吳德琳,劉宇娜,鄭思道
·理論探索·
心血管疾病運(yùn)動(dòng)康復(fù)新機(jī)制:microRNA的調(diào)控
吳德琳,劉宇娜,鄭思道
血液循環(huán)系統(tǒng)健康是心血管疾病和全因死亡率的強(qiáng)有力預(yù)測(cè)因素,適當(dāng)?shù)倪\(yùn)動(dòng)康復(fù)是防治心血管疾病有效和經(jīng)濟(jì)措施之一。MicroRNAs(miRNAs、miRs)是一類內(nèi)源性非編碼RNA,可在轉(zhuǎn)錄后水平調(diào)控基因表達(dá)。目前研究顯示miR-1、miR-214、miR-19b、miR-30e、miR-29、miR-455、miR-30c、miR-222等介導(dǎo)運(yùn)動(dòng)對(duì)心臟的保護(hù)作用,miR-146a、miR-30e、miR-23b、miR-130a、miR-16、miR-21、miR-24、miR-92a、miR-126、miR-143/145、miR-155、miR-221/222等介導(dǎo)運(yùn)動(dòng)對(duì)血管的保護(hù)作用。miRNA介導(dǎo)運(yùn)動(dòng)保護(hù)心血管的作用主要表現(xiàn)為以下3個(gè)特點(diǎn):心血管運(yùn)動(dòng)康復(fù)與miRNA相關(guān)、運(yùn)動(dòng)方式不同miRNA表達(dá)不同、miRNA是心血管運(yùn)動(dòng)康復(fù)與其他多種干預(yù)措施的共同靶點(diǎn)。以上結(jié)果提示miRNAs是心血管運(yùn)動(dòng)康復(fù)的重要作用機(jī)制,也是其他多種干預(yù)措施的靶點(diǎn),提示心血管運(yùn)動(dòng)康復(fù)可以作為治療處方應(yīng)用于臨床。
心臟康復(fù);血管康復(fù);運(yùn)動(dòng)訓(xùn)練;microRNA
血液循環(huán)系統(tǒng)健康是心血管疾病和全因死亡率的強(qiáng)有力預(yù)測(cè)因素,其健康程度與心血管疾病風(fēng)險(xiǎn)呈負(fù)相關(guān)[1]。適當(dāng)?shù)倪\(yùn)動(dòng)是防治心血管疾病的有效和經(jīng)濟(jì)措施之一,其對(duì)心臟的刺激屬于生理性,不引起細(xì)胞死亡、纖維化和心臟功能下降,因而有別于病理性心臟重構(gòu)[2-3]。運(yùn)動(dòng)康復(fù)對(duì)心血管的保護(hù)作用與運(yùn)動(dòng)形式、強(qiáng)度、周期等有關(guān),主要體現(xiàn)在對(duì)心率、心臟功能和結(jié)構(gòu)的調(diào)整,如通過(guò)6個(gè)月的適度訓(xùn)練可以使未曾受訓(xùn)者的靜息心率、次極量運(yùn)動(dòng)心率降低(5~20)min,并增加20%左右的每搏量,同時(shí)輕度增加心腔容量和心壁厚度[1]。確定心血管最適宜的運(yùn)動(dòng)形式、強(qiáng)度、周期等是目前研究的方向之一,而通過(guò)對(duì)具體機(jī)制進(jìn)行研究,發(fā)現(xiàn)新干預(yù)機(jī)制和作用靶點(diǎn),不僅能夠闡釋心血管康復(fù)的微觀機(jī)制,還將會(huì)對(duì)心臟病的藥物治療產(chǎn)生明顯推動(dòng)作用[2,4]。
MicroRNAs(miRNAs、miRs)是一類內(nèi)源性非編碼RNA,通過(guò)降解mRNA或抑制轉(zhuǎn)錄等方式在轉(zhuǎn)錄后水平調(diào)控基因表達(dá),從而影響包括增殖、分化、代謝在內(nèi)的多種病理生理過(guò)程[5-6]。組織和血液中的miRNA表達(dá)水平可以通過(guò)運(yùn)動(dòng)訓(xùn)練被調(diào)節(jié),并且運(yùn)動(dòng)方式不同,調(diào)節(jié)的miRNA也不同[5-7]。本研究綜述心血管運(yùn)動(dòng)康復(fù)過(guò)程中由miRNA介導(dǎo)的作用機(jī)制。
