高雨歌 王韓兵 張巖 李里 綜述 姜秋穎 審校
缺氧微環(huán)境誘導(dǎo)膠質(zhì)母細(xì)胞瘤耐藥機(jī)制研究進(jìn)展*
高雨歌 王韓兵 張巖 李里 綜述 姜秋穎 審校
膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)的耐藥性是導(dǎo)致其臨床治療失敗的主要原因。目前,諸多研究認(rèn)為腫瘤內(nèi)部缺氧的微環(huán)境能夠誘導(dǎo)GBM對放化療的抵抗。GBM的生長極為迅速,貧瘠的氧供不能滿足其對氧氣的需求,缺氧的微環(huán)境由此形成。缺氧可通過不同機(jī)制影響GBM的耐藥性。本文將根據(jù)缺氧微環(huán)境的形成與缺氧誘導(dǎo)GBM耐藥的機(jī)制進(jìn)行綜述。
膠質(zhì)母細(xì)胞瘤 缺氧 微環(huán)境 化療耐藥
膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)是原發(fā)于中樞神經(jīng)系統(tǒng)的惡性腫瘤,目前對于GBM的治療主要采用手術(shù),術(shù)后輔以放化療,但其總體預(yù)后仍然很差[1]。GBM耐藥發(fā)生率較高是導(dǎo)致其不良預(yù)后的重要原因。在所有實(shí)體瘤中,高級別膠質(zhì)瘤的血管化最為明顯,“微血管增生”已成為膠質(zhì)母細(xì)胞瘤的一項(xiàng)特征。變異的血管產(chǎn)生不規(guī)律的血流,使腫瘤細(xì)胞迅速地傳播到組織中氧氣擴(kuò)散之外的區(qū)域。然而新生的毛細(xì)血管網(wǎng)不能有效維持腫瘤組織對氧的需求,從而形成腫瘤內(nèi)部氧濃度梯度。這種低氧的微環(huán)境有助于腫瘤細(xì)胞對抗放療和化療的殺傷作用。因此,對于GBM中缺氧微環(huán)境的研究將為發(fā)現(xiàn)新藥物或輔助療法提供新的思路。
在人腦組織中存在兩個特征性神經(jīng)微環(huán)境,分別為前腦側(cè)腦室下區(qū)(subventricular zone,SVZ)和顆粒下層(subgranular zone,SGZ),在海馬區(qū)齒狀核駐留著休眠期干細(xì)胞和具有有絲分裂活性的前體細(xì)胞,有研究表明膠質(zhì)瘤最可能來源于SVZ[2]。在所有實(shí)體腫瘤中,高級別膠質(zhì)瘤的血管化最為明顯,新生血管增生與缺氧誘導(dǎo)的壞死已成為GBM的重要特征,且這兩項(xiàng)特征與預(yù)后不良相關(guān)[3]。受細(xì)胞間相互作用和細(xì)胞外環(huán)境的影響,腫瘤血管生成是一個非常復(fù)雜的過程。腫瘤中的毛細(xì)血管與正常組織相比,結(jié)構(gòu)和功能也有所差異,腫瘤組織中毛細(xì)血管無基底膜、具有較高滲透性、結(jié)構(gòu)不規(guī)則、具有盲端、缺少血管平滑肌和一些受體[4-5]。以上特點(diǎn)形成了不規(guī)則的血流并使腫瘤細(xì)胞可以傳播到超過氧氣擴(kuò)散距離(約100 μm)之外的組織之中,同時形成了一種低氧且營養(yǎng)供給困難的腫瘤生長環(huán)境[5]。而在此環(huán)境中的細(xì)胞反應(yīng)性地誘導(dǎo)新血管生成以供給更多的氧,此過程可由低氧誘導(dǎo),即缺氧誘導(dǎo)因子介導(dǎo)的血管生成。然而這種新生的血管不能有效支持生長迅速的腫瘤組織,因而會形成腫瘤內(nèi)部的氧氣濃度梯度,這是所有實(shí)體瘤均具有的特征[5]。健康腦組織中氧氣濃度范圍為12.5%~2.5%(pO2=200~100 mmHg),絕大多數(shù)GBM存在不同程度缺氧,其氧氣濃度介于2.5%~0.5%[6-8]。由于缺氧嚴(yán)重,腫瘤細(xì)胞不得不通過改變自身分子或遺傳性狀而適應(yīng)貧瘠的氧氣與營養(yǎng)供應(yīng)[9-10]。顯微鏡檢中經(jīng)??砂l(fā)現(xiàn)不斷擴(kuò)大的腫瘤組織在靠近血管的位置且腫瘤中心具有壞死區(qū)[11]。這些壞死區(qū)與增生的微血管間存在時間與空間的聯(lián)系,是具有特征性的柵欄狀壞死區(qū)。在GBM中,腫瘤細(xì)胞大量凋亡或腫瘤生長超過血液供給能力均會導(dǎo)致腫瘤組織壞死[12]。已有研究顯示,在所有GBM患者的腫瘤組織中均有不同程度的壞死,且該壞死與腫瘤體積大小并無明顯關(guān)系[10]。
