朱馨妮 汪珊珊 周佳琴 朱世華
(1. 寧波大學(xué)海洋學(xué)院,寧波 315211;2. 寧波大學(xué)科學(xué)技術(shù)學(xué)院,寧波 315211)
植物核苷二磷酸激酶研究進(jìn)展
朱馨妮1汪珊珊1周佳琴2朱世華2
(1. 寧波大學(xué)海洋學(xué)院,寧波 315211;2. 寧波大學(xué)科學(xué)技術(shù)學(xué)院,寧波 315211)
核苷二磷酸激酶(Nucleoside diphosphate kinases,NDPKs)是一類高度保守的蛋白,大小一般在70-100 kD,在生物體內(nèi)大多數(shù)以六聚體形式存在,僅在少數(shù)原核生物中以四聚體形式存在。NDPK主要參與維持核苷二磷酸和核苷三磷酸的平衡。目前在植物中已發(fā)現(xiàn)4種NDPK:NDPKⅠ、NDPKⅡ、NDPKⅢ和NDPKⅣ,相關(guān)研究主要集中在前3種。NDPKⅠ與植物生長(zhǎng)發(fā)育、非生物脅迫、感病應(yīng)激和激素響應(yīng)有關(guān);NDPKⅡ參與光合作用和活性氧清除;NDPKⅢ參與能量代謝和細(xì)胞程序性死亡;NDPKⅣ僅在擬南芥和水稻基因組中發(fā)現(xiàn),預(yù)測(cè)定位于內(nèi)質(zhì)網(wǎng),功能未知。除了上述的主要作用外,NDPK在某些植物中還有特殊功能,如參與DNA復(fù)制、參與淀粉和纖維素的合成、參與生長(zhǎng)素調(diào)節(jié)和發(fā)揮核酶活性等。這些作用機(jī)制是否存在物種特異性還有待進(jìn)一步的研究。對(duì)NDPK的系統(tǒng)進(jìn)化、生物功能的最新進(jìn)展進(jìn)行了綜述。最后對(duì)NDPK的發(fā)展趨勢(shì)進(jìn)行了展望,有助于將來對(duì)NDPK進(jìn)行更深入和全面的研究。
核苷二磷酸激酶;NDPK;系統(tǒng)進(jìn)化;功能
核苷二磷酸激酶是一類高度保守的基因,其編碼的NDPK在生物體內(nèi)普遍存在。NDPK的大小一般在70-100 kD,在真核生物中幾乎都是由兩個(gè)六聚體組成的復(fù)合物,其單體是6個(gè)α-螺旋圍繞著一個(gè)四股反向平行的β-折疊,只在一小部分的原核生物中以四聚體形式存在。NDPK最早于1953年在酵母和鴿子的組織中發(fā)現(xiàn)[1]。在植物中,第一個(gè)NDPK于1971年在豌豆中得到分離純化[2],并于1991年公布了NDPK基因序列。在此后的研究中,從其他植物中發(fā)現(xiàn)了NDPK的廣泛存在。
NDPK作為一個(gè)激酶,具有催化底物磷酸化的作用。NDPK通過一個(gè)兵乓機(jī)制首先將核苷三磷酸(Nucleoside triphosphate,NTP)上γ位的高能磷酸集團(tuán)轉(zhuǎn)移到其自身,再將高能磷酸集團(tuán)轉(zhuǎn)移到不同的核苷二磷酸(Nucleoside diphosphate,NDP)上,形成一個(gè)新的NTP,實(shí)現(xiàn)核苷二磷酸轉(zhuǎn)化成為核苷三磷酸的過程,從而維持細(xì)胞體內(nèi)核苷酸代謝的平衡。
NDPK還可以進(jìn)行自身磷酸化,以達(dá)到變構(gòu)蛋白結(jié)構(gòu),激活其酶活性的目的。大部分研究者認(rèn)為,NDPK可能存在兩個(gè)磷酸化位點(diǎn):組氨酸磷酸化位點(diǎn)和絲氨酸磷酸化位點(diǎn)[3-5]。但也有研究者針對(duì)組氨酸殘基和絲氨酸殘基的自身磷酸化進(jìn)行研究,發(fā)現(xiàn)組氨酸殘基是NDPK唯一的自身磷酸化位點(diǎn),實(shí)驗(yàn)中出現(xiàn)的絲氨酸/蘇氨酸位點(diǎn)發(fā)生磷酸化是純化該酶時(shí)化學(xué)處理所造成的實(shí)驗(yàn)誤判[6]。
正因?yàn)镹DPK的磷酸化及自身磷酸化作用,使得它與生物體的能量代謝、生物合成代謝息息相關(guān)。它為生物體提供能量代謝所需的ATP;半乳糖降解、乳糖合成、糖原合成所需的UTP;甘油磷脂合成、蛋白質(zhì)糖基化所需的CTP;DNA合成、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、蛋白質(zhì)延伸、細(xì)胞需氧呼吸中能量轉(zhuǎn)換所需的GTP;為生物體核苷酸合成所需的NTPs。筆者對(duì)植物NDPK進(jìn)行系統(tǒng)進(jìn)化分析及功能進(jìn)行綜述,為今后植物核苷二磷酸激酶研究提供參考。