運(yùn)動(dòng)防治心血管疾病的作用涉及包括miRNA在內(nèi)的多種調(diào)控機(jī)制,多個(gè)miRNA介導(dǎo)心肌細(xì)胞、血管平滑肌細(xì)胞和內(nèi)皮細(xì)胞的生理作用,部分miRNA也參與對(duì)心血管疾病的調(diào)控[8-10]。運(yùn)動(dòng)誘導(dǎo)心肌生理性肥大及細(xì)胞更新,能夠通過(guò)改善內(nèi)皮祖細(xì)胞的增殖、遷徙、分化能力促進(jìn)內(nèi)皮細(xì)胞更新和血管生成,上述細(xì)胞的適應(yīng)性改變與包括miRNA在內(nèi)的細(xì)胞信號(hào)通路激活有關(guān)(見(jiàn)表1)[4]。
表1 運(yùn)動(dòng)防治心血管疾病的作用機(jī)制
2.1 心肌肥厚 適當(dāng)運(yùn)動(dòng)能夠促進(jìn)心臟生理性結(jié)構(gòu)改變、抑制心臟病理性重構(gòu)發(fā)生,相關(guān)作用與運(yùn)動(dòng)上調(diào)miR-222表達(dá)的作用有關(guān):miR-222上調(diào)后抑制靶基因p27、HIPK1/2、HMBOX1等,從而調(diào)控細(xì)胞增殖和心肌肥大,最后調(diào)控心臟表型[11]。有氧運(yùn)動(dòng)能夠誘導(dǎo)心臟生理性肥厚,在此過(guò)程中小鼠心肌組織miR-30c表達(dá)升高、結(jié)締組織生長(zhǎng)因子(CTGF)蛋白表達(dá)下調(diào),兩者組成的信號(hào)通路介導(dǎo)了運(yùn)動(dòng)改善心室順應(yīng)性的作用[12]。miR-350表達(dá)上調(diào)誘導(dǎo)的靶基因JNK表達(dá)減少介導(dǎo)了運(yùn)動(dòng)誘導(dǎo)的心肌肥厚,這一過(guò)程中可能同時(shí)存在拮抗機(jī)制:miR-1表達(dá)下降誘導(dǎo)的休克蛋白70表達(dá)升高對(duì)運(yùn)動(dòng)誘導(dǎo)的心肌重構(gòu)具有抑制作用[13-14]。
2.2 心肌纖維化 經(jīng)運(yùn)動(dòng)訓(xùn)練的心肌梗死大鼠,梗死邊緣區(qū)及遠(yuǎn)離梗死部位的心肌miRNA表達(dá)呈現(xiàn)出相似規(guī)律:miR-29a、miR-29b表達(dá)上調(diào),通過(guò)細(xì)胞外基質(zhì)蛋白介導(dǎo),這兩個(gè)miRNA下調(diào)膠原蛋白1a1和3a1,抑制心肌細(xì)胞外基質(zhì)重構(gòu)[15]。心肌外泌體中含有的miR-29b、miR-455等可在運(yùn)動(dòng)的誘導(dǎo)下降低靶基因基質(zhì)金屬蛋白酶9表達(dá)水平,抑制糖尿病性心臟病的心肌纖維化[16]。對(duì)健康大鼠進(jìn)行的研究顯示,運(yùn)動(dòng)訓(xùn)練可以提高心肌miR-29c表達(dá)水平,也能夠下調(diào)靶基因膠原蛋白1a1和3a1表達(dá),改善左室順應(yīng)性[17]。中等強(qiáng)度運(yùn)動(dòng)對(duì)心臟并無(wú)不理想影響,但長(zhǎng)期高強(qiáng)度運(yùn)動(dòng)能夠上調(diào)大鼠心房轉(zhuǎn)化生長(zhǎng)因子β1(TGF-β1)/miR-21信號(hào)通路,存在誘導(dǎo)纖維化、促發(fā)房顫的危險(xiǎn)[18]。而另一研究顯示,心衰病人一次性力竭運(yùn)動(dòng)后血清miR-21、miR-378、miR-940表達(dá)顯著升高,但這些miRNA的變化與心臟功能及運(yùn)動(dòng)耐力等未呈現(xiàn)出強(qiáng)相關(guān)性,其意義仍需要進(jìn)一步探索[19]。
