王敏,曹睿,劉艷升,徐泓
?
烴-水體系互溶度預(yù)測(cè)模型的研究進(jìn)展
王敏,曹睿,劉艷升,徐泓
(中國(guó)石油大學(xué)(北京)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 102249)
在化工、能源、環(huán)境、食品和藥物等工業(yè)設(shè)計(jì)過(guò)程中,真實(shí)混合物的可靠溶解度數(shù)據(jù)非常重要,不僅能豐富相平衡數(shù)據(jù)庫(kù),還能指導(dǎo)工藝設(shè)備設(shè)計(jì)和產(chǎn)品質(zhì)量控制。本文介紹了烴-水體系相互溶解度的模型化研究,包括狀態(tài)方程法、活度系數(shù)法和經(jīng)驗(yàn)關(guān)聯(lián)式,以及近年來(lái)發(fā)展起來(lái)的真實(shí)溶劑似導(dǎo)體屏蔽模型法(conductor-like screening model for real solvents,COSMO-RS)。狀態(tài)方程法和活度系數(shù)法主要是通過(guò)選擇非對(duì)稱的混合規(guī)則以及引進(jìn)描述水分子極性作用的參數(shù),來(lái)改善對(duì)烴-水體系相互溶解度的計(jì)算精度。經(jīng)驗(yàn)關(guān)聯(lián)式主要是對(duì)實(shí)驗(yàn)數(shù)據(jù)的擬合,每種烴的參數(shù)不同。COSMO-RS模型根據(jù)密度泛函理論(即建立極化電荷密度的簡(jiǎn)單經(jīng)驗(yàn)式)計(jì)算單個(gè)分子嵌入虛擬導(dǎo)體產(chǎn)生的作用,通過(guò)準(zhǔn)確描述界面統(tǒng)計(jì)相互作用獲得體系的熱力學(xué)性質(zhì)。因此,該方法對(duì)各種體系具有普適性。分析表明,COSMO-RS模型對(duì)烴-水體系相互溶解度的預(yù)測(cè)值與實(shí)驗(yàn)值吻合良好,可以補(bǔ)充某些難以通過(guò)實(shí)驗(yàn)獲得的烴-水體系互溶度數(shù)據(jù)。最后總結(jié)和展望了烴-水體系相互溶解度模型化的未來(lái)發(fā)展方向。
烴-水體系;溶解度;真實(shí)溶劑似導(dǎo)體屏蔽模型;模型
在化工、能源、環(huán)境等工業(yè)設(shè)計(jì)過(guò)程中,真實(shí)混合物的相平衡數(shù)據(jù)非常重要[1],其熱力學(xué)物性及相平衡性質(zhì)的研究是基礎(chǔ)研究的重點(diǎn)及熱點(diǎn)之一。物質(zhì)的溶解度測(cè)定及其模型化研究是化工熱力學(xué)的一個(gè)重要分支。
在煉油廠和石化廠,烴-水體系的相互溶解度能夠指導(dǎo)工藝設(shè)備設(shè)計(jì)及過(guò)程操作。如果水在烴中的溶解度超過(guò)其極限,會(huì)形成“自由”水相,影響產(chǎn)品質(zhì)量和設(shè)備操作的穩(wěn)定性,還會(huì)造成設(shè)備的腐 蝕[2-4]。油中溶解水的量決定了從原油蒸餾塔中拔出水的量,同時(shí)水中溶解烴的量是設(shè)計(jì)水處理系統(tǒng)的重要考量因素。在能源工業(yè)的生產(chǎn)、運(yùn)輸及加工過(guò)程中,一些溶解的水可能在氣相中冷凝,造成設(shè)備腐蝕。烴類混合物中水的存在還會(huì)導(dǎo)致氣體水合物的形成,這會(huì)在石油和天然氣運(yùn)輸、鉆井過(guò)程中形成氣阻,阻斷流體的流動(dòng),也會(huì)妨礙熱量交換器以及膨脹器等裝置的運(yùn)行。預(yù)測(cè)水在烴混合物中的溶解度可以為防止水相的形成提供參考,使產(chǎn)品符合質(zhì)量要求。另一方面,煉廠和石油化工廠的廢水中不能含有烴類混合物,石油泄漏發(fā)生時(shí)也需要使烴類混合物遠(yuǎn)離海水和淡水[5]。建模評(píng)估水中的烴類污染物和石油泄漏對(duì)環(huán)境造成的影響是必需的。由于實(shí)驗(yàn)測(cè)定的數(shù)據(jù)有限,烴-水體系溶解度模型化的研究不僅可以豐富數(shù)據(jù)庫(kù),而且可以對(duì)化工行業(yè)的過(guò)程操作和化工動(dòng)力學(xué)提供有效的支持。