本文整理了已發(fā)表的不同植物的31個(gè)NDPK蛋白質(zhì)序列、功能等內(nèi)容(表1),用MEGA 6.06對(duì)這31個(gè)NDPK蛋白進(jìn)行遺傳分析,用鄰近法(Neighbor-Joining,NJ)構(gòu)建了分子系統(tǒng)進(jìn)化樹(圖1)。結(jié)果表明,來自不同物種的31個(gè)NDPK蛋白被分成4類。進(jìn)化樹上的聚類結(jié)果結(jié)合表1中的功能,可以看到功能相近的NDPK親緣關(guān)系較近,進(jìn)化保守,聚為一簇。
植物NDPK I是4種NDPK中含量最多[56]、活性最強(qiáng)的一個(gè)種類[57]。NDPK I作為一個(gè)激酶,催化的底物存在多樣性,既可以催化嘌呤也可以催化嘧啶,但其對(duì)底物存在偏好,會(huì)優(yōu)先利用底物ATP[58]。但是有研究發(fā)現(xiàn)在其他的三磷酸中,它同樣對(duì)底物存在偏好。馬鈴薯StNDPK1[7]、菠菜 SoNDPK1[17]、 杜 氏 鹽 藻 DtNDPK1[59]均 優(yōu) 先利用UTP進(jìn)行反應(yīng)。馬鈴薯StNDPK1還表現(xiàn)出對(duì)NTP/NDP比率的高度敏感,比率較小時(shí),馬鈴薯StNDPK1酶活性受到抑制,當(dāng)比率在2-3之間時(shí),該酶活性最高[7]。
植物 NDPK I主要定位于細(xì)胞溶膠[7,20,59],在植物生長(zhǎng)發(fā)育、非生物脅迫、感病應(yīng)激、激素響應(yīng)、DNA復(fù)制、淀粉纖維素合等方面起到重要作用。
在細(xì)胞分裂、分化快速的細(xì)胞中,NDPK I提供植物細(xì)胞壁前體合成所需UTP,參與胚芽鞘、花、葉、幼苗、根尖、頂芽、果實(shí)等組織的生長(zhǎng)。
NDPK I對(duì)胚芽鞘的生長(zhǎng)具有正向調(diào)節(jié)作用。過表達(dá)OsNDPK1的擬南芥表現(xiàn)出下胚軸長(zhǎng)度增長(zhǎng)、細(xì)胞數(shù)目增多[21];轉(zhuǎn)入了反義OsNDPK1的水稻,胚芽鞘細(xì)胞的伸長(zhǎng)受到抑制,植株表現(xiàn)出了生長(zhǎng)缺陷,植株明顯矮?。?2]。
這種功能同樣在分化活躍、分裂旺盛的組織中起到作用。擬南芥AtNDPK1在花序、葉片和根中表達(dá)量最高[19];煙草NtNDPK1在頂芽中表達(dá)量最高[11];大白菜BcNDPK1在幼苗、子葉和雌蕊中大量表達(dá)[18];葡萄VvNDPK1在果實(shí)發(fā)育早期大量表達(dá)[9];黑麥草LpNDPK1在種子萌發(fā)、穎果的發(fā)育時(shí)大量表達(dá)[12];過表達(dá)馬鈴薯StNDPK1的植株表現(xiàn)出根變長(zhǎng)的性狀[8];免疫印跡分析和免疫沉淀分析結(jié)果表明馬鈴薯StNDPK1大量存在于分生區(qū)和原形成層組織,如:根尖、葉片、塊莖、雌蕊、愈傷組織[7]。此外還發(fā)現(xiàn)在馬鈴薯的愈傷組織中StNDPK1的表達(dá)不受細(xì)胞的年齡影響,而是與細(xì)胞的生長(zhǎng)能力相關(guān)[7]。
NDPK I的表達(dá)還與非生物脅迫響應(yīng)相關(guān),在外界脅迫下,NDPK I起到調(diào)節(jié)作用,但其具體響應(yīng)機(jī)制尚未清晰。在干旱脅迫下,甘蔗幼苗中SoNDPK1從18 h起表達(dá)量急劇上升,并于30 h達(dá)到峰值,這表明甘蔗通過NDPK I的表達(dá)做出對(duì)干旱脅迫的應(yīng)答[14],同樣表達(dá)上調(diào)也在煙草[11]和水稻葉[24,31]中發(fā)現(xiàn)。在低溫脅迫下,水稻葉片OsNDPK1表達(dá)上調(diào)、根部OsNDPK4的磷酸化水平提高[25]。在高溫脅迫下,水稻穎果中OsNDPK1表達(dá)上調(diào)[26]。在熱擊脅迫下,甘蔗細(xì)胞培養(yǎng)物中SoNDPK1強(qiáng)烈表達(dá)[60]。在高鹽脅迫下,豌豆的根部[10]、大麥的葉子[13]、水稻的根部[27]NDPK I表達(dá)量上調(diào),然而煙草幼苗中NtNDPK1在轉(zhuǎn)錄水平和翻譯水平上均發(fā)生下調(diào)[11]。近期也有研究表明,在高鹽脅迫下,擬
