燥法、乳液聚合法等。

        1.1.1 Pickering乳液干燥法

        采用Pickering乳液干燥法制備載藥微球或膠囊的過程是先將藥物溶入到油相或水相中,再用無(wú)機(jī)粒子制備穩(wěn)定的Pickering乳液,然后將油相或水相除去,得到載藥微球或膠囊。載藥微球或膠囊的載藥性能與無(wú)機(jī)粒子性質(zhì)、油相種類、油相與無(wú)機(jī)粒子比例等因素有關(guān)。SIMOVIC等[27]用帶有正電荷或負(fù)電荷的脂質(zhì)作為油相,親水性多孔SiO2固體粒子作為穩(wěn)定劑,制備O/W型Pickering乳液,再通過噴霧干燥將水相除去,使膠囊成為干粉狀,提高難溶性藥物的溶出率和生物利用度,得到多孔結(jié)構(gòu)的吲哚美辛載藥微囊;在大鼠的口服給藥研究中,Pickering乳液所得到的載藥微囊的絕對(duì)生物利用度優(yōu)于普通乳液。WEI等[28]以溶有聚乳酸-羥基乙酸共聚物(PLGA)的CH2Cl2為油相,以SiO2粒子穩(wěn)定O/W型Pickering乳液,通過溶劑蒸發(fā)將CH2Cl2除去和酸洗有效地將SiO2粒子除去,制備無(wú)毒、生物相容性好的PLGA微球,過程見圖1;在緩沖溶液中(pH=7.2,5,3,1)測(cè)得布洛芬(IBU)的載藥量為5.26%~29.49%,包封率為73.60%~97.76%,在pH為7.2時(shí),9000min后仍有將近25%的IBU沒有釋放,PLGA微球?qū)BU有一定的緩釋效果。此外,WEI等[29]用埃洛石穩(wěn)定Pickering乳液,以類似的方法得到PLGA微球;但是藥物的緩釋性能比用SiO2穩(wěn)定的Pickering乳液制備的微球的緩釋性能差,pH=7.2、7000min后,IBU的釋放量達(dá)到75%左右,IBU的裝載量和包封率隨pH的增大而減小??蓪ickering乳液與其它技術(shù)理論相結(jié)合,擴(kuò)寬Pickering乳液的應(yīng)用范圍, ZHANG等[30]將溶于左旋聚乳酸(PLLA)的CH2Cl2作為油相,用疏水性SiO2穩(wěn)定W/O型Pickering乳液,將該P(yáng)ickering乳液逐滴注射到含有疏水性SiO2的培養(yǎng)皿中,使SiO2粒子覆蓋在Pickering乳液的液滴表面,干燥后去除水相和油相得到多孔膠囊,該膠囊100h后釋放了大約42%的模擬藥物,對(duì)藥物具有緩釋效果,制備過程見圖2。

        圖1 SiO2粒子包覆的PLGA微球和PLGA微球制備示意圖[28]

        圖2 基于Pickering乳液的液珠和多孔膠囊的制備示意圖[30]

        通過選擇不同的固體粒子,來(lái)制備具有靶向特性的藥物載體,使藥物在所需部位釋藥,提高藥物有效濃度,降低藥物毒性和不良反應(yīng),OKA等[31]利用氧化鐵穩(wěn)定Pickering乳液,將疏水性熒光性模型藥物芘加入羥基烷基/二氯甲烷溶液中,以氧化鐵為殼、生物降解高分子聚羥基烷基(PHAS)為核,制備磁性核殼復(fù)合粒子。熒光分析表明藥物負(fù)載于核殼復(fù)合粒子中,通過PHAS生物降解可實(shí)現(xiàn)緩慢持續(xù)釋放藥物。王志琰等[32]采用共沉淀法制備納米Fe3O4顆粒穩(wěn)定O/W型Pickering乳液,聚甲基三乙氧基硅烷和IBU分散在油相中,乳液靜置陳化、洗滌后得到以SiO2和磁性粒子為殼層的載藥磁性空心球;載藥磁性空心球經(jīng)過大約40h,釋放了80%以上的藥物且釋放過程較為平緩。