實(shí)驗(yàn)測(cè)定是取得相平衡數(shù)據(jù)最可靠的手段。原則上,所有物質(zhì)的各種性質(zhì)都必須通過(guò)實(shí)驗(yàn)測(cè)定來(lái)建立物性庫(kù)。但在工藝過(guò)程的設(shè)計(jì)計(jì)算中,全部靠實(shí)驗(yàn)測(cè)量取得數(shù)據(jù)并不現(xiàn)實(shí),物質(zhì)物性的研究費(fèi)時(shí)費(fèi)資費(fèi)力。據(jù)估計(jì),收集一個(gè)氣液平衡數(shù)據(jù)點(diǎn)(比如僅一個(gè)二元混合物一個(gè)溫度和組成下的數(shù)據(jù))大約要花費(fèi)2600美元和兩天的時(shí)間[6]。此外,由于 烴-水體系的互溶度很小,實(shí)驗(yàn)測(cè)定常會(huì)遇到條件限制,文獻(xiàn)中報(bào)道的實(shí)驗(yàn)數(shù)據(jù)差異較大,例如,298.15K時(shí)水在苯中溶解度摩爾分率的變化范圍為0.0026~0.0049[7]。
相平衡研究在化學(xué)工程研究領(lǐng)域的重要性是毋庸置疑的,目前相平衡和物性的研究主要通過(guò)實(shí)驗(yàn)測(cè)定和理論預(yù)測(cè)。實(shí)驗(yàn)測(cè)定對(duì)常規(guī)宏觀數(shù)量級(jí)體系基本滿足要求,但對(duì)強(qiáng)非理想體系并不能達(dá)到理想要求,這會(huì)限制高純度要求體系分離技術(shù)的發(fā)展。在工藝計(jì)算中,水在烴中的溶解度比烴在水中的溶解度更重要。當(dāng)然,烴在水中的溶解度也是環(huán)境控制的一個(gè)關(guān)鍵問(wèn)題。
由于水分子中含有氫鍵,烴-水溶液是強(qiáng)非理想體系,描述烴-水體系的相平衡比較困難。此外,水在烴中的溶解度比烴在水中的溶解度高好幾個(gè)數(shù)量級(jí)。烴在水中的溶解度隨溫度變化先減小后增大,在溫度約為300K時(shí)烴在水中的溶解度最小;而水在烴中的溶解度是溫度的單調(diào)函數(shù)[8]。
2005年在IUPAC-NIST溶解度數(shù)據(jù)系列的第81卷中,MACZYNSKI等[7,9-19]編輯整理了之前發(fā)表的文獻(xiàn)中烴水相互溶解度的實(shí)驗(yàn)數(shù)據(jù),建立了烴水相互溶解度的數(shù)據(jù)庫(kù),該數(shù)據(jù)庫(kù)提供了部分溫度下C5~C36的烴與水的相互溶解度數(shù)據(jù),并將溶解度數(shù)據(jù)分為三類,即推薦數(shù)據(jù)、不確定數(shù)據(jù)、可疑數(shù)據(jù)。在模型開(kāi)發(fā)中,只有推薦數(shù)據(jù)才可以使用。IUPAC給出的C5~C36烴-水體系互溶度的數(shù)據(jù)誤差為±30%,是目前較權(quán)威的數(shù)據(jù),也是烴-水溶解度模型化研究的主要依據(jù)。
在描述烴-水體系互溶性的模型化研究方法中,最常用的是選用一個(gè)立方型狀態(tài)方程,嘗試采用不同的混合規(guī)則進(jìn)行計(jì)算。由于水在烴中的溶解度遠(yuǎn)大于烴在水中的溶解度,使用對(duì)稱的交互作用參數(shù)并不能準(zhǔn)確預(yù)測(cè)烴-水體系的互溶度。1985年,KABADI和DANNER[20]提出了對(duì)SRK狀態(tài)方程采用非對(duì)稱混合規(guī)則計(jì)算烴-水體系的互溶度,計(jì)算結(jié)果優(yōu)于傳統(tǒng)的范德華(vdW)混合規(guī)則。1997年,ECONOMOU和TSONOPOULOS[21]證明了對(duì)PR狀態(tài)方程采用Huron-Vidal混合規(guī)則,對(duì)1-己烯和水體系的相平衡預(yù)測(cè)結(jié)果優(yōu)于vdW混合規(guī)則。2001年,HARUKI等[22-24]提出了對(duì)SRK方程采用指數(shù)型混合規(guī)則,調(diào)整了二元作用參數(shù),提高了與實(shí)驗(yàn)數(shù)據(jù)的一致性。
隨著水溶液模型的發(fā)展,出現(xiàn)了許多用來(lái)計(jì)算烴-水體系互溶度的理論,例如統(tǒng)計(jì)締合流體理論(statistical associating fluid theory,SAFT)[25-26]和CPA(cubic plus association)狀態(tài)方程[27-28]。