南芥AtNDPK1的表達(dá)與病原體所誘導(dǎo)的促分裂蛋白激酶激酶(MAPKK)呈負(fù)相關(guān)[20]。這一實(shí)驗(yàn)結(jié)果表明AtNDPK1通過MAPK信號(hào)途徑來進(jìn)行對(duì)脅迫的調(diào)節(jié)。當(dāng)受到機(jī)械損傷,番茄幼苗、莖、葉組織中SlNDPK1 表達(dá)均發(fā)生上調(diào)[15]。
表1 植物核苷二磷酸激酶的分類
圖1 NDPK蛋白的系統(tǒng)進(jìn)化樹
當(dāng)外界病菌侵染時(shí),NDPK I參與植株對(duì)抗病原體防御機(jī)制。油菜根部感染根癌農(nóng)桿菌24小時(shí),NDPK I含量增加了1.6倍[61],這一趨勢(shì)同樣發(fā)生在油菜感染黑斑菌時(shí)[62]。水稻感染白葉枯病菌或伯克霍爾德式菌后,OsNDPK1表達(dá)量顯著上調(diào)[28]。過表達(dá)OsNDPK1的擬南芥植株相對(duì)于野生型,抗病基因PR1、NPR1表達(dá)量上調(diào),表現(xiàn)出對(duì)灰葡萄孢真菌、丁香假單胞桿菌、番茄致病變種細(xì)菌的抗性增強(qiáng)。同時(shí),BR信號(hào)轉(zhuǎn)錄調(diào)控因子Saur-AC1、轉(zhuǎn)錄因子BZR1、BES1表達(dá)量上升。這表明OsNDPK1通過正調(diào)控BR信號(hào)轉(zhuǎn)導(dǎo)來增強(qiáng)植物抗病防御機(jī)制[21]。對(duì)細(xì)菌性條斑病菌JH01誘導(dǎo)的水稻抗病基因進(jìn)行研究,發(fā)現(xiàn)OsNDPK4參與細(xì)菌性條斑病菌JH01誘導(dǎo)的水稻防衛(wèi)反應(yīng)[29]。
多種植物的NDPK I可能參與激素調(diào)控機(jī)制或在激素信號(hào)途徑中起到作用。經(jīng)脫落酸處理后,煙草NtNDPK1表達(dá)量在1 h后到達(dá)頂峰,并維持了幾小時(shí)[11]。水稻OsNDPK1受到水楊酸、茉莉酸、脫落酸、草甘膦的強(qiáng)烈誘導(dǎo)[13,28,30]。過表達(dá) OsNDPK1 植株促進(jìn)水楊酸積累基因PAD4和EDS1表達(dá)量上調(diào),表現(xiàn)較高的水楊酸含量[21]。水稻OsNDPK4受茉莉酸誘導(dǎo)[28]。
玉米NDPK I可以結(jié)合特殊結(jié)構(gòu)的DNA,從而參與DNA的復(fù)制。DNA通常以雙螺旋的結(jié)構(gòu)存在,但在生物中DNA也以一些特殊的結(jié)構(gòu)存在,如鳥苷酸-四聯(lián)體結(jié)構(gòu)(G-quadruplex DNA,G4 DNA)。G4 DNA是富含鳥苷酸(G)序列的四鏈形態(tài)的DNA二級(jí)結(jié)構(gòu),它在胞體內(nèi)與其結(jié)合蛋白互相作用起到維持端粒穩(wěn)定,參與DNA復(fù)制起始調(diào)控等作用。在植物中發(fā)現(xiàn)了第一個(gè)G4結(jié)合蛋白:ZmNDPK1。盡管在之前的研究中發(fā)現(xiàn)人類NM23-H2(NDPK同系物)也可以結(jié)合富含鳥嘌呤的序列[63],但是ZmNDPK1對(duì)于富含鳥嘌呤的序列結(jié)合較弱,具體的NDPK I與G4結(jié)合的機(jī)制尚未清晰。實(shí)驗(yàn)僅表明ZmNDPK1除了含有一個(gè)酶活性位點(diǎn),還含有一個(gè)G4結(jié)合位點(diǎn),二者相互獨(dú)立[16]。