        1.1.2 Pickering乳液聚合法

        通過在Pickering乳液中發(fā)生聚合反應(yīng)制備微球或膠囊,然后將微球或膠囊放入藥物溶液中,得到載藥微球或膠囊,其操作簡(jiǎn)單,可通過調(diào)節(jié)釋放介質(zhì)的溫度來(lái)調(diào)節(jié)藥物釋放速率。ZHANG等[33]用甲基丙烯酰氧基丙基三甲氧基硅烷改性的二氧化硅穩(wěn)定W/O型反相Pickering乳液,以-異丙基丙烯酰胺的水溶液為內(nèi)相,以溶有二乙烯基苯和甲基丙烯酸甲酯的液態(tài)石蠟為外相,經(jīng)乳液聚合得到溫敏性聚-異丙基丙烯酰胺/聚甲基丙烯酸甲酯/二氧化硅復(fù)合微膠囊;將此微膠囊放入IBU的乙醇溶液,可制備具有藥物緩釋效果的載藥微膠囊,可通過調(diào)節(jié)壁厚和釋放介質(zhì)的溫度來(lái)調(diào)節(jié)藥物釋放速率。LU等[34]用坡縷石(PAL)穩(wěn)定O/W型Pickering乳液,將甲基丙烯酸二乙基氨基乙酯(DEAEMA)單體、甲基丙烯酸甲酯(MMA)單體、交聯(lián)劑二甲基丙烯酸乙二醇酯和引發(fā)劑偶氮二異丁腈(AIBN)溶于甲苯中作為油相,聚合后制備PDEAEMA/PAL復(fù)合微球,將該微球放入羅丹明B乙醇溶液中,制備載藥微球。該微球?qū)α_丹明B的包封率大約為13.5%,通過調(diào)節(jié)pH可調(diào)控藥物釋放速率。ZHU等[35]將均苯三甲酸(BTC)、單體MMA和引發(fā)劑AIBN溶于油相,Cu2+溶于水相,用Fe3O4納米粒子穩(wěn)定O/W型Pickering乳液,經(jīng)Cu3(BTC)2納米晶體在油水界面原位生長(zhǎng)和聚甲基丙烯酸甲酯(PMMA)聚合作用得到超穩(wěn)定中空微球,制備過程見圖3,該微球具有很好的裝載量和緩釋特性,50℃、12h后測(cè)得該微球?qū)BU的裝載能力為250mg/g,45℃時(shí)10mg微球的藥物總釋放時(shí)間為7h,裝載量和釋放特性受溫度的影響。

        1.1.3 其他方法

        通過界面結(jié)晶或得到水凝膠制備載藥微球或膠囊,WANG等[36]用碳酸鈣穩(wěn)定O/W型Pickering乳液,向乳液中通CO2氣體以及加入CaCl2水溶液,通過碳酸鈣結(jié)晶制備碳酸鈣膠囊;膠囊的包封率達(dá)到60%,純檸檬烯的釋放時(shí)間少于5min,膠囊對(duì)檸檬烯的釋放時(shí)間超過40min,具有一定的緩釋效果。ZHOU等[37]以γ-甲基丙烯酰氧基丙基三甲氧基硅烷改性的SiO2納米顆粒穩(wěn)定W/O型Pickering乳液為模板,采用反復(fù)凍融法成功制備了聚乙烯醇水凝膠/二氧化硅復(fù)合微球,此中空復(fù)合微球?qū)喖谆{(lán)有良好的包覆能力和緩釋作用;由于制備過程低溫凝膠化,該微球特別適合裝載溫敏性藥物。

        圖3 磁性中空微球的制備[35]