2.3 心肌凋亡 運(yùn)動(dòng)訓(xùn)練引起主動(dòng)脈縮窄所致心力衰竭大鼠心肌組織中多個(gè)miRNA表達(dá)水平發(fā)生變化,其中涉及對(duì)細(xì)胞凋亡的調(diào)控[20]。有研究顯示,中等強(qiáng)度游泳負(fù)荷能夠上調(diào)小鼠心肌miR-30b、miR-499表達(dá)水平,通過(guò)抑制下游蛋白Drp-1表達(dá)最終顯示出對(duì)心肌凋亡的抑制作用[21-22]。此外,運(yùn)動(dòng)誘導(dǎo)生理性肥大的心肌中miR-19b、miR-30e表達(dá)上調(diào),均通過(guò)對(duì)靶基因Bcl-2的調(diào)控抑制細(xì)胞凋亡,從而保護(hù)心臟[23]。
2.4 心肌離子通路 長(zhǎng)跑運(yùn)動(dòng)員常出現(xiàn)竇性心動(dòng)過(guò)緩,嚴(yán)重時(shí)需要置入起搏裝置,這一現(xiàn)象的發(fā)生機(jī)制并非因?yàn)樽灾魃窠?jīng)系統(tǒng)活性改變,而是源于竇房結(jié)內(nèi)源性電生理的重構(gòu):運(yùn)動(dòng)誘導(dǎo)的心動(dòng)過(guò)緩在阻斷自主神經(jīng)后仍持續(xù)存在,可能與運(yùn)動(dòng)上調(diào)miR-1、下調(diào)Tbx3的作用有關(guān),在這兩個(gè)調(diào)節(jié)因子作用下離子通道HCN4表達(dá)下調(diào),進(jìn)而引起竇房結(jié)細(xì)胞起搏電流減少、促發(fā)心動(dòng)過(guò)緩[24]。然而miR-1、Tbx3和HCN4之間的調(diào)控關(guān)系尚需要進(jìn)一步研究。冠狀動(dòng)脈前降支結(jié)扎所致心肌梗死大鼠心肌組織中miR-1表達(dá)下調(diào)、miR-214表達(dá)上調(diào),通過(guò)適當(dāng)?shù)倪\(yùn)動(dòng)訓(xùn)練可以使這兩個(gè)miRNA的表達(dá)恢復(fù)至生理狀態(tài)水平,同時(shí)相應(yīng)靶基因鈉/鈣交換體1、肌漿網(wǎng)鈣泵2a的表達(dá)水平可恢復(fù)正常,提示運(yùn)動(dòng)訓(xùn)練可以通過(guò)調(diào)控miRNA及其靶基因保護(hù)缺血性心臟[25]。
2.5 心臟功能 長(zhǎng)期中等強(qiáng)度耐力運(yùn)動(dòng)心肌組織中miR-1、miR-133a表達(dá)下調(diào),但急性運(yùn)動(dòng)、長(zhǎng)期高強(qiáng)度耐力訓(xùn)練常導(dǎo)致兩者表達(dá)上調(diào)[12,26-28]。有研究顯示,循環(huán)miR-1與心臟短縮率呈負(fù)相關(guān),而循環(huán)miR-133a則與室間隔厚度呈正相關(guān)[29]。與心肌組織相反,耐力運(yùn)動(dòng)引起腓腸肌組織中miR-133a及肌細(xì)胞增強(qiáng)因子2 mRNA表達(dá)上調(diào),增強(qiáng)肌肉運(yùn)動(dòng)能力[30]??梢酝茰y(cè)運(yùn)動(dòng)訓(xùn)練加速心源性miR-133a轉(zhuǎn)移至外周組織,既減少其對(duì)心臟的刺激作用,又提高外周組織對(duì)運(yùn)動(dòng)的適應(yīng)能力。另有研究證實(shí),對(duì)于動(dòng)脈縮窄誘導(dǎo)心衰小鼠,運(yùn)動(dòng)可以通過(guò)抑制miR-350表達(dá)上調(diào)JNK水平、改善心臟射血分?jǐn)?shù)[31]。前述對(duì)miR-350的研究提示其在心肌重構(gòu)過(guò)程中具有重要作用,可能是心血管康復(fù)的靶miRNA[13-14,31]。
基于前述證據(jù)可以看出,適度運(yùn)動(dòng)訓(xùn)練通過(guò)調(diào)控miRNA及其靶基因?qū)ι砑安±頎顟B(tài)下的心臟、血管具有多種保護(hù)作用(見(jiàn)表2)。
表2 運(yùn)動(dòng)調(diào)控心臟重構(gòu)的miRNA機(jī)制