馬鈴薯NDPK I調(diào)節(jié)淀粉與纖維素的合成途徑中碳元素的分布,從而參與淀粉和纖維素的合成。馬鈴薯StNDPK1正向調(diào)節(jié)纖維素的含量。在正義StNDPK1轉(zhuǎn)基因植株中纖維素合成中間物尿苷二磷酸葡糖(Uridine diphosphate glucose,UDPG)和纖維素含量均增加[8]。StNDPK1反向調(diào)控淀粉的含量。淀粉合成關(guān)鍵酶ADP-蔗糖焦磷酸化酶在反義StNDPK1轉(zhuǎn)基因植株中含量高;在正義StNDPK1轉(zhuǎn)基因植株中含量少,同時(shí)伴隨著酶的氧化程度高,表現(xiàn)出酶活降低[8]。因此,在反義轉(zhuǎn)基因植株中積累了更多的淀粉。
植物NDPK II主要定位于葉綠體中[64-65],在植物光合作用、清除活性氧和生長(zhǎng)素調(diào)節(jié)機(jī)制這幾個(gè)方面起到重要作用。
NDPK II作為一個(gè)光調(diào)控蛋白激酶,通過與光敏色素相互作用,參與植物的光合作用。在20世紀(jì)90年代第一次發(fā)現(xiàn)NDPK活性與植物對(duì)紅光[66]、藍(lán)光[67]響應(yīng)存在聯(lián)系。隨后的實(shí)驗(yàn)發(fā)現(xiàn)AtNDPK2基因與光敏色素A、光敏色素B互作,以響應(yīng)植物對(duì)紅光和遠(yuǎn)紅光反應(yīng)的應(yīng)答[33,68]。紅光刺激黃化的豌豆PsNDPK2磷酸化水平上升[39]。燕麥的Ser598Ala突變體植株對(duì)光更敏感,研究者發(fā)現(xiàn)這是由于Ser598的磷酸化抑制了光信號(hào)傳導(dǎo)途徑中NDPK II與光敏色素A的互作[69]。據(jù)此推斷NDPK II可能是植物光合作用的必要因素。在紅光下,黃化燕麥中活化的光敏色素A與NDPK II相互作用,刺激它的激酶活性,使自身磷酸化以及磷酸化作用增強(qiáng)[70],另一個(gè)實(shí)驗(yàn)表明黃化燕麥胚芽鞘中NDPK II活性增加了約42%[57]。這表明NDPK II是一個(gè)光調(diào)控蛋白激酶。擬南芥ndpk2突變體表現(xiàn)出對(duì)紅光和遠(yuǎn)紅光響應(yīng)的部分缺失,子葉不能張開及綠化缺陷,這表明AtNDPK2是擬南芥光敏色素介導(dǎo)的光信號(hào)轉(zhuǎn)導(dǎo)途徑的正向調(diào)節(jié)因子[33-35]。
在黑暗中,豌豆幼苗PsNDPK2磷酸化受抑制,不再結(jié)合磷酸基團(tuán)進(jìn)行磷酸化[40]。將大白菜幼苗從黑暗環(huán)境轉(zhuǎn)移到光照環(huán)境中,BcNDPK2表達(dá)急劇增加[18]。擬南芥AtNDPK2還與植物特有的Rho小G蛋白的ROP蛋白家族相互作用,可以激活鳥苷三磷酸酶(GTPase),有研究者認(rèn)為AtNDPK2可能是光敏色素介導(dǎo)的信號(hào)與G蛋白介導(dǎo)信號(hào)中缺失的一環(huán)[36]。
光合作用是活性氧(Reactive oxygen species,ROS)和H2O2的一個(gè)重要來源,而定位在葉綠體上的NDPK II參與MAPK級(jí)聯(lián)反應(yīng),從而在清除活性氧中起到重要作用。NDPK II與氧化脅迫呈正相關(guān)。經(jīng)H2O2處理,水稻根部OsNDPK2表達(dá)上調(diào)[42]。轉(zhuǎn)入 AtNDPK2 的苜蓿植株[71]、甘薯植株[72]、白楊植株[73]對(duì)氧化脅迫的耐受性增加。轉(zhuǎn)入AtNDPK2的水稻植株,清除超氧化物和過氧化氫等活性氧自由基的基因OsAPX1,OsAPX2和OsSodB表達(dá)量增加[35],同時(shí)表現(xiàn)出對(duì)20% PEG的滲透壓力、100 mmol/L NaCl的鹽分脅迫、紫外線照射和臭氧處理有很高的耐受性[74]。轉(zhuǎn)入AtAPX1的煙草BY-2細(xì)胞系,NtNDPK2與AtAPX1相互作用,調(diào)節(jié)ROS含量[32]。
研究者構(gòu)建過氧化物酶SWPA2的啟動(dòng)子與AtNDPK2基因的表達(dá)載體轉(zhuǎn)入甘薯中,發(fā)現(xiàn)該轉(zhuǎn)基因植株對(duì)甲基紫精的耐受性增強(qiáng),經(jīng)甲基紫精(Methyl viologen,MV)處理,該轉(zhuǎn)基因植株的3個(gè)抗氧化酶(過氧化氫酶、抗壞血酸鹽酶、過氧化氫酶)活性均增加,表現(xiàn)出對(duì)低溫、干旱脅迫耐受性增強(qiáng)[77]。這表明AtNDPK2可以有效地調(diào)節(jié)源自于環(huán)境壓力所引起的過氧化物。同樣的表達(dá)載體也轉(zhuǎn)入到馬鈴薯中,轉(zhuǎn)基因植株也出現(xiàn)同樣的表型[76]。