缺氧的微環(huán)境可通過誘導(dǎo)蛋白表達(dá)和激活腫瘤的多藥耐藥機(jī)制促進(jìn)GBM對化療藥物的耐藥性。B淋巴細(xì)胞瘤-2基因(B-cell lymphoma-2,BCL-2),是細(xì)胞凋亡研究中最受重視的癌基因之一。Bad是BCL-2家族中與BCL-2和BCL-XL相關(guān)的促凋亡基因。缺氧會誘導(dǎo)促凋亡蛋白Bad的112位絲氨酸磷酸化,抑制Bad與促生長蛋白BCL-XL結(jié)合,從而保護(hù)GBM細(xì)胞減弱紫杉醇藥物的細(xì)胞毒效應(yīng)[12-13]。缺氧還可使腫瘤細(xì)胞內(nèi)促凋亡通路受到抑制,當(dāng)GBM細(xì)胞暴露于低氧環(huán)境中或?qū)BM異種移植到缺氧環(huán)境中時,凋亡抑制蛋白Livin表達(dá)將會增加,而Livin與GBM對替莫唑胺耐藥相關(guān)[14]。另有實(shí)驗(yàn)表明,低氧誘導(dǎo)的GBM對替莫唑胺及紫杉醇耐藥性在膽綠素還原酶(biliverdin reductase,BVR)耗盡時可發(fā)生逆轉(zhuǎn),重新對藥物敏感,而BVR在低濃度氧環(huán)境中可獲得高表達(dá),這說明低氧誘導(dǎo)GBM耐藥可能與BVR有關(guān)[15]。
缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)能夠直接影響GBM化療耐藥,近期更有實(shí)驗(yàn)表明HIF-1α在缺氧環(huán)境可以與Livin啟動子結(jié)合調(diào)節(jié)Livin的表達(dá),從而調(diào)節(jié)腫瘤細(xì)胞耐藥[14]。已有實(shí)驗(yàn)結(jié)果證明,與對照組相比HIF-1α基因敲低的T98G細(xì)胞中多耐藥相關(guān)蛋白1(multidrug resistance associated protein 1,MRP1)表達(dá)減低,且細(xì)胞對阿霉素與依托泊苷治療敏感[16]。曾有科學(xué)家在鋅離子誘導(dǎo)HIF-1α下調(diào)的實(shí)驗(yàn)中發(fā)現(xiàn)ABC轉(zhuǎn)運(yùn)蛋白與MDR1轉(zhuǎn)錄水平降低相關(guān),因而ABC轉(zhuǎn)運(yùn)蛋白也可能參與了缺氧誘導(dǎo)的化療耐藥[17]。HIF-1α下調(diào)還可降BCL-2表達(dá),這也說明缺氧的微環(huán)境通過誘導(dǎo)HIF-1α參與了多種化療藥物的耐藥機(jī)制。
不同細(xì)胞呈現(xiàn)的不同缺氧類型亦可導(dǎo)致不同程度化療耐藥。如在周期性循環(huán)缺氧的條件下(1 h缺氧后供氧30 min),與正常氧供組及間斷供養(yǎng)組相比,U87MG和GBM8401細(xì)胞系中觀察到ABCB1 mRNA及蛋白(P-糖蛋白)過表達(dá),P-糖蛋白在循環(huán)缺氧環(huán)境中會增加U87MG細(xì)胞對卡莫司汀和阿霉素的耐藥性[18]。而HIF-1α基因敲除可抑制多藥耐藥性蛋白的三磷酸腺苷結(jié)合轉(zhuǎn)運(yùn)蛋白B1(ATP-binding cas?sette subfamily B member 1,ABCB1)基因表達(dá),推測HIF-1α可通過ABCB1影響GBM細(xì)胞耐藥。