對(duì)于高脂飲食誘導(dǎo)的動(dòng)脈粥樣硬化炎癥反應(yīng),運(yùn)動(dòng)與辛伐他汀具有相似的抑制作用,可能與兩者上調(diào)miR-146a及下調(diào)下游靶基因腫瘤壞死因子受體6有關(guān)[33]。其他如miR-30e、miR-23b、miR-130a可能分別通過(guò)Jak-STAT、p53、胞吞作用等調(diào)控單核細(xì)胞功能,從而調(diào)節(jié)血管動(dòng)脈硬化過(guò)程[34]。更早的一個(gè)研究提示,外周單核細(xì)胞中有多達(dá)34種miRNA的表達(dá)可以被運(yùn)動(dòng)訓(xùn)練改變,涉及對(duì)TGF-β、MAPK等12條信號(hào)通路,其中6種miRNA(126、130a、151-5p、1225-5p、181-b、939)的改變同樣存在于中性粒細(xì)胞內(nèi)[35]。此外,miR-27、miR-143也通過(guò)對(duì)血管緊張素的調(diào)節(jié)擴(kuò)張血管、抑制纖維化[3]。運(yùn)動(dòng)訓(xùn)練對(duì)高血壓引起的血管損傷也有調(diào)節(jié)作用,涉及多個(gè)miRNA及血管內(nèi)皮相關(guān)靶基因(見(jiàn)表3)[36]。
運(yùn)動(dòng)訓(xùn)練本身作為生活方式調(diào)整的內(nèi)容之一,副作用極少,可以成為一種強(qiáng)效治療處方應(yīng)用[6]。不僅需要關(guān)注運(yùn)動(dòng)對(duì)心臟、血管重構(gòu)的宏觀影響,還應(yīng)探索相關(guān)細(xì)胞、分子層面的作用機(jī)制,以發(fā)現(xiàn)用于防治心臟重構(gòu)、心力衰竭病理過(guò)程的新靶點(diǎn)[1]。由前述內(nèi)容可以發(fā)現(xiàn)多種miRNA介導(dǎo)了運(yùn)動(dòng)對(duì)心臟、血管的保護(hù)作用,并主要表現(xiàn)為以下3個(gè)特點(diǎn)。
4.1 心血管運(yùn)動(dòng)康復(fù)與miRNA相關(guān) 心血管運(yùn)動(dòng)康復(fù)涉及對(duì)心肌肥厚、心肌纖維化、心肌凋亡、心肌離子通路、心臟功能等心臟重構(gòu)的調(diào)節(jié),也包括對(duì)血管、微循環(huán)的調(diào)節(jié)。目前研究顯示miR-1、miR-214、miR-19b、miR-30e、miR-29a、miR-29c、miR-29b、miR-455、miR-30c、miR-222等介導(dǎo)運(yùn)動(dòng)對(duì)心臟的保護(hù)作用,miR-146a、miR-30e、miR-23b、miR-130a、miR-16、miR-21、miR-24、miR-92a、miR-126、miR-143/145、miR-155、miR-221/222等介導(dǎo)運(yùn)動(dòng)對(duì)血管的保護(hù)作用。鑒于心血管重構(gòu)的復(fù)雜性、miRNA及其靶基因的多樣性,推測(cè)會(huì)有越來(lái)越多miRNA及其靶基因被發(fā)現(xiàn)與心血管康復(fù)有關(guān)。
4.2 運(yùn)動(dòng)方式不同miRNA表達(dá)不同 循環(huán)miR-21在健康成年男性一次性力竭運(yùn)動(dòng)后表達(dá)不變,而在耐力訓(xùn)練后表達(dá)水平下調(diào)[37]。對(duì)參加馬拉松賽事的運(yùn)動(dòng)員研究也顯示,循環(huán)miR-21表達(dá)水平在比賽前后無(wú)明顯變化[29]。另外對(duì)長(zhǎng)期訓(xùn)練運(yùn)動(dòng)員的研究表明,循環(huán)miR-21表達(dá)水平在耐力訓(xùn)練后表達(dá)上調(diào)、在力量訓(xùn)練后表達(dá)下調(diào),前者是后者的1.56倍[38]。上述研究提示,對(duì)miR-21研究的結(jié)論差異可能與運(yùn)動(dòng)方式不同有關(guān):一次性力竭運(yùn)動(dòng)對(duì)miR-21表達(dá)無(wú)影響,而長(zhǎng)期運(yùn)動(dòng)誘導(dǎo)miR-21表達(dá)改變,改變方向與運(yùn)動(dòng)方式有關(guān)。需要注意到運(yùn)動(dòng)方式不同對(duì)心臟的重構(gòu)也不同,可能是相關(guān)miRNA表達(dá)差異的原因之一:有氧運(yùn)動(dòng)主要引起心臟擴(kuò)張,而阻抗訓(xùn)練主要引起心臟肥厚[3]。此外,有氧運(yùn)動(dòng)下調(diào)心臟血管緊張素Ⅱ水平、上調(diào)血管緊張素(1-7)水平,而阻抗訓(xùn)練對(duì)心臟血管緊張素表達(dá)無(wú)明顯影響,提示有氧運(yùn)動(dòng)能夠減輕血管緊張素對(duì)心臟的不利影響[39]。