通過酵母雙雜交實(shí)驗(yàn),發(fā)現(xiàn)AtNDPK2參與各種脅迫因子激活的信號(hào)途徑,與SOS2蛋白激酶相互作用[38,76]、誘導(dǎo)與壓力信號(hào)轉(zhuǎn)導(dǎo)途徑相關(guān)的兩個(gè)絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK):AtMPK3和 AtMPK6的磷酸化[38]。有研究表明,它還與過氧化氫酶CAT2、CAT3相互作用[77],在豌豆[41]和擬南芥[37]中也發(fā)現(xiàn) NDPK 可以直接與CAT亞型互作。過表達(dá)AtNDPK2的擬南芥植株,過氧化氫酶、過氧化物酶、硫氧還蛋白、硫氧還蛋白還原酶的表達(dá)均增加[78],表現(xiàn)出ROS、H2O2含量降低[38]。這表明NDPK II通過調(diào)節(jié)細(xì)胞的氧化還原條件在ROS、H2O2介導(dǎo)的MAPK級(jí)聯(lián)反應(yīng)中起到作用[38]。
NDPK II還可能參與了生長(zhǎng)素傳導(dǎo)途徑。擬南芥ndpk2突變表現(xiàn)出下胚軸的變短[33],對(duì)生長(zhǎng)素極性運(yùn)輸抑制劑的更高敏感度,對(duì)生長(zhǎng)素的運(yùn)輸增強(qiáng),其中NDPK II充當(dāng)激素轉(zhuǎn)運(yùn)體的角色[34]。敲除AtNDPK2的植株表現(xiàn)出根及幼苗生長(zhǎng)緩慢[38]。
植物NDPK III主要定位于線粒體的膜間隙[47]、內(nèi)膜[47]和葉綠體類囊體膜[79]中,主要參與能量代謝和其他核苷酸代謝酶間的互作、細(xì)胞的程序性死亡這幾個(gè)方面起到重要作用。此外,在油菜中,它作為激酶還可以使自交不親和關(guān)鍵因子SRK的激酶域磷酸化[81]。
位于線粒體內(nèi)膜的NDPK III通過與腺嘌呤核苷酸轉(zhuǎn)運(yùn)體相互作用,參與細(xì)胞的能量代謝。Northern印跡分析表明:在豌豆的不同發(fā)育階段,PsNDPK3表達(dá)量不同,與老葉相比在嫩葉中NDPK III表達(dá)量更高[46],在生殖器官(花及豆莢)中表達(dá)比其在營(yíng)養(yǎng)組織(根、葉)中高[47]。擬南芥快速分裂的花序和根部等對(duì)線粒體需求較大的組織中,AtNDPK3的表達(dá)量更高,擬南芥花發(fā)育后期的絨氈層、胚珠及花瓣中,AtNDPK4的轉(zhuǎn)錄水平增加[19]。在大白菜中,也發(fā)現(xiàn)此種現(xiàn)象[18]。這種結(jié)果可能是與線粒體呼吸活動(dòng)的下降相關(guān)[19]。
免疫共沉淀實(shí)驗(yàn)發(fā)現(xiàn)豌豆線粒體膜上的PsNDPK3與線粒體內(nèi)膜上腺嘌呤核苷酸轉(zhuǎn)運(yùn)體相互識(shí)別[48],以此來介導(dǎo)細(xì)胞質(zhì)基質(zhì)中ATP的合成和胞漿中ADP的交換。用呼吸代謝的產(chǎn)物蔗糖或葡萄糖處理擬南芥葉片后,AtNDPK3的表達(dá)上調(diào),AtNDPK4轉(zhuǎn)錄水平略微受到的抑制[54]。有研究者提出AtNDPK4可能對(duì)AtNDPK3起到一個(gè)補(bǔ)充作用[19]。蔗糖誘導(dǎo)擬南芥基因AtWRKY4和AtWRKY34,在wrky4突變體中,葡萄糖誘導(dǎo)的AtNDPK3下調(diào)了了38%,而在wrky34突變體中,蔗糖處理后,AtNDPK3 上調(diào)了 31%[54]。
位于線粒體膜間隙的NDPK III通過與腺苷酸激酶(AK)相互作用,來參與細(xì)胞的程序性死亡[81]。熱擊處理煙草BY-2(Bright Yellow-2)細(xì)胞系,在細(xì)胞程序性死亡早期,煙草NtNDPK3活性受抑制,導(dǎo)致腺苷酸平衡的失調(diào)[45]。同樣在豌豆中,也存在這一調(diào)節(jié)機(jī)制[49]。通過親和層析純化分離出維持豌豆細(xì)胞中腺苷酸的動(dòng)態(tài)平衡的腺苷酸激酶,發(fā)現(xiàn)其與線粒體膜間隙中的PsNDPK3相互作用[50];重組酶的體外實(shí)驗(yàn)表明腺苷酸激酶刺激NDPK的活性,NDPK抑制腺苷酸激酶的活性[51]。同時(shí)cAMP以及Ca2+對(duì)二者均起到抑制作用[52]。