血供貧乏而又低氧的狀態(tài)可增強(qiáng)腫瘤細(xì)胞的糖酵解通路,使組織產(chǎn)酸增加,產(chǎn)生瓦伯格效應(yīng),導(dǎo)致腫瘤內(nèi)pH降低[19]。電極測量顯示:人類腦腫瘤中最低pH值為5.9,平均pH值約為6.8,而正常腦組織的平均pH值為7.1[12]。與正常腦組織相比,偏低的pH值是GSM腫瘤微環(huán)境重要的組成部分,酸性環(huán)境與腫瘤許多生理活動相關(guān),如增殖、血管生成、免疫抑制、侵襲和化療耐藥[19-20]。膠質(zhì)瘤中pH值降低會減慢腫瘤細(xì)胞的生長速度,但可以增強(qiáng)其對于多種化療藥物的耐藥性,也能通過抑制抗腫瘤藥物的跨膜運(yùn)輸從而降低其療效[21]。這是由于被動運(yùn)輸中不帶電的分子跨膜效率最高,而環(huán)境pH值降低會導(dǎo)致藥物被質(zhì)子化,從而減少了細(xì)胞對藥物的攝取[22]。
腫瘤干細(xì)胞(cancer stem cells,GSCs)通常位于腫瘤壞死區(qū)周圍,這里缺氧的環(huán)境可以促進(jìn)其“干細(xì)胞性”及其耐藥性[23]。在GBM中,缺氧與患者預(yù)后不良相關(guān),這亦是干細(xì)胞所處微環(huán)境的重要性之一[24]。在健康腦組織中,氧氣水平的調(diào)節(jié)是構(gòu)成正常信號的一個重要部分,能夠影響細(xì)胞增殖、分化和神經(jīng)干細(xì)胞的自我更新[25]。低氧可以維持細(xì)胞多能性和抑制胚胎干細(xì)胞的分化。因此,缺氧可作為正常干細(xì)胞環(huán)境的功能成分[26]。GSCs在缺氧環(huán)境中富集,其干細(xì)胞特性的維持是包括HIFs、Notch、Wnt和HH通路等許多因素綜合作用的結(jié)果[27-29]。
內(nèi)皮細(xì)胞(endothelial cells,ECs)與GSCs之間存在相互作用,GSCs可分泌高水平的血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF),通過血管內(nèi)皮生長因子受體-2(vascular endothelial growth factor receptor-2,VEGFR-2)作用于ECs促使血管新生[30]。ECs可分泌SHH(sonic hedgehog ligand)蛋白,通過其下游轉(zhuǎn)錄因子膠質(zhì)瘤相關(guān)基因-1(glioma-as?sociated oncogene-1,Gli-1)激活GBM內(nèi)HH信號通路[31]。在GSCs的Notch信號通路中,配體Delta-like 4(DLL4)和Jagged-1與Notch受體(Notch 1與Notch 2)結(jié)合可促進(jìn)GSCs的干細(xì)胞潛能;而在腦微血管內(nèi)皮細(xì)胞與GSCs在免疫缺陷小鼠體內(nèi)聯(lián)合移植實(shí)驗(yàn)中,敲除Notch配體基因可以使腫瘤生長速度減慢[32]。內(nèi)皮細(xì)胞經(jīng)放療后,其Jagged-1表達(dá)水平增高,這也提示Notch通路的激活可能與GBM放療抵抗相關(guān)[33]。缺氧可通過誘導(dǎo)HIF-1α和Notch胞內(nèi)結(jié)構(gòu)域(notch intracellular domain,NICD)間反應(yīng)和隨后的轉(zhuǎn)錄機(jī)制促進(jìn)GSCs的干樣細(xì)胞特性[28]。膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陽性的癌細(xì)胞低表達(dá)Notch受體和CD133,但卻高表達(dá)DLL配體[32],這表明內(nèi)皮細(xì)胞或已分化細(xì)胞產(chǎn)生的配體可通過腫瘤微環(huán)境激活GSCs中Notch信號通路。除此之外,缺氧環(huán)境還可促進(jìn)Shh、Smo和Gli過表達(dá)[34]。已有實(shí)驗(yàn)證明,腫瘤細(xì)胞中Notch通路中RBPJ(re?combination signal-binding protein-J kappa)和MAML3(mammalian mastermind like 3)兩個轉(zhuǎn)錄調(diào)節(jié)因子與Smo和Gli過表達(dá)相關(guān)[35]。