        1.2 有機(jī)粒子及無(wú)機(jī)/有機(jī)復(fù)合粒子

        也有研究者用有機(jī)粒子或無(wú)機(jī)/有機(jī)復(fù)合粒子作為穩(wěn)定劑制備Pickering乳液載藥微球或膠囊。LIU等[38]通過在Pickering乳液中發(fā)生交聯(lián)反應(yīng)來(lái)制備載藥微球,預(yù)先將硫醇、三羥甲基丙烷三丙烯酸酯、光引發(fā)劑和IBU溶于油相中,以殼聚糖為穩(wěn)定劑制備O/W型Pickering乳液,再紫外光照射乳液10min,得到殼聚糖/硫醇-烯微球,在殼聚糖/硫醇-烯微球中IBU的包封率均接近100%,緩釋效果良好。LIU等[39]則通過在Pickering乳液中發(fā)生聚合反應(yīng)來(lái)制備膠囊,具體做法是利用沸石咪唑酯骨架材料(ZIF-8)穩(wěn)定W/O型Pickering乳液,水相包含丙烯酰胺、聚乙二醇和海藻酸鈉(alginate),丙烯酰胺經(jīng)聚合作用發(fā)生相分離,最后在ZIF-8的作用下海藻酸鈉凝膠化制備yolk-shell型 ZIF-8/alginate微膠囊,該方法可形成一囊多核的微膠囊;將微膠囊放入羅丹明B溶液中,制備載藥膠囊。該膠囊對(duì)羅丹明B具有緩釋效果,70min釋放率為55%。也有研究者[40]將Pickering乳液模板法和層層自主裝法相結(jié)合制備載藥膠囊,擴(kuò)寬Pickering乳液在藥物載體方面的應(yīng)用。具體制備過程是用聚乙烯亞胺/鋰皂石復(fù)合粒子穩(wěn)定水包二甲苯Pickering乳液,在乳滴界面依次不斷吸附海藻酸和殼聚糖天然聚電解質(zhì),通過層層自組裝法制備海藻酸-殼聚糖微膠囊,加入異丙醇洗滌得到中空微膠囊,將其浸入含有IBU的磷酸緩沖溶液中,制備載藥中空微膠囊;中空微膠囊對(duì)布洛芬的裝載量為150mg/g,且聚電解質(zhì)層數(shù)越多,IBU釋放速度越慢。

        2 載藥凝膠、多孔支架及載藥乳劑

        Pickering乳液也可用于制備載藥凝膠或載藥多孔支架。ZHOU等[41]采用聚(-異丙基丙烯酰胺-甲基丙烯酸酯磺胺嘧啶)(PNS)納米凝膠穩(wěn)定O/W型Pickering乳液,預(yù)先將抗癌藥物阿霉素(DOX)溶于油相中,將Pickering乳液溶劑蒸發(fā)后得到載藥PNS納米凝膠,結(jié)果表明DOX的包封率接近100%,載藥量達(dá)到15%,具有較好的緩釋效果,無(wú)突釋現(xiàn)象產(chǎn)生。CHEN等[42]利用氧化石墨烯/聚乙烯醇(GO/PVA)穩(wěn)定O/W型Pickering乳液,預(yù)先將丙烯酰胺、,'-亞甲基雙丙烯酰胺和過硫酸鉀加入水相中,經(jīng)水相聚合作用得到多孔GO/PVA凝膠,將凝膠浸入DOX溶液中制備載藥GO/PVA凝膠,該載藥凝膠具有較好的抗癌性能和緩釋作用。HU等[43]以聚乳酸疏水改性的羥基磷灰石(g-HAp)為穩(wěn)定粒子,PLLA溶于CH2Cl2溶液為油相,將藥物IBU加入油相中,制備Pickering乳液,再將CH2Cl2和水蒸發(fā)后得到結(jié)構(gòu)可控的HAp/PLLA納米復(fù)合載藥多孔支架,其制備和藥物釋放過程見圖4;研究顯示IBU釋放速度隨著釋放介質(zhì)的pH和g-HAp納米粒子濃度的增加而加快,多孔支架對(duì)IBU具有明顯的緩釋作用。該研究團(tuán)隊(duì)還制備了g- HAp/PLGA[44]和g-HAp/PCL[45]載藥多孔支架,載藥多孔支架均對(duì)IBU藥物具有緩釋作用。