4.3 miRNA是心血管運(yùn)動(dòng)康復(fù)與其他多種干預(yù)措施的共同靶點(diǎn)miRNA不僅介導(dǎo)心血管運(yùn)動(dòng)康復(fù)對(duì)心血管的保護(hù)作用,也介導(dǎo)藥物、表觀遺傳學(xué)干預(yù)等的治療作用,顯示其在生理和病理狀態(tài)下具有核心調(diào)控作用[40-41]。因此,通過(guò)合理的干預(yù)方式組合,應(yīng)該能夠達(dá)到治療取效最大化:既發(fā)揮各種干預(yù)措施優(yōu)勢(shì)和特色,又可減少或避免相應(yīng)措施不足或副作用。
綜合目前研究表明,miRNA是心血管運(yùn)動(dòng)康復(fù)的重要作用機(jī)制,并且運(yùn)動(dòng)方式不同起介導(dǎo)作用的miRNA不同,同時(shí)miRNA也是其他多種干預(yù)措施的靶點(diǎn),提示心血管運(yùn)動(dòng)康復(fù)應(yīng)當(dāng)作為治療處方應(yīng)用于臨床。
[1] Wilson MG,Ellison GM,Cable NT.Basic science behind the cardiovascular benefits of exercise[J].Heart,2015,101(10):758-765.
[2] Bei Y,Zhou Q,Sun Q,et al.Exercise as a platform for pharmacotherapy development in cardiac diseases[J].Current Pharmaceutical Design,2015,21(30):4409-4416.
[3] Fernandes T,Soci UP,Oliveira EM.Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants[J].Braz J Med Biol Res,2011,44(9):836-847.
[4] Tao L,Bei Y,Zhang H,et al.Exercise for the heart: signaling pathways[J].Oncotarget,2015,6(25):20773-20784.
[5] Xu T,Liu Q,Yao J,et al.Circulating microRNAs in response to exercise[J].Scand J Med Sci Sports,2015,25(2):e149-e154.
[6] Hill JA.Braking bad hypertrophy[J].N Engl J Med,2015,372(22):2160-2162.
[7] Altana V,Geretto M,Pulliero A.MicroRNAs and physical activity[J].Microrna,2015,4(2):74-85.
[8] Shi L,Liao J,Liu B,et al.Mechanisms and therapeutic potential of microRNAs in hypertension[J].Drug Discov Today,2015,20(10):1188-1204.
[9] Schuler G,Adams V,Goto Y.Role of exercise in the prevention of cardiovascular disease: results,mechanisms,and new perspectives[J].Eur Heart J,2013,34(24):1790-1799.