豌豆NDPK III可以作為核酶,裂解DNA。豌豆PsNDPK3可以裂解多種特殊結(jié)構(gòu)的DNA,如超螺旋質(zhì)粒DNA、高度結(jié)構(gòu)化的RNA:tRNA、線粒體基因atp9 mRNA的3'-非翻譯區(qū)(3'-UTR),這表明NDPK III具有核酶活性,但是對(duì)核酸的結(jié)構(gòu)有一定要求。ndpk3突變體(H117D,S69A)中PsNDPK3的核酶活性仍然存在,這表明NDPK III的核酶活性和激酶活性相互獨(dú)立,互不干擾[53]。
植物NDPK IV基因僅從擬南芥和水稻的基因組中發(fā)現(xiàn)。二者序列相似度達(dá)67%。均含有一個(gè)內(nèi)質(zhì)網(wǎng)保守信號(hào)HDEL序列,故預(yù)測(cè)其定位于內(nèi)質(zhì)網(wǎng)。關(guān)于其具體功能,尚未有研究。
NDPK除了作為激酶起到磷酸化及自身磷酸化作用維持植物體內(nèi)核苷酸平衡外,NDPK I主要參與植物生長(zhǎng)發(fā)育、非生物脅迫、病菌應(yīng)激、激素響應(yīng);NDPK II主要參與光合作用、清除活性氧;NDPK III主要參與能量代謝、細(xì)胞程序性死亡。對(duì)植物NDPK的研究已有多年,在大多數(shù)植物中均發(fā)現(xiàn)了NDPK的存在。盡管如此,目前的研究仍然集中在前3種NDPK,NDPK IV的研究目前仍停留在對(duì)其序列的生物信息學(xué)分析,對(duì)NDPK IV深入研究,可能發(fā)現(xiàn)NDPK的新功能。
NDPK除了起到以上的作用外,還有一些特殊的功能。例如,在玉米中發(fā)現(xiàn)可以結(jié)合DNA的G4結(jié)構(gòu)NDPK I;在馬鈴薯中發(fā)現(xiàn)參與淀粉和纖維素合成的NDPK I;在擬南芥中發(fā)現(xiàn)參與生長(zhǎng)素傳導(dǎo)的NDPK II;在豌豆中發(fā)現(xiàn)具有核酶活性的NDPK III。此外,雖然有實(shí)驗(yàn)證明豌豆NDPK III的核酶活性位點(diǎn)與其激酶活性位點(diǎn)相互獨(dú)立,但其核酶活性位點(diǎn)尚未確定。NDPK在其他植物中是否也存在這些特殊的作用機(jī)制,需要進(jìn)一步的研究。
值得注意的是,4種NDPK中NDPK I在抵抗環(huán)境脅迫中起到重要作用、NDPK II通過參與MAPK級(jí)聯(lián)反應(yīng)抵抗氧化脅迫,起到清除活性氧的功能。針對(duì)NDPK這類功能進(jìn)行深入研究,有助于提高植物對(duì)抗環(huán)境脅迫,培育植物抗逆新品種。
[1]Krebs HA, Hems R. Some reactions of adenosine and inosine phosphates in animal tissues[J]. Biochim Biophys Acta, 1953, 12(1/2):172-180.
[2]Edlund B. Purification of a nucleoside diphosphate kinase from pea seed and phosphorylation of the enzyme with adenosine(32 P)triphosphate[J]. Acta Chem Scand, 1971, 25(4):1370-1376.
[3]Morera S, Chiadmi MG, Lascu I, et al. Mechanism of phosphate transfer by nucleoside diphosphate kinase:X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and dictyostelium[J]. Biochemistry, 1995, 34(35):11062-11070.