        圖4 IBU-HAp/PLLA復(fù)合多孔支架的制備及其體外藥物釋放[43]

        Pickering乳液還可以用于制備載藥乳劑。SIMOVIC等[46]利用SiO2粒子穩(wěn)定O/W 型Pickering 乳液,親油性藥物鄰苯二甲酸二丁酯(DBP)溶于聚二甲基硅氧烷(PDMS),納米SiO2包覆著載有藥物的PDMS液滴,該方法有利于解決生物相容性低和難溶性藥物方面的問題。FRELICHOWSKA等[47]利用疏水性SiO2穩(wěn)定的水/硅油Pickering乳液來(lái)緩釋咖啡因藥物,通過與相同配比的表面活性劑穩(wěn)定的乳液對(duì)比研究發(fā)現(xiàn),藥物在Pickering乳液中釋放更慢,皮膚對(duì)Pickering乳液中藥物的吸收速率更快。ANDREA等[48]采用淀粉粒子穩(wěn)定O/W型Pickering乳液,含有百里酚或兩性霉素B的乳液具有抗真菌性,該乳液在口腔抗真菌疏水性藥物輸送上具有一定的發(fā)展前景。LECLERCQ等[49]用環(huán)糊精穩(wěn)定O/W型Pickering乳液,該乳液對(duì)硝酸益康唑鹽藥物具有一定的緩釋效果。SHAH等[50]采用離子交聯(lián)法得到殼聚糖-三聚磷酸鹽粒子,用殼聚糖-三聚磷酸鹽粒子穩(wěn)定O/W型Pickering乳液,該乳液對(duì)姜黃素有一定的緩釋效果。劉若林等[51]將層狀金屬氫氧化物(LDH)顆粒分別與改性海藻酸鈉(DA)和傳統(tǒng)表面活性劑(CTAB)穩(wěn)定Pickering乳液,得到乳液液滴大小均勻,穩(wěn)定性較好的Pickering乳液,研究表明,LDH-DA復(fù)配Pickering乳液體系釋藥速率低于LDH-CTAB復(fù)配Pickering乳液體系。

        3 展望

        Pickering乳液具有如下特點(diǎn):①固體粒子用量少,成本低;②制備藥物載體所用的大多數(shù)固體粒子無(wú)毒且制備結(jié)束后固體粒子易除去,安全性更高;③因?yàn)榧{米粒子的物化性質(zhì)比表面活性劑更穩(wěn)定,不易受溫度、油相種類和pH的影響,Pickering乳液穩(wěn)定性更好;④可功能化改性,如Pickering乳液可加入磁性粒子,制備出磁性藥物載體,在靶向給藥方面具有應(yīng)用價(jià)值;⑤Pickering乳液在外界刺激下發(fā)生破乳、相分離、相反轉(zhuǎn)等,可制備環(huán)境響應(yīng)型Pickering乳液(如溫度敏感型、磁場(chǎng)敏感型、pH響應(yīng)型)將其運(yùn)用于藥物載體方面。但是目前所使用的固體粒子種類少,需不斷發(fā)現(xiàn)新型的具有特殊功能的固體粒子,并將Pickering乳液與新技術(shù)新理論相結(jié)合,擴(kuò)展其在藥物載體方面的應(yīng)用,將Pickering乳液與其他制備藥物載體的技術(shù)相結(jié)合。采用Pickering乳液制備藥物載體具有操作簡(jiǎn)便、靈活可控、載藥方便、環(huán)境友好以及可選擇不同的固體粒子調(diào)節(jié)藥物載體滲透性等優(yōu)點(diǎn),但存在藥物載體在生物環(huán)境中的穩(wěn)定性和相容性等問題,如何通過簡(jiǎn)便易控的方法改善藥物載體的穩(wěn)定性及相容性需要更深入的研究。隨著Pickering乳液技術(shù)不斷發(fā)展,利用Pickering乳液制備藥物載體的方法也將會(huì)逐步趨于成熟,造福于廣大 患者。

        [1] 尤左祥,楊親正,岳占國(guó),等.抗腫瘤藥物載體的主動(dòng)靶向策略[J].中國(guó)組織工程研究,2012,16(25):4701-4705.