[10] Flowers E,Won GY,F(xiàn)ukuoka Y.MicroRNAs associated with exercise and diet: a systematic review[J].Physiol Genomics,2015,47(1):1-11.
[11] Liu X,Xiao J,Zhu H,et al.miR-222 Is Necessary for exercise-induced cardiac growth and protects against pathological Cardiac Remodeling[J].Cell Metabolism,2015,21(4):584-595.
[12] 賈明學(xué),張國(guó)海,李艷,等.微小RNA 30c增加有氧運(yùn)動(dòng)訓(xùn)練小鼠心室順應(yīng)性的研究[J].體育科學(xué),2013,33(9):70-76.
[13] 翟帥,陳佩林.運(yùn)動(dòng)心臟重塑過(guò)程中miRNA-350/JNK信號(hào)通路的動(dòng)態(tài)變化[J].體育科學(xué),2014,34(5):9-14.
[14] 馬志勇,趙永才.運(yùn)動(dòng)對(duì)小鼠心肌miRNA-1及熱休克蛋白的影響[J].唐山師范學(xué)院學(xué)報(bào),2015(2):96-98.
[15] Melo SF,F(xiàn)ernandes T,Barauna VG,et al.Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats[J].Cell Physiol Biochem ,2014,33(3):657-669.
[16] Chaturvedi P,Kalani A,Medina I,et al.Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise[J].Journal of Cellular and Molecular Medicine,2015,19(9):2153-2161.
[17] Soci UPR,F(xiàn)ernandes T,Hashimoto NY,et al.MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats[J].Physiological Genomics,2011,43(11):665-673.
[18] 王世強(qiáng),常蕓,馬曉雯,等.不同強(qiáng)度耐力運(yùn)動(dòng)對(duì)大鼠心房TGF-β1/miR-21信號(hào)途徑的影響[J].體育科學(xué),2015(11):30-37.
[19] Xu T,Zhou Q,Che L,et al.Circulating miR-21,miR-378,and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients[J].Oncotarget,2016,7(11):12414-12425.
[20] Souza RW,F(xiàn)ernandez GJ,Cunha JP,et al.Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure[J].Am J Physiol Heart Circ Physiol,2015,309(10):H1629-H1641.
[21] 趙永才,鄭兵.運(yùn)動(dòng)訓(xùn)練對(duì)心肌線粒體途徑miR-30-p53-Drp-1凋亡通路的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2015(2):128-133.
[22] 趙永才.運(yùn)動(dòng)訓(xùn)練對(duì)小鼠心肌線粒體miR-499-CaN-Drp-1凋亡通路的影響[J].中國(guó)應(yīng)用生理學(xué)雜志,2015,31(3):259-263.
[23] Ramasamy S,Velmurugan G,Shanmugha Rajan K,et al.MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts[J].PLoS One,2015,10(3):e0121401.
[24] D'Souza A,Bucchi A,Johnsen AB,et al.Exercise training reduces resting heart rate via downregulation of the funny channel HCN4[J].Nat Commun,2014,5:3775.
[25] Melo SF,Barauna VG,Neves VJ,et al.Exercise training restores the cardiac microRNA-1 and -214 levels regulating Ca2+handling after myocardial infarction[J].BMC Cardiovasc Disord,2015,15(1):166.
[26] 趙永才.運(yùn)動(dòng)對(duì)C57BL/6小鼠心肌miRNA的影響及其在心臟肥大中的調(diào)節(jié)作用[J].體育科學(xué),2012,32(6):62-68.
[27] Clauss S,Wakili R,Hildebrand B,et al.MicroRNAs as biomarkers for acute atrial remodeling in marathon runners (the miRathon study a substudy of the munich marathon study) [J].PLoS One,2016,11(2):e0148599.
[28] Gomes CP,Oliveira GP,Madrid B,et al.Circulating miR-1,miR-133a,and miR-206 levels are increased after a half-marathon run[J].Biomarkers,2014,19(7):585-589.
[29] Mooren FC,Viereck J,Kruger K,et al.Circulating microRNAs as potential biomarkers of aerobic exercise capacity[J].Am J Physiol Heart Circ Physiol,2014,306(4):H557-H563.