不同深度GBM組織中,均可觀察到CD133+細(xì)胞富集在腫瘤深部和缺氧區(qū)域,而且此處細(xì)胞分化標(biāo)志物如GFAP和β-微管蛋白Ⅲ水平較腫瘤邊緣低[36]。而大多數(shù)CD133+細(xì)胞過表達(dá)MGMT(O6-methylguanine DNA methyltransferase),對替莫唑胺耐藥。因此,在GBM中存在著耐藥性和分化標(biāo)記物隨氧分壓變化的梯度,氧分壓越低腫瘤的耐藥性越強(qiáng)。體外實(shí)驗(yàn)顯示,將GSCs暴露于1%氧分壓環(huán)境中,干細(xì)胞表型相關(guān)蛋白(CD133、Bmi-1、NESTIN、SOX2)和耐藥相關(guān)蛋白(MGMT、MRP1、P-gp)表達(dá)均有所增加[37]。這也突出表明了干細(xì)胞表型的維持與腫瘤耐藥相關(guān),而缺氧的環(huán)境可以對此產(chǎn)生促進(jìn)作用。
GBM中腫瘤細(xì)胞與腫瘤微環(huán)境共同構(gòu)成一個相互作用又聯(lián)系緊密的整體,缺氧的條件可以根據(jù)腫瘤血管動力學(xué)、免疫調(diào)節(jié)及代謝改變等不同機(jī)制促進(jìn)GBM的耐藥[38]。這其中包含各種細(xì)胞組分和非細(xì)胞組分的作用,涉及眾多信號轉(zhuǎn)導(dǎo)通路,其機(jī)制錯綜復(fù)雜,需要更多的基礎(chǔ)研究證實(shí)究竟哪一方面在GBM耐藥中占主導(dǎo)。也有研究表明,GBM可以通過各種生物信號抑制替莫唑胺誘導(dǎo)的GBM細(xì)胞衰老[39],從而逃脫細(xì)胞衰老,產(chǎn)生耐藥。宏觀上,氧定量成像等方法可有助于對GBM缺氧微環(huán)境與其耐藥關(guān)系進(jìn)行更深入的研究,如氧增強(qiáng)核磁共振能更加清晰地對缺氧區(qū)域進(jìn)行識別,從而進(jìn)一步探究GBM的耐藥模式,指導(dǎo)臨床治療[40]。對缺氧微環(huán)境誘導(dǎo)膠質(zhì)母細(xì)胞瘤耐藥機(jī)制的深入研究仍在進(jìn)行,相信在不久的將來,可能設(shè)計出阻斷缺氧微環(huán)境誘導(dǎo)細(xì)胞耐藥的方法途徑,使更多的患者受益,開啟GBM治療的新篇章。
[1]Alifieris C,Trafalis DT.Glioblastoma multiforme:pathogenesis and treatment[J].Pharmacol Therapeut,2015,(152):63-82.
[2]Capdevila C,Rodríguez Vázquez L,Martí J.Glioblastoma multiforme and adult neurogenesis in the ventricular-subventricular zone:a review[J].J Cell Physiol,2017,232(7):1596-1601.
[3]Bar EE.Glioblastoma,cancer stem cells and hypoxia[J].Brain Pathol, 2011,21(2):119-129.
[4]Senthebane DA,Rowe A,Thomford NE,et al.The role of tumor microenvironment in chemoresistance:To survive,keep your enemies closer[J].Int J Mol Sci,2017,18(7):1586.