        YOU Z X,YANG Q Z,YUE Z G,et al.Active targeting strategy of antitumor drug carrier[J].Chinese Journal of Tissue Engineering Research,2012,16(25):4701-4705.

        [2] VALLETREGI M,BALAS F,ARCOS D.Mesoporous materials for drug delivery[J].Angewandte Chemie,2007,46(40):7548-7558.

        [3] MANSOUR H M,SOHN M,ALGHANANEEM A,et al.Materials for pharmaceutical dosage forms:molecular pharmaceutics and controlled release drug delivery aspects[J].International Journal of Molecular Sciences,2010,11(9):3298-3322.

        [4] PAQUETTE D W,RYAN M E,WILDER R S.Locally delivered antimicrobials:clinical evidence and relevance[J].Journal of Dental Hygiene,2008,82(s3):10-15.

        [5] 孔墨奇.SiO2介孔材料的制備改性及在藥物緩釋領(lǐng)域的應(yīng)用[D].長(zhǎng)沙:中南大學(xué),2014.

        KONG M Q.The preparation of mesoporous silica,study on their functionalizations and application in the drug delivery field[D].Changsha:Central South University,2014.

        [6] LANGER R,TIRRELL D A.Designing materials for biology and medicine[J].Nature,2004,428(6982):487-492.

        [7] LAVAN D A,MCGUIRE T,LANGER R.Small-scale systems fordrug delivery[J].Nature Biotechnology,2003, 21(10):1184-1191.

        [8] BROWN M B,MARTIN G P,JONES S A,et al.Dermal and transdermal drug delivery systems:current and future prospects[J].Drug Delivery,2006,13(3):175-187.

        [9] KIMMINS S D,CAMERON N R.Functional porous polymers by emulsion templating:recent advances[J].Advanced Functional Materials,2011,21(2):211–225.

        [10] HAN K,ZHAO Z H,XIANG Z,et al. The sol–gel preparation of ZnO/silica core–shell composites and hollow silica structure[J].Materials Letters,2007,61(2):363-368.

        [11] WANG A H,CHENG T,YUE C,et al.Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release[J].Journal of Colloid and Interface Science,2009,332(2):271–279.

        [12] DINSMORE A D, MING F H, NIKOLAIDES M G,et al.Colloidosomes:selectively permeable capsules composed of colloidal particles[J].Science,2002,298(5595):1006–1009.

        [13] RAMSDEN W.Separation of solids in the surface-layers of solutions and ‘suspensions’(observations on surface-membranes, bubbles,emulsions,and mechanical coagulation).——preliminary account[J].Proceedings of the Royal Society of London,1903,72(4):156-164.

        [14] PICKERING S U.CXCVI——Emulsions[J].J.Chem.Soc.Trans.,1907,91:2001-2021.

        [15] BINKS B P.Particles as surfactants-similarities and differences[J].Current Opinion in Colloid and Interface Science,2002,7(1/2):21-41.

        [16] AVEYARD R,BINKS B P,CLINT J H.Emulsions stabilised solely by colloidal particles[J].Advances in Colloid and Interface Science,2003,100(2):503-546.

        [17] FUJII S,READ E S,BINKS B P,et al.Stimulus-responsive emulsifiers based on nanocomposite microgel particles[J].Advanced Materials,2005,17(8):1014-1018.

        [18] BON S A,COLVER P J.Pickering miniemulsion polymerization using Laponite clay as a stabilizer[J].Langmuir,2007,23(16):8316-8322.

        [19] TARIMALA S,RANABOTHU S R,VERNETTI J P,et al.Mobility andaggregation of charged microparticles at oil-water interfaces[J].Langmuir,2004,20(13):5171-5173.