SAFT狀態(tài)方程不足以描述水分子的強(qiáng)極性,所以對(duì)烴-水體系互溶度的計(jì)算并不適用。改進(jìn)的Lennard-Jones SAFT狀態(tài)方程(LJ-SAFT)考慮了偶極矩的影響,修改了締合參數(shù)及鏈參數(shù)。1996年,KRASKA等[29]采用改進(jìn)的LJ-SAFT狀態(tài)方程預(yù)測(cè)烴水二元系的溶解度,預(yù)測(cè)值與實(shí)驗(yàn)值表現(xiàn)出更好的一致性,但是它只能應(yīng)用于計(jì)算碳原子數(shù)小于9的較輕的烴。2001年GROSS和SADOWSKI[30]提出了以分子為基礎(chǔ)的微擾鏈型統(tǒng)計(jì)締合流體理論(perturbed-chain statistical associating fluid theory,PC-SAFT),該理論使用了一套簡(jiǎn)化的不同于SAFT模型的組成參數(shù)。2006年,GRENNER等[31]使用PC-SAFT理論研究烴-水體系的互溶度,發(fā)現(xiàn)該模型可以較準(zhǔn)確地計(jì)算水在烴中的溶解度,但計(jì)算的烴在水中的溶解度遠(yuǎn)高于實(shí)驗(yàn)值。2006年KARAKATSANI等[32]在PC-SAFT理論的基礎(chǔ)上考慮了極性項(xiàng)作用,開(kāi)發(fā)了tPC-SAFT模型,可以更好地描述水-正己烷以及水-環(huán)己烷體系的相互溶解度。通過(guò)調(diào)整混合規(guī)則和考慮水分子中氫鍵的影響來(lái)增加SAFT理論的復(fù)雜性,預(yù)測(cè)值改善效果有限。
CPA狀態(tài)方程是KONTOGEORGIS等[33-35]于1996年提出的,是傳統(tǒng)SRK方程的延伸,見(jiàn)式(1)~式(3)。
式中,A為A位上沒(méi)有和其他的活性位結(jié)合的分子的分?jǐn)?shù);ΔAB為A位上的分子與位上的分子的締合能。
近年來(lái)已經(jīng)有不少學(xué)者采用CPA狀態(tài)方程結(jié)合不同的混合規(guī)則計(jì)算烴-水體系的相平衡和互溶度。2007年,OLIVEIRA等[36]使用CPA狀態(tài)方程和范德華混合規(guī)則計(jì)算了烴-水體系的溶解度,結(jié)果發(fā)現(xiàn),低溫下計(jì)算值與實(shí)驗(yàn)值的差異略大。由于范德華混合規(guī)則不能很好的用于疏水性溶質(zhì),2014年MEDEIROS采用KABADI和DANNER提出的混合規(guī)則作了改進(jìn)[37-38],預(yù)測(cè)結(jié)果優(yōu)于范德華混合規(guī)則。目前為止所得到結(jié)果表明,在所有的狀態(tài)關(guān)聯(lián)模型中,CPA狀態(tài)方程是描述烴-水體系溶解度的最理想模型。
當(dāng)達(dá)到相平衡時(shí),組分在每相中的逸度相等。只要計(jì)算組分在液相中的活度系數(shù),通??梢赃M(jìn)行相平衡和溶解度的計(jì)算。常見(jiàn)的計(jì)算活度系數(shù)的方程有NRTL、UNIQUAC和UNIFAC等模型。目前,應(yīng)用最廣泛的是UNIFAC[39-40]以及修正版的UNIFAC(Do)[41]和UNIFAC(LLE)[42]模型。
事實(shí)上,原始的UNIFAC模型在預(yù)測(cè)混合物中含有極性組分(比如水)的無(wú)限稀釋活度系數(shù)時(shí),由于體系的強(qiáng)非理想性,預(yù)測(cè)效果較差。為了關(guān)聯(lián)不同類型的數(shù)據(jù)(包括氣液平衡和液液平衡),DORTMUND對(duì)UNIFAC模型的參數(shù)作了修改,即UNIFAC(Do)模型。2006年,JAKOB等[43]采用UNIFAC(Do)模型預(yù)測(cè)烴-水體系的互溶度,可以得到可靠的烷烴或環(huán)烷烴在水中的溶解度數(shù)據(jù),但計(jì)算時(shí)引進(jìn)了3個(gè)沒(méi)有任何物理意義的經(jīng)驗(yàn)參數(shù)。UNIFAC(Do)模型目前只能計(jì)算烷烴和環(huán)烷烴在水中的溶解度,而不能計(jì)算烯烴和芳香烴在水中的溶解度,也不能計(jì)算水在烴中的溶解度。MAGNUSSEN等[44]開(kāi)發(fā)了UNIFAC-LLE模型用于計(jì)算烴-水體系的溶解度,但預(yù)測(cè)偏差較大,并且缺少含環(huán)烷烴體系的參數(shù)。事實(shí)上,現(xiàn)有的UNIFAC類模型,當(dāng)應(yīng)用于預(yù)測(cè)極性混合物(尤其是含水體系)的無(wú)限稀釋活度系數(shù)時(shí),精確度較差。
2013年,SATYRO等[45]提出了基于NRTL方程的無(wú)限稀釋活度系數(shù)模型,來(lái)計(jì)算不同溫度下烴水的互溶度。該模型基于這樣一個(gè)事實(shí):難溶性混合物的溶解度近似等于無(wú)限稀釋活度系數(shù)的倒數(shù)。如式(4)。