[30] 張嘉偉,任文君.有氧訓(xùn)練大鼠腓腸肌組織微小RNA-133a和肌細(xì)胞增強(qiáng)因子2的表達(dá)[J].中國(guó)組織工程研究,2012,16(20):3730-3734.
[31] 陳煒,陳佩林,鄧玉強(qiáng).游泳對(duì)心衰模型小鼠左心室miRNA-350/JNK通路的影響[J].北京體育大學(xué)學(xué)報(bào),2014(5):77-83.
[32] Melo SF,Barauna VG,Junior MA, et al.Resistance training regulates cardiac function through modulation of miRNA-214[J].Int J Mol Sci,2015,16(4):6855-6867.
[33] Wu XD,Zeng K,Liu WL,et al.Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis[J].Int J Sports Med,2014,35(4):344-350.
[34] Radom-Aizik S,Zaldivar FP,Haddad F,et al.Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease[J].Brain Behav Immun,2014,39:121-129.
[35] Radom-Aizik S,Zaldivar F,Leu SY,et al.Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells[J].Clin Transl Sci,2012,5(1):32-38.
[36] Neves VJ,F(xiàn)ernandes T,Roque FR,et al.Exercise training in hypertension:role of microRNAs[J].World J Cardiol,2014,6(8):713-727.
[37] Nielsen S,Akerstrom T,Rinnov A,et al.The miRNA plasma signature in response to acute aerobic exercise and endurance Training[J].PLoS One,2014,9(2):e87308.
[38] Wardle SL,Bailey ME,Kilikevicius A,et al.Plasma microRNA levels differ between endurance and strength athletes[J].PLoS One,2015,10(4):e0122107.
[39] Fernandes T,Hashimoto NY,Magalhaes FC,et al.Aerobic Exercise training-induced left ventricular hypertrophy involves regulatory microRNAs,decreased angiotensin-converting enzyme-angiotensin Ⅱ,and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7) [J].Hypertension,2011,58(2):182-189.
[40] Peng L,Zhong X.Epigenetic regulation of drug metabolism and transport[J].Acta Pharm Sin B,2015,5(2):106-112.
[41] Kamps JA,Krenning G.Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration[J].World J Cardiol ,2016,8(2):163-179.
2016-07-27)
(本文編輯 王雅潔)
The Mechanisms of microRNA-induced Cardiovascular Protection in Exercise Rehabilitation
Wu Delin,Liu Yu’na,Zheng Sidao
Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039,China
Zheng Sidao
Cardiovascular status is one of the strongest predictors of both cardiovascular diseases death and all-cause death.Exercise training (ET) has been proved to be an effective and economical strategy to overcome the cardiovascular deleterious effects.microRNAs (miRNAs or miRs) are a class of small, noncoding RNAs which regulate gene expression at post-transcriptional level.Current studies have revealed that many miRNAs induce the protective effects of ET by regulating structures and functions of heart and blood vessel.For example, miR-1, miR-214, miR-19b, miR-30e, miR-29, miR-455, miR-30c, and miR-222 are involved in ET-related heart protection, miR-146a, miR-30e, miR-23b, miR-130a, miR-16, miR-21, miR-24, miR-92a, miR-126, miR-143/145, miR-155, and miR-221/222 take park in ET-related vessel protection.What is more, besides ET, many other intervention strategies can also regulate miRNAs level.So, it is obviously that miRNAs underline a new protective mechanism for cardiovascular health, and ET should be used as a special drug in medical practice.
cardiac rehabilitation;vascular rehabilitation;exercise training;microRNAs
R54 R256.2
A
10.3969/j.issn.1672-1349.2017.21.039
1672-1349(2017)21-2786-04
北京市優(yōu)秀人才培養(yǎng)資助青年骨干個(gè)人項(xiàng)目(No.2014000057592G296)
北京市中西醫(yī)結(jié)合醫(yī)院(北京100039)
鄭思道,E-mail:zhengsidao@yahoo.com
信息:吳德琳,劉宇娜,鄭思道.心血管疾病運(yùn)動(dòng)康復(fù)新機(jī)制:microRNA的調(diào)控[J].中西醫(yī)結(jié)合心腦血管病雜志,2017,15(21):2786-2789.