[5]Ghattass K,Assah R,El-Sabban M,et al.Targeting hypoxia for sensitization of tumors to radio-and chemotherapy[J].Curr Cancer Drug Targets,2013,13(6):670-685.
[6]Gao JL,Chen YG.Natural compounds regulate glycolysis in hypoxic tumor microenvironment[J].Biomed Res Int,2015,(2015):354143.
[7]Martínez-González A,Calvo GF,Ayuso JM,et al.Hypoxia in gliomas:opening therapeutical opportunities using a mathematicalbased approach[J].Adv Exp Med Biol,2016,(936):11-29.
[8]Evans SM,Jenkins KW,Jenkins WT,et al.Imaging and analytical methods as applied to the evaluation of vasculature and hypoxia in human brain tumors[J].Radiat Res,2008,170(6):677-690.
[9]Heddleston JM,Li Z,Lathia JD,et al.Hypoxia inducible factors in cancer stem cells[J].Brit J Cancer,2010,102(5):789-795.
[10]Jensen RL.Brain tumor hypoxia:tumorigenesis,angiogenesis,imaging,pseudoprogression,and as a therapeutic target[J].J Neuro-Oncol,2009,92(3):317-335.
[11]Mondal A,Singh DK,Panda S,et al.Extracellular vesicles as modulators of tumor microenvironment and disease progression in glioma [J].Front Oncol,2017,(7):144.
[12]Swartz JE,Pothen AJ,Stegeman I,et al.Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma:a systematic review[J].Cancer Med,2015,4(7):1101-1116.
[13]Merighi S,Benini A,Mirandola P,et al.Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of bad in glioblastoma cells[J].Mol Pharmacol,2007,72(1):162-172.
[14]Hsieh CH,Lin YJ,Wu CP,et al.Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme [J].Clin Cancer Res,2015,21(2):460-470.
[15]Kim SS,Seong S,Lim SH,et al.Biliverdin reductase plays a crucial role in hypoxia-induced chemoresistance in human glioblastoma [J].Biochem Biophys Res Commun,2013,440(4):658-663.
[16]Chen L,Feng P,Li S,et al.Effect of hypoxia-inducible factor-1α silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide[J].Neurochem Res,2009,34(5):984-990.
[17]Nardinocchi L,Pantisano V,Puca R,et al.Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo[J].PloS One,2010,5(12):e15048.
[18]Chou CW,Wang CC,Wu CP,et al.Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1[J].Neuro Oncol,2012,14(10): 1227-1238.
[19]Kato Y,Ozawa S,Miyamoto C,et al.Acidic extracellular microenvironment and cancer[J].Cancer Cell Int,2013,13(1):89.
[20]Chiche J,Brahimi-Horn MC,Pouysségur J.Tumour hypoxia induces a metabolic shift causing acidosis:a common feature in cancer[J].J Cell Mol Med,2010,14(4):771-794.
[21]Mashima T,Sato S,Sugimoto Y,et al.Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions[J].Oncogene,2009,28(1):9-19.
[22]Trédan O,Galmarini CM,Patel K,et al.Drug resistance and the solid tumor microenvironment[J].J Natl Cancer Inst,2007,99(19):1441-1454.
[23]Uribe D,Torres á,Rocha JD,et al.Multidrug resistance in glioblastoma stem-like cells:Role of the hypoxic microenvironment and adenosine signaling[J].Mol Aspects Med,2017,(55):140-151.
[24]Huang WJ,Chen WW,Xia Z.Glioblastoma multiforme:effect of hypoxia and hypoxia inducible factors on therapeutic approaches[J]. Oncol Lett,2016,12(4):2283-2288.
[25]Moreno M,Fernández V,Monllau JM,et al.Transcriptional profiling of hypoxic neural stem cells identifies calcineurin-NFATc4 signaling as a major regulator of neural stem cell biology[J].Stem Cell Rep, 2015,5(2):157-165.
[26]Giles AJ,Chien CD,Reid CM,et al.The functional interplay between systemic cancer and the hematopoietic stem cell niche[J].Pharmacol Ther,2016,(168):53-60.