無(wú)限稀釋活度系數(shù)如式(5)。
該活度系數(shù)模型考察了160種不同的烴在水中的溶解度(964個(gè)數(shù)據(jù)點(diǎn)),烴在水中的絕對(duì)平均殘差為88%;水在78種不同的烴中的溶解度(621個(gè)數(shù)據(jù)點(diǎn))的絕對(duì)平均殘差為34%。這說(shuō)明了基于NRTL方程的無(wú)限稀釋活度系數(shù)模型能夠較準(zhǔn)確地預(yù)測(cè)水在烴中的溶解度,但對(duì)烴在水中的溶解度的預(yù)測(cè)準(zhǔn)確性較差。此外,該模型可以與能夠更準(zhǔn)確代表油品結(jié)構(gòu)特征化的因素相結(jié)合[46],來(lái)計(jì)算油水的相互溶解度。若要更精確地估計(jì)水在油相中的溶解度,可以考慮利用更先進(jìn)的黏度估計(jì)方法,例如膨脹流體模型[47]。
液相活度系數(shù)F-SAC(functional-segment activity coefficient)模型是無(wú)限稀釋活度系數(shù)法和液液平衡數(shù)據(jù)的延伸。2016年P(guān)OSSANI等[48]采用F-SAC模型結(jié)合SRK狀態(tài)方程,使用STAUDT和SOARES[49]提出的SCMR混合規(guī)則計(jì)算了烴-水體系的互溶度,計(jì)算值與實(shí)驗(yàn)值吻合,但該模型不能計(jì)算碳原子數(shù)較多(12以上)的烴與水的互溶度。
以上這些模型能夠在一定范圍內(nèi)預(yù)測(cè)烴水二元系的相平衡和互溶度,但大多數(shù)模型都僅適用于298.15K時(shí)的一些特定類型的烴-水體系,并且需要根據(jù)實(shí)驗(yàn)數(shù)據(jù)回歸多個(gè)參數(shù)。
美國(guó)石油學(xué)會(huì)(API)整理出版的第9版手冊(cè)中給出了計(jì)算水在純烴或混合物中溶解度的關(guān)聯(lián) 式[50],見(jiàn)式(9)和式(10)。式(9)表明,在對(duì)數(shù)坐標(biāo)系中水在烴中的溶解度與絕對(duì)溫度的倒數(shù)成線性關(guān)系。該式適用于計(jì)算氣-液平衡下水在烴中的溶解度,且只適用于部分給定參數(shù)的烴類。當(dāng)式(9)不適用時(shí),可以用式(10)計(jì)算,但式(10)不適用于計(jì)算水在烯烴或環(huán)烷烴中的溶解度,因?yàn)樗鼈兊臍涮假|(zhì)量比是個(gè)定值。API中給出了溫度為298.15K時(shí)烴在水中溶解度的關(guān)聯(lián)式,見(jiàn)式(11)。
式中,w為水在烴中的溶解度,摩爾分?jǐn)?shù);hc為烴在水中的溶解度,摩爾分?jǐn)?shù);為烴中氫和碳的質(zhì)量比;為溫度,蘭氏度(oR);1、2、3分別為特定組分的參數(shù)。
表1 298.15K時(shí)式(12)中的參數(shù)
2001年,TSONOPOULOS[2,8]測(cè)定了溫度為298.15K時(shí)C5~C10水在烷烴、烷基環(huán)己烷、1-烯烴、烷基苯與水的相互溶解度,將數(shù)據(jù)擬合得到關(guān)聯(lián) 式(12)。
式中,、、為參數(shù),與烴的種類有關(guān),部分參數(shù)見(jiàn)表1;為碳原子數(shù)。
經(jīng)驗(yàn)關(guān)聯(lián)式存在一些局限性:只適用于部分烷烴(碳原子數(shù)小于12)[51];需要知道每種烴對(duì)應(yīng)的參數(shù)值,并且參數(shù)的確定依賴于分子結(jié)構(gòu)信息[52];通常僅用于25℃。
真實(shí)溶劑似導(dǎo)體屏蔽模型(conductor-like screening model for real solvents,COSMO-RS)是由KLAMT等[53-56]提出的一種連續(xù)介質(zhì)溶劑化模型。該模型采用量子化學(xué)方法(quantum method,QM)計(jì)算分子表面間的相互作用,需要參數(shù)較少,而且所需的參數(shù)不是由實(shí)驗(yàn)數(shù)據(jù)獲得。該模型的計(jì)算時(shí)間較短,與基團(tuán)貢獻(xiàn)法相比,可以區(qū)分同分異構(gòu)體,還考慮了臨近效應(yīng)[6]。因此,COSMO-RS是一種有效的預(yù)測(cè)流體熱力學(xué)性質(zhì)的方法。