        [20] KAUR G,HE J,XU J,et al.Interfacial assembly of turnip yellow mosaicnanoparticles[J].Langmuir,2009,25(9):5168-5176.

        [21] AND B P B,LUMSDON S O.Influence of particle wettability on the type and stability of surfactant-free emulsions[J].Langmuir,2000,16(23):8622-8631.

        [22] AND B P B,LUMSDON S O.Pickering emulsions stabilized by monodisperse latex particles:effects of particle size[J].Langmuir,2001,17(15):4540-4547.

        [23] BINK B P,F(xiàn)LETCHER P D I.Particles adsorbed at the oil-water interface:a theoretical comparison between spheres of uniform wettability and janus particles[J]. Langmuir,2001,17(16):4708-4010.

        [24] OLEDZKA E,KONG X,NARINE S S.Synthesis and characterization of novel lipid functionalized poly(-caprolactone)s[J]. Journal of Applied Polymer Science,2011,119(3):1848–1856.

        [25] QI Y,LI N J,XU Q F,et al.Synthesis and characterization of a new amphiphilic copolymer containing multihydroxyl segments for drug carrier[J].Journal of Applied Polymer Science,2011,121(5):2843–2850.

        [26] SAHOO S,SASMAL A,SAHOO D,et al.Synthesis and characterization of chitosan-polycaprolactone blended with organoclay for control release of doxycycline[J].Journal of Applied Polymer Science,2010,118(6):3167–3175.

        [27] SIMOVIC S,HEARD P,HUI H,et al.Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs[J].Molecular Pharmaceutics,2009,6(3):861-872.

        [28] WEI Z J,WANG C Y,LIU H,et al.Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W Pickering emulsions[J]. Colloids and Surfaces B:Biointerfaces,2012,91(1):97-105.

        [29] WEI Z J,WANG C Y,LIU H,et al.Halloysite nanotubes as particulate emulsifier:preparation of biocompatible drug-carrying PLGA microspheres based on Pickering emulsion[J].Journal of Applied Polymer Science,2012,125(s1):E358-E368.

        [30] ZHANG G Z,WANG C Y.Pickering emulsion-based marbles for cellular capsules[J].Materials,2016,9(7).

        [31] OKA C,USHIMARU K,HORIISHI N,et al.Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery[J].Journal of Magnetism and Magnetic Materials,2015,381:278-284.

        [32] 王志琰,毋偉,張魁,等.Pickering乳液法原位制備載藥磁性SiO2空心球及緩釋性能[J].北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版),2010(3):110-114.

        WANG Z Y,WU W,ZHANG K,et al.preparation and characterizations of drug-loaded magnetic hollow silica microspheres by a Pickering emulsion based route[J].Journal of Beijing University of Chemical Technology(Natural Science Edition),2010(3):110-114.

        [33] ZHANG K,WU W,GUO K,et al. Synthesis of temperature- responsive poly(-isopropyl acrylamide)/poly(methyl methacrylate)/ silica hybrid capsules from inverse Pickering emulsion polymerization and their application in controlled drug release[J]. Langmuir,2016,26(11):7971-7980.

        [34] LU J,WU J,CHRN J,et al.Fabrication of pH‐sensitive poly(2‐(diethylamino)ethyl methacrylate)/palygorskite composite microspheresPickering emulsion polymerization and their release behavior[J]. Journal of Applied Polymer Science,2015,132(26):42179.

        [35] ZHU X M,ZHANG S P,ZHANG L H,et al.Interfacial synthesis of magnetic PMMA@Fe3O4/Cu3(BTC)2hollow microspheres through one-pot Pickering emulsion and their application as drug delivery[J].RSC Advances,2016,6(63):58511-58515.

        [36] WANG X L,ZHOU W Z,CAO J,et al.Preparation of core-shell CaCO3capsulesPickering emulsion templates[J].Journal of Colloid & Interface Science,2012,372(1):24-31.