[27]Li P,Zhou C,Xu L,et al.Hypoxia enhances stemness of cancer stem cells in glioblastoma:an in vitro study[J].Int J Med Sci,2013,10(4): 399-407.
[28]Qiang L,Wu T,Zhang HW,et al.HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating notch signaling pathway[J].Cell Death Differ,2012,19(2):284-294.
[29]Rampazzo E,Persano L,Pistollato F,et al.Wnt activation promotes neuronal differentiation of glioblastoma[J].Cell Death Dis,2013,4 (2):e500.
[30]Jain RK,Di Tomaso E,Duda DG,et al.Angiogenesis in brain tumours [J].Nat Rev Neurosci,2007,8(8):610-622.
[31]Yan GN,Yang L,Lv YF,et al.Endothelial cells promote stem-like stem cells through hypoxia inducible factor 2 α[J].Brain,2014,133 (4):983-995.
[32]Zhu TS,Costello MA,Talsma CE,et al.Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells[J].Cancer Res,2011, 71(18):6061-6072.
[33]Scharpfenecker M,Kruse JJ,Sprong D,et al.Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells[J].Int J Radiat Oncol Biol Phys,2009,73(2):506-513.
[34]Onishi H,Kai M,Odate S,et al.Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer[J].Cancer Sci,2011,102(6): 1144-1150.
[35]Onishi H,Yamasaki A,Kawamoto M,et al.Hypoxia but not normoxia promotes Smoothened transcription through upregulation of RBPJ and Mastermind-like 3 in pancreatic cancer[J].Cancer Lett, 2016,371(2):143-150.
[36]Pistollato F,Abbadi S,Rampazzo E,et al.Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma[J].Stem Cells,2010,28(5):851-862.
[37]Kolenda J,Jensen SS,Aaberg-Jessen C.et al.Effects of hypoxia on expression of a panel of stem cell and chemoresistance markers in glioblastoma-derived spheroids[J].J Neurooncol,2011,103(1):43-58.
[38]Colwell N,Larion M,Giles AJ,et al.Hypoxia in the glioblastoma microenvironment:shaping the phenotype of cancer stem-like cells [J].Neuro Oncol,2017[Epub ahead of print].
[39]Hirose Y,Katayama M,Mirzoeva OK,et al.Akt activation suppresses Chk2-mediated,methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence[J].Cancer Res,2005,65(11):4861-4869.
[40]O'Connor JP,Boult JK,Jamin Y,et al.Oxygen enhanced MRI accurately identifies,quantifies,and maps hypoxia in preclinical cancer models[J].Cancer Res,2015,76(4):787-795.
(2017-05-24收稿)
(2017-08-07修回)
(編輯:孫喜佳 校對:鄭莉)
Research progress on the mechanisms of chemotherapy resistance to glioblastoma induced by hypoxia microenvironment
Yuge GAO,Hanbin WANG,Yan ZHANG,Li LI,Qiuying JIANG
Department of Oncology,the Second Affiliated Hospital of Harbin Medical University,Harbin 150001,China
Li LI;E-mail:lisophiali@aliyun.com
The chemotherapy resistance of glioblastoma is one of the main reasons leading to treatment failure.To date,many studies suggest that hypoxia microenvironment can induce resistance to chemotherapy and radiotherapy.Glioblastoma cells grow fast,and poor oxygen cannot supply enough nourishment.Thus,hypoxia microenvironment occurs.However,hypoxia can affect chemotherapy resistance of glioblastoma through different kinds of mechanisms.In this review,we by summarize the formation of hypoxic microenvironment and the pathogenesis of glioblastoma chemotherapy resistance induced hypoxia.
glioblastoma,hypoxia,microenvironment,chemotherapy resistance
哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院腫瘤內(nèi)科(哈爾濱市150001)
*本文課題受第57批中國博士后科學(xué)基金項(xiàng)目(編號:2015M571493)資助
李里 lisophiali@aliyun.com
10.3969/j.issn.1000-8179.2017.21.579
This work was supported by the 57th batch of China Postdoctoral Science Foundation(No.2015M571493).
高雨歌 專業(yè)方向?yàn)槟[瘤內(nèi)科學(xué)。E-mail:570536973@qq.com