COSMO-RS通過(guò)式(13)計(jì)算溶質(zhì)在溶劑中的溶解度。
式中,slef為溶質(zhì)在純液態(tài)中的化學(xué)勢(shì);solvent為溶質(zhì)在溶劑中的化學(xué)勢(shì);為溶解度,摩爾分?jǐn)?shù);為溫度,K。
2003年,KLAMT[57]利用Tsonopoulos測(cè)定的烴水溶解度數(shù)據(jù)對(duì)COSMO-RS計(jì)算烴-水體系互溶度的可行性作了分析。盡管在COSMO-RS數(shù)據(jù)庫(kù)中有烴水的分配系數(shù),但在COSMO-RS參數(shù)設(shè)置中并沒(méi)有特別設(shè)置溶解度數(shù)據(jù)的參數(shù)。出人意料的是,COSMO-RS對(duì)烴-水體系互溶度的計(jì)算值與實(shí)驗(yàn)值基本吻合,但在兩種情況時(shí)與實(shí)驗(yàn)值差異較大:①溫度低于298K時(shí),烴在水中的溶解度;②溫度大于473K 時(shí)水在烴中的溶解度。
COSMO-RS不僅可以預(yù)測(cè)烴-水體系的相互溶解度,還可以應(yīng)用于預(yù)測(cè)其他的體系。FREIRE等[58]首先實(shí)驗(yàn)測(cè)定了常壓下288.15~318.15K溫度范圍內(nèi)水在環(huán)狀及芳香全氟化物中的溶解度,并用COSMO-RS預(yù)測(cè)溶解度值,與實(shí)驗(yàn)值能較好符合,并說(shuō)明了溫度和結(jié)構(gòu)對(duì)溶解度值的影響;此外還預(yù)測(cè)了水在全氟化物中的摩爾Gibbs自由能和摩爾溶解焓。KAHLEN等[59]用COSMO-RS預(yù)測(cè)了纖維素在超過(guò)2000種離子液體中的溶解度,結(jié)果發(fā)現(xiàn)陰離子對(duì)纖維素溶解度有很大的影響,篩選出醋酸根、癸酸鹽類離子液體可以使纖維素溶解度很大。JAAPAR等[60-61]采用COSMO-RS預(yù)測(cè)了溫度為323.15~473.15K時(shí)4種主要的具有生物活性的生姜化合物在水中的溶解度,計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)吻合一致。SCHRODER等[62]采用COSMO-RS預(yù)測(cè)了羧酸在水的中溶解度,證明了COSMO-RS可以預(yù)測(cè)芳香族羧酸、羥基酸等在水中的溶解度。
由于水分子中極強(qiáng)的氫鍵作用,烴-水體系互溶度的研究需要進(jìn)一步完善。目前已經(jīng)具有較為可靠的水在烴中溶解度的預(yù)測(cè)模型,但還缺乏烴在水中溶解度預(yù)測(cè)的可靠模型[63-64]。現(xiàn)有的水在烴中溶解度的預(yù)測(cè)模型一般都只適用于碳原子數(shù)小于12的烴,并且適用的溫度范圍有限。對(duì)于結(jié)構(gòu)較復(fù)雜的烴與水互溶度的實(shí)驗(yàn)數(shù)據(jù)甚少且不準(zhǔn)確。因此未來(lái)需要進(jìn)一步開(kāi)發(fā)更精確、更具有普適性的模型。石化工業(yè)中的油品體系往往組成復(fù)雜,所以對(duì)水與烴混合體系互溶度的研究也是一個(gè)重要課題。
烴-水體系的互溶度很低(為mg/kg級(jí)),實(shí)驗(yàn)測(cè)定往往受到限制,理論預(yù)測(cè)方法比實(shí)驗(yàn)方法更容易取得數(shù)據(jù),對(duì)烴-水體系互溶度的研究很有意義。COSMO-RS是對(duì)高度參數(shù)化的熱力學(xué)模型方法的重要補(bǔ)充,同時(shí)也是對(duì)傳統(tǒng)分子動(dòng)力學(xué)(MD)和Monte Carlo(MC)理論的完善和發(fā)展。COSMO-RS能夠準(zhǔn)確地計(jì)算烴-水體系的互溶度,但有待調(diào)整模型參數(shù),設(shè)置依賴于溫度的參數(shù),來(lái)改善溫度低于298K時(shí)烴在水中的溶解度和溫度大于473K時(shí)水在烴中的溶解度的計(jì)算。模型的改進(jìn)需要對(duì)分子間作用力的進(jìn)一步認(rèn)識(shí),例如考慮氫鍵對(duì)溫度的依賴性。
[1] PRAUSNITZ J M,LICHTENTNALER R N,AZEVEDO E G,et al.Molecular thermodynamics of fluid phase equilibria[M].5th ed. State of New Jersey:Prentice Hall,1999.