        [37] ZHOU H,SHI T,ZHOU X.Poly(vinyl alcohol)/SiO2composite microsphere based on Pickering emulsion and its application in

        controlled drug release[J].Journal of Biomaterials Science Polymer Edition,2014,25(7):641-656.

        [38] LIU H,WEI Z J,HU M,et al.Fabrication of degradable polymer microspherespH-responsive chitosan-based Pickering emulsion photopolymerization[J].RSC Advances,2014,4(55):29344-29351.

        [39] LIU W,ZHAO Y J,ZENG C F,et al.Microfluidic preparation of yolk/shell ZIF-8/alginate hybrid microcapsules from Pickering emulsion[J].Chemical Engineering Journal,2016,307:408-417.

        [40] LIU H,GU X,HU M,et al.Facile fabrication of nanocomposite microcapsules by combining layer-by-layer self-assembly and Pickering emulsion templating[J].RSC Advances,2014,4(32):16751-16758.

        [41] ZHOU G F,ZHAO Y B,HU J D,et al.A new drug-loading technique with high efficiency and sustained-releasing abilitythe Pickering emulsion interfacial assembly of temperature/pH-sensitive nanogels[J]. Reactive and Functional Polymers,2013,73(11):1537–1543.

        [42] CHEN Y H,WANG Y L,SHI X T,et al.Hierarchical and reversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilized Pickering emulsions and their templating for macroporous composite hydrogels[J].Carbon,2016,111:38-47.

        [43] HU Y,ZOU S W,CHEN W K,et al.Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating[J]. Colloids and Surfaces B:Biointerfaces,2014,122:559-565.

        [44] YANG H,GU X Y,YANG Y,et al.Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic--glycolic acid) scaffolds by Pickering high internal phase emulsion templates[J]. ACS Applied Materials & Interfaces,2014,6(19):17166-17175.

        [45] HU Y,GAO H C,DU Z S,et al.Pickering high internal phase emulsion-based hydroxyapatite/poly(-caprolactone) nanocomposite scaffolds[J].Journal of Materials Chemistry B,2015,3(18):3848-3857.

        [46] SIMOVIC S,PRESTIDGE C A.Nanoparticle layers controlling drug release from emulsions[J].European Journal of Pharmaceutics & Biopharmaceutics,2007,67(1):39-47.

        [47] FRELICHOWSKA J,BOLZINGER M A,VALOUR J P,et al.Pickering W/O emulsions:drug release and topical delivery[J]. International Journal of Pharmaceutics,2009,368:7-15.

        [48] ANDREA C,WANG M S,AMOL C,et al.Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films[J]. International Journal of Pharmaceutics,2015,493(1/2):233-242.

        [49] LECLERCQ L,NARDELLORATAJ V.Pickering emulsions based on cyclodextrins:a smart solution for antifungal azole derivatives topical delivery[J].European Journal of Pharmaceutical Sciences,2015,82:126-137.

        [50] SHAH B R,LI Y,JIN W P,et al.Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation[J].Food Hydrocolloids,2015,52:369-377.

        [51] 劉若林,李嘉誠(chéng),馮玉紅,等.月桂醇基海藻酸鈉與層狀雙金屬納米顆粒穩(wěn)定載藥Pickering乳液及其緩釋性能[J].高分子材料科學(xué)與工程,2015(4):102-106.

        LIU R L,LI J C,F(xiàn)ENG Y H,et al.Drug-controlled release properties of stable Pickering emulsion prepared with dodecanol algiante and layer double hydroxide nanoparticles [J].Polymer Materials Science and Engineering,2015(4):102-106.