[4]Dorion S, Dumas F, Rivoal J. Autophosphorylation of Solanum chacoense cytosolic nucleoside diphosphate kinase on Ser117[J].J Exp Bot, 2006, 57(15):4079-4088.
[5]Johansson M, Mackenziehose A, Andersson I, et al. Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase. Identification of residues involved in serine phosphorylation and oligomerization[J]. Plant Physiol, 2004, 136(2):3034-3042.
[6]Shen Y, Kim J, Song PS. Autophosphorylation of Arabidopsis nucleoside diphosphate kinase 2 occurs only on its active histidine residue[J]. Biochemistry, 2006, 45(6):1946-1949.
[7]Dorion S, Rivoal J. Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato[J]. Planta, 2006, 224(1):108-124.
[8]Dorion S, Clendenning A, Rivoal J. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum rootsb alters growth, respiration and carbon metabolism[J]. Plant J, 2017, 89(5):914-926.
[9]Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, et al. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism[J]. J Exp Bot, 2011, 62(8):2521-2569.
[10]Kav NV, Srivastava S, Goonewardene L, et al. Proteome-level changes in the roots of Pisum sativum in response to salinity[J].Ann Appl Biol, 2004, 145(2):217-230.
[11]Zhou QY, Xie ZM, Zhang AG, et al. Cloning, expression and characterization of a nucleoside diphosphate kinase(NDPK)gene from tobacco[J]. Prog Nat Sci-Mater, 2007, 17(8):906-912.
[12]Guo G, Lv D, Yan X, et al. Proteome characterization of developing grains in bread wheat cultivars(Triticum aestivum L.)[J]. BMC Plant Biol, 2012, 12(1):147-171.
[13]Fatehi F, Hosseinzadeh A, Alizadeh H, et al. The Proteome response of Hordeum spontaneum to salinity stress[J]. Cereal Res Commun, 2013, 41(1):78-87.
[14]梁潘霞, 李楊瑞, 楊麗濤. 甘蔗核苷二磷酸激酶(NDPK1)基因克隆及表達(dá)分析[J]. 熱帶作物學(xué)報(bào), 2012, 33(12):2199-2205.
[15]Harris N, Taylor JE, Roberts JA. Isolation of a mRNA encoding a nucleoside diphosphate kinase from tomato that is up-regulated by wounding[J]. Plant Mol Biol, 1994, 25(4):739-742.
[16]Kopylov M, Bass HW, Stroupe ME. The maize(Zea mays L.)nucleoside diphosphate kinase1(ZmNDPK1)gene encodes a human NM23-H2 homologue that binds and stabilizes G-quadruplexDNA[J]. Biochemistry, 2015, 54(9):1743-1757.
[17]Zhang J, Fukui T, Ichikawa A. A third type of nucleoside diphosphate kinase from spinach leaves:purification,characterization and amino-acid sequence[J]. Biochim Biophys Acta, 1995, 1248(1):19-26.
[18]Shin DH, In JG, Lim YP, et al. Molecular cloning and characterization of nucleoside diphosphate(NDP)kinases from Chinese cabbage(Brassica campestris)[J]. Mol Cells, 2004, 17(1):86-94.
[19]Hammargren J, Sundstr?m J, Johansson M, et al. On the phylogeny,expression and targeting of plant nucleoside diphosphate kinases[J]. Physiol Plantarum, 2007, 129(1):79-89.
[20]Ove?ka M, Taká? T, Komis G, et al. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis[J]. J Exp Bot, 2014, 65(9):2335-2350.
[21]王鳳茹, 董金皋, 司賀龍, 等. 水稻OsNDPK1基因在提高植物抗病性方面的應(yīng)用:中國(guó), CN201210143843. 8[P]. 2013-11-13.
[22]Pan L, Kawai M, Yano A, et al. Nucleoside diphosphate kinase required for coleoptile elongation in rice[J]. Plant Physiol, 2000,122(2):447. 452.
[23]Yano A, Umeda M, Uchimiya H. Expression of functional proteins of cDNA encoding rice nucleoside diphosphate kinase(NDK)in Escherichia coli, and organ-related alteration of NDK activities during rice seed germination(Oryza sativa, L.)[J]. Plant Mol Biol, 1995, 27(5):1053-1058.
[24]Lee DG, Ahsan N, Lee SH, et al. An approach to identify coldinduced low-abundant proteins in rice leaf[J]. CR Biol, 2007,330(3):215-225.
[25]Chen JH, Tian L, Xu HF, et al. Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis[J]. Plant Omics J Plant, 2012, 5(2):194-199.
[26]Lin SK, Chang MC, Tsai YG, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J].Proteomics, 2005, 5(8):2140-2156.
[27]Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell, 2001,13(4):889-905.