[2] TSONOPOULOS C.Thermodynamic analysis of the mutual solubilities of normal alkanes and water[J].Fluid Phase Equilibria,1999,156:21-33.
[3] ZHANG W,WILDER J W,SMITH D H.Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria[J].AIChE J.,2002,48:2324-2331.
[4] AVLONITIS D.An investigation of gas hydrates formation energetics[J].AIChE J.,2005,51:1258-1273.
[5] POLAK J,LU B C Y.Mutual solubilities of hydrocarbons and water at 0 and 25℃[J].Chem.,1973,51(24):4018-4023.
[6] 牟天成,JüRGEN G.真實(shí)溶劑似導(dǎo)體屏蔽模型(COSMO-RS)[J]. 化學(xué)進(jìn)展,2008,20(10):1487-1494.
MU T C,JüRGEN G.Conductor-like screening model for real solvents (COSMO-RS)[J]. Progress in Chemistry,2008,20(10):1487-1494.
[7] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater – revised and updated. Part 2. Benzene with water and heavy water[J].Phys. Chem. Ref. Data,2005,34:477-552.
[8] TSONOPOULOS C.Thermodynamic analysis of the mutual solubilities of hydrocarbons and water[J]. Fluid Phase Equilibria,2001,186:185-206.
[9] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater – revised and updated. Part 1. C5hydrocarbons with water[J].Phys. Chem. Ref. Data,2005,34:441-476.
[10] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater – revised and updated.Part 3. C6H8–C6H12hydrocarbonswith water and heavy water[J].Phys. Chem. Ref. Data,2005,34:657-708.
[11] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater-revised and updated. Part 4. C6H14hydrocarbons withwater[J]. Phys. Chem. Ref. Data,2005,34:709-53.
[12] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater-revised and updated. Part 5. C7hydrocarbons with waterand heavy water[J].Phys. Chem. Ref. Data,2005,34:1399-487.
[13] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater-revised and updated. Part 6. C8H8–C8H10hydrocarbonswith water[J].Phys. Chem. Ref. Data,2005,34:1489-553.
[14] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater revised and updated. Part 7. C8H12–C8H18hydrocarbonswith water[J].Phys. Chem. Ref. Data,2005,34:2261-2298.
[15] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater – revised and updated. Part 8. C9hydrocarbons withwater[J].Phys. Chem. Ref. Data,2005,34:2299-345.
[16] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater – revised and updated. Part 9. C10hydrocarbons withwater[J].Phys. Chem. Ref. Data,2006,35:93-151.
[17] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater – revised and updated. Part 10. C11and C12hydrocarbons with water[J].Phys. Chem. Ref. Data,2006,35:153-203.
[18] SHAW DG,MACAYNSKI A,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons withwater and seawater – revised and updated. Part 11. C13–C36hydrocarbonswith water[J].Phys. Chem. Ref. Data,2006,35:687-784.
[19] SHAW D G,MACAYNSKI A,HEFTER G T,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater– revised and updated. Part 12. C5–C26hydrocarbons with seawater[J].Phys. Chem. Ref. Data,2006,35:785-838.
[20] KABADI V N,DANNER R P.A modified Soave–Redlich–Kwong equation of state for water hydrocarbon phase equilibria[J].Ind. Eng. Chem. Process Des. Dev.,1985,24:537-541.
[21] ECONOMOU I G,TSONOPOULOS C.Associating models and mixing rules in equations of state for water/hydrocarbon mixtures[J].Chem. Eng. Sci.,1997,52:511-525.
[22] SHIN H Y,HARUKI M,YOO K P,et al.Phase behavior of water + hydrocarbon binary systems by using multi-fluid nonrandom lattice hydrogen bonding theory[J].Fluid Phase Equilibria,2001,189:49-61.
[23] HARUKI M,IWAI Y,ARAI Y.Prediction of phase equilibria for the mixtures containing polar substances at high temperatures and pressures by group contribution equation of state[J].Fluid Phase Equilibria,2001,189:13-30.
[24] HARUKI M,IWAI Y,NAGAO S,et al.Measurement and correlation of liquid–liquid equilibria for water + aromatic hydrocarbon binary systems at high temperatures and pressures[J].Chem. Eng. Data,2001,46:950-953.
[25] 李進(jìn)龍,何昌春,彭昌軍,等.基于化學(xué)締合統(tǒng)計(jì)理論的鏈狀流體狀態(tài)方程[J].中國(guó)科學(xué)(化學(xué)),2010(9):1198-1209.
LI J L,HE C C,PENG C J,et al.A chain of fluid state equation based on the theory of chemical association statistics[J].Chinese Science(Chemistry),2010(9):1198-1209.
[26] HEMPTINNE DE J C,MOUGIN P,BARREAU A,et al.Application to petroleum engineering of statistical thermodynamics–based equations of state[J].Oil & Gas Science and Technology—Rev. IFP,2006,61(3):363-386.