        Progress in preparation of drug carriers based on Pickering emulsion

        GE Mingliang,TANG Wei

        (Key Laboratory of Polymer Processing Engineering of Ministry of Education,National Engineering Research Center of Novel Equipment for Polymer Processing,South China University of Technology,Guangzhou 510641, Guangdong,China)

        Pickering emulsion is widely used in food,cosmetics and pharmaceutical fields due to its low cost,good stability and low toxicity. Preparation of drug carriers by Pickering emulsion offers great potential in the pharmaceutical industry since the preparation method is simple to operate,improved the dissolution of poorly soluble drugs,and sustained release property. Recent applications of Pickering emulsion in the field of drug carrier are outlined in this review. Firstly,drug delivery systems and properties of Pickering emulsion are briefly introduced. Then drug-carrying microspheres based on Pickering emulsion and stabilized by different solid particles are discussed in detail. In addition,the applications of Pickering emulsion in the preparation of drug-carrying gels,drug-carrying porous scaffolds and drug-carrying emulsions are also discussed. Finally,research directions of drug carriersthe Pickering emulsion are suggested. With the further studies of Pickering emulsion,the stability and biocompatibility of drug carriers can be improved.

        Pickering emulsion;solid particles;drug carrier;sustained release

        TQ460.1

        A

        1000–6613(2017)12–4586–06

        10.16085/j.issn.1000-6613.2017-0522

        2017-03-28;

        2017-05-04。

        廣東省自然科學(xué)基金項(xiàng)目(2016A030313520)及2017年度廣東水利科技創(chuàng)新項(xiàng)目(2017-24)。

        戈明亮(1970—),男,副教授,研究方向?yàn)楣δ懿牧系难芯亢椭苽?。E-mail:gml@scut.edu.cn。

        猜你喜歡
        載藥油相微膠囊
        改性銨油炸藥油相加注裝置的設(shè)計(jì)
        煤礦爆破(2020年3期)2020-12-08 04:39:14
        一種對(duì)稀釋、鹽度和油相不敏感的低界面張力表面活性劑配方
        介孔分子篩對(duì)傳統(tǒng)藥物的原位載藥及緩釋研究
        儲(chǔ)運(yùn)油泥中非油相組分對(duì)表觀黏度的影響分析
        應(yīng)用Box-Behnken設(shè)計(jì)優(yōu)選虎耳草軟膏劑成型工藝
        基于靜電紡絲技術(shù)的PLGA載藥納米纖維膜的制備工藝
        聚砜包覆雙環(huán)戊二烯微膠囊的制備
        一種用于橡膠材料自修復(fù)的微膠囊的制備方法
        鐵蛋白重鏈亞基納米載藥系統(tǒng)的構(gòu)建及其特性
        微膠囊自修復(fù)聚合物材料的發(fā)展
        国产剧情av麻豆香蕉精品| 四虎精品免费永久在线| 91福利精品老师国产自产在线| 91青青草手机在线视频| 日韩亚洲精品中文字幕在线观看| 国产尤物av尤物在线观看 | 大屁股流白浆一区二区 | 激情五月婷婷一区二区| a级毛片无码久久精品免费 | 各类熟女熟妇激情自拍| 朋友的丰满人妻中文字幕| 欧洲熟妇色xxxx欧美老妇多毛网站| 性一交一乱一伦一视频一二三区| 中文字幕亚洲精品综合| 亚洲色一区二区三区四区| 色五月丁香五月综合五月4438| 中文 国产 无码免费| 人妻av中文字幕精品久久| 一本色综合网久久| 中国内射xxxx6981少妇| 日韩中文字幕一区二区高清 | 天天综合色中文字幕在线视频| 风韵丰满熟妇啪啪区老老熟妇| 亚洲男人第一无码av网站| 国产亚洲sss在线观看| 口爆吞精美臀国产在线| 国产极品视觉盛宴| 亚洲不卡中文字幕无码| 国产精品女同久久久久久| 亚洲不卡一区二区视频| 久久不见久久见中文字幕免费| 91综合在线| 青青草好吊色在线视频| 亚洲情综合五月天| 少妇人妻偷人精品无码视频| 日本一极品久久99精品| 亚洲乱码av中文一区二区| 中文成人无字幕乱码精品区| 日韩中文在线视频| 亚洲精彩av大片在线观看| 亚洲日韩精品一区二区三区|