[28]Cho SM, Shin SH, Kim KS, et al. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1(OsNDPK1)in rice plants upon infection with bacterial pathogens[J]. Mol Cells,2004, 18(3):390-395.
[29]凌丹燕, 路梅. 細(xì)菌性條斑病菌JH01誘導(dǎo)水稻抗病均一化差減文庫的構(gòu)建[J]. 安徽農(nóng)業(yè)科學(xué), 2016(2):188-191.
[30]Ahsan N, Lee DG, Lee KW, et al. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach[J]. Plant Physiol Bioch, 2008, 46(12):1062-1070.
[31]Salekdeh GH, Siopongco J, Wade LJ, et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics,2002, 2(9):1131-45.
[32]Ishikawa T, Morimoto Y, Madhusudhan R, et al. Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells[J]. Plant Cell Physiol, 2005, 46(8):1264-1271.
[33]Choi G, Yi H, Lee J, et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2[J]. Nature, 1999, 401(6753):610-613.
[34]Choi G, Kim JI, Hong SW, et al. A possible role for NDPK2 in the regulation of auxin-mediated responses for plant growth and development[J]. Plant Cell Physiol, 2005, 46(8):1246-1254.
[35]Seong ES, Guo J, Kim YH, et al. Regulations of marker genes involved in biotic and abiotic stress by overexpression of the AtNDPK2 gene in rice[J]. Biochem Bioph Res Co, 2007, 363(1):126-132.
[36]Shen Y, Han Y, Kim J, et al. Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein[J]. Bmb Rep,2008, 41(9):645-650.
[37]Fukamatsu Y, Yabe N, Hasunuma K. Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases[J]. Plant Cell Physiol, 2003, 44(10):982-989.
[38]Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J].P Natl Acad Sci USA, 2003, 100(1):358-363.
[39]Hamada T, Tanaka N, Noguchi T, et al. Phytochrome regulates phosphorylation of a protein with characteristics of a nucleoside diphosphate kinase in the crude membrane fraction from stem sections of etiolated pea seedlings[J]. J Photoch Photobio B Bio,1996, 33(2):143-151.
[40]Tanaka N, Ogura T, Noguchi T, et al. Phytochrome-mediated light signals are transduced to nucleoside diphosphate kinase in Pisumsativum L. cv. Alaska[J]. J Photoch Photobio B, 1998, 45(2-3):113-121.
[41]Haque ME, Yoshida Y, Hasunuma K. ROS resistance in Pisum sativum cv. Alaska:the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants[J]. Planta, 2010, 232(2):367-382.
[42]白曉娟, 劉麗娟, 張春華, 等. H2O2預(yù)處理對(duì)不同水稻品種Cd耐性的影響[J]. 中國(guó)水稻科學(xué), 2010, 24(4):391-397.
[43]丁艷, 韓卓, 王澤港, 等. 不同基因型玉米幼苗對(duì)低磷條件的響應(yīng)[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(30):32-34.
[44]Zhang J, Fukui T, Ichikawa A. A third type of nucleoside diphosphate kinase from spinach leaves:purification,characterization and amino-acid sequence[J]. Biochim Biophys Acta, 1995, 1248(1):19-26.
[45]Valenti D, Vacca RA, Pinto MCD, et al. In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner[J]. Biochim Biophys Acta,2007, 1767(1):66-78.
[46]EscobarGalvis ML, H?kansson G, Alexciev K, et al. Cloning and characterisation of a pea mitochondrial NDPK[J]. Biochimie,1999, 81(12):1089-1096.
[47]Galvis MLE, Marttila S, HaKansson G, et al. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein[J]. Plant Physiol,2001, 126(1):69-77.
[48]Knorpp C, Johansson M, Baird AM. Plant mitochondrial nucleoside diphosphate kinase is attached to the membrane through interaction with the adenine nucleotide translocator[J]. Febs Letters, 2003,555(2):363-366.
[49]Galvis MLE, Marttila S, HaKansson G, et al. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein[J]. Plant Physiol,2001, 126(1):69-77.
[50]Johansson M. The role of nucleoside diphosphate kinase in plant mitochondria[D]. Acta U Agr Sueciae, 2006.
[51]Monika J, Jenni H, Eva U, et al. The activities of nucleoside diphosphate kinase and adenylate kinase are influenced by their interaction[J]. Plant Sci, 2008, 174(2):192-199.
[52]Hammargren J, Sundstr?m J, Johansson M, et al. On the phylogeny, expression and targeting of plant nucleoside diphosphatekinases[J]. Physiol Plantarum, 2007, 129(1):79-89.
[53]Hammargren J, Salinas T, Maréchal-Drouard L, et al. The pea mitochondrial nucleoside diphosphate kinase cleaves DNA and RNA[J]. Febs Letters, 2007, 581(18):3507-3511.
[54]Hammargren J, Rosenquist S, Jansson C, et al. A