[27] KONTOGEORGIS G M,MICHELSENM L,F(xiàn)OLAS G K,et al.Ten years with the CPA (cubic-plus-association) equation of state. part 1. Pure compounds and self-associating systems[J].Ind. Eng. Chem. Res.,2006,45:4855-4868.
[28] KONTOGEORGIS G M,MICHELSEN M L,F(xiàn)OLAS G K,et al.Ten years with the CPA (cubic-plus-association) equation of state.part 2. Cross-associating and multicomponent systems[J].Ind. Eng. Chem. Res.,2006,45:4869-4878.
[29] KRASKA T,GUBBINS K E. Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes,alkanols,and water[J].Ind. Eng. Chem. Res.,1996,35:4738-4746.
[30] GROSS J,SADOWSJI G.. Application of the perturbed-chain SAFT equation of state to associating systems[J]. Ind. Eng. Chem. Res.,2002,41:5510-5515.
[31] GRENNER A,SCHMELZER J,SOLMS N V,et al.Comparison of two association models (elliott-suresh-donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures[J].Ind. Eng. Chem. Res.,2006,45:8170-8179.
[32] KARAKATSANI E K,KONTOGEORGIS G M,ECONOMOU I G,et al.Evaluation of the truncated perturbed chain-polar statistical associating fluid theory for complex mixture fluid phase equilibria[J].Ind. Eng. Chem. Res.,2006,45:6063-6074.
[33] KONTOGEORGIS G M,VOUTSAS E C ,YAKOUMIS I V,et al.An equation of state for associating fluids[J].Ind. Eng. Chem. Res.,1996,35:4310-4318.
[34] KONTOGEORGIS G M,YAKOUMIS I V,MEIJER H,et al. Multicomponent phase equilibrium calculations for water–methanol– alkane mixtures[J].Fluid Phase Equilibria,1999,158/159/160:201-209.
[35] YAN W,GEORGIOS M,KONTOGEORGIS G M,et al.Application of the CPA equation of state to reservoir fluids in presence ofwater and polar chemicals[J].Fluid Phase Equilibria,2009,276:75-85.
[36] OLIVEIRA M B,COUTINHO J A P,QUEIMADA A J.Mutual solubilities of hydrocarbons and water with the CPA EoS[J].Fluid Phase Equilibria,2007,258(1):58-66.
[37] MEDEIROS M.Mutual solubilities of water and hydrocarbons from the cubic plus association equation of state:a new mixing rule for the correlation of observed minimum hydrocarbon solubilities[J]. Fluid Phase Equilibria,2014,368:5-13.
[38] KABADI V N,DANNER R P,A modified Soave-Redlich-Kwong equation of state for water-hydrocarbon phase equilibria[J].Ind. Eng. Chem. Process Des. Dev.,1985,24:537-541.
[39] FREDENSLUND A ,GMEHLING J,RASMUSSEN P.Vapor-liquid equilibria using UNIFAC [R].Amsterdam:Elsevier,1977.
[40] 劉洪勤,高崇俠,趙新亮.無(wú)限稀釋活度系數(shù)的預(yù)測(cè)模型[J].高?;瘜W(xué)工程學(xué)報(bào),1996(1):9-16.
LIU HQ,GAO C X,ZHAO X L.Prediction model of infinite dilution activity coefficient[J].Journal of Chemical Engineering,1996(1):9-16.
[41] GMEHLING J,LI J D,SCHILLER M A.A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties[J].Ind. Eng. Chem. Res.,1993,32(1):178-193.
[42] LARSEN B L,RASMUSSEN P,F(xiàn)REDENSLUND A.A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J].Ind. Eng. Chem. Res.,1987,26 (11):2274-2286.
[43] JAKOB A,GRENSEMANN H,LOHMANN J,et al.Further development of modified UNIFAC(Dortmund):revision and extension 5[J].Ind. Eng. Chem. Res.2006,45(23):7924-7933.
[44] MAGNUSSEN T,RASMUSSEN P.UNIFAC parameter table for prediction of liquid-liquid equilibriums[J].Industrial & Engineering,1981,20(2):331-339.
[45] SATYRO M A,SHAW J M,YARRANTON H W.A practical method for the estimation of oil and water mutual solubilities[J]. Fluid Phase Equilibria,2013,355:12-25.
[46] LORIA H,HAY G,SATYRO M A.Thermodynamic modeling and process simulation through PIONA characterization[J].Energy & Fuels,2013,27(6):3578-3584.
[47] YARRANTON H W,SATYRO M A.Expanded fluid based viscosity correlation for hydrocarbons[J].Ind. Eng. Chem. Res.,2009,48(7):3640-3648.
[48] POSSANI L F K,STAUDT P B,SOARES R D P.Prediction of water solubilities in hydrocarbons and oils using F-SAC coupled with SRK-EoS[J].Fluid Phase Equilibria,2016,427:394-405.
[49] STAUDT P B,SOARES R D P. A self-consistent Gibbs excess mixing rule for cubic equations of state[J].Fluid Phase Equilibria,2012,334:76-88.
[50] API Technical data book:petroleum refining[M].9th ed.Washington (DC):American Petroleum Institute,2013.
[51] HEMPTINNE DE J C,LEDANOIS J M,MOUGIN P,et al.Select thermodynamic models for process simulation——A practical guide using a three steps methodology[M].Editions Technip,2012.
[52] BRADY C J,CUNNINGHAM J R,WILSON G M. Water– hydrocarbon liquid–liquid–vapor equilibrium measurements to 530 F?[R]. Gas Processors Association Research Report,1982.
[53] KLAMT A.Conductor-like screening model for real solvents:a new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry,1995,99(7):2224-2235.
[54] KLAMT A.Refinement and parametrization of COSMO-RS[J].The Journal of Physical Chemistry A,1998,102(26):5074- 5085.
[55] KLAMT A,ECKERT F.COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids[J].Fluid Phase Equilibria,2000,172(1):43-72.
[56] ECKERT F,KLAMT A.Fast solvent screeningquantum chemistry:COSMO-RS approach[J].AIChE Journal,2002,48(2):369-385.
[57] KLAMT A.Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS[J].Fluid Phase Equilibria,2003,206:223–235.
[58] FREIRE M G,CARVALHO P J,SANTOS L M N B F,et al.Solubility of water in fluorocarbons:experimental and COSMO- RS prediction results[J]. Journal of Chemical Thermodynamics,2010,42(2):213-219.
[59] KAHLEN J,MASUCH K,LEONHARD K. Modelling cellulose solubilities in ionic liquids using COSMO-RS[J]. Green Chemistry,2010,12(12):2172-2181.
[60] JAAPAR S Z S,IWAI Y,MORAD N A.Effect of-solvent on the solubility of ginger bioactive compounds in water using COSMO-RS calculations[J].Applied Mechanics and Materials,2014(624):174-178.
[61] JAAPAR S Z S,MORAD N A,IWAI Y.Solubilities prediction of ginger bioactive compounds in liquid phase of water by the COSMO-RS method[M]//Recent trends in physics of material science and technology,Springer Singapore,2015:337-352.
[62] SCHRODER B,SANTOS L M N B F,MARRUCHO I M.Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS[J]. Fluid Phase Equilibria,2010(289):140-147.
[63] VIDAL J.Thermodynamics – applications in chemical engineering and the petroleum industry[M].Paris:Editions Technip,2003.
[64] SATYRO M A.The role of thermodynamic modeling consistency in process simulation[C]//8th World Congress of Chemical Engineering,Palais des Congres,Montreal,2009.
Progress on prediction models of mutual solubility of hydrocarbon-water system
WANG Min,CAO Rui,LIU Yansheng,XU Hong
(State Key Laboratory of Heavy Oil,China University of Petroleum,Beijing 102249,China)
In chemical engineering,energy,environment,food and medical industry,reliable solubility data for real mixture is very important for process design,which can not only enrich the database of phase equilibrium,but also be greatly helpful for the design of process device and the fine control of products quality. It introduces the model of the mutual solubility on hydrocarbon-water system,including state equation methods,activity coefficient methods,empirical correlations and COSMO-RS(conductor-like screening model for real solvents) model developed in recent years. The state equation methods and activity coefficient methods are usually employed to improve the accuracy of the mutual solubility on hydrocarbon-water system according to the asymmetric mixing rules and the adjustment of the parameters describing the polarity of water molecules. The empirical correlations are mainly used to fit the experimental data,where the parameters of the correlations are different with respect to particular hydrocarbon system. Furthermore,the COSMO-RS model calculates the single molecule embedded virtual conductor based on the density functional theory by which the simple empirical polarization charge density is established. It is efficient and accurate for describing the statistical thermodynamic interactions of interface,and thus the features of thermodynamic qualities can be grasped conveniently. The results indicate that the predicted data of COSMO-RS model agrees well with the experimental one,which show the universality of COSMO-RS model in various kinds of systems,and thus providing an easy method for complementing the unmeasurable experimental data of mutual solubility for hydrocarbon-water system. The future directions for prediction models of the mutual solubility on hydrocarbon-water system are proposed.
hydrocarbon-water system;solubility;COSMO-RS;model
TQ013.1;O645.12
A
1000–6613(2017)12–4343–07
10.16085/j.issn.1000-6613.2017-0322
2017-02-27;
2017-04-06。
國(guó)家自然科學(xué)基金項(xiàng)目(21576287,21176248)。
王敏(1991—)女,碩士研究生,研究方向?yàn)橛退ト芏鹊难芯?。E-mail:1070539920@qq.com。
曹睿,副教授,研究方向?yàn)榫s工藝、設(shè)備開(kāi)發(fā)及應(yīng)用基礎(chǔ)研究。E-mail:ctray@ cup.edu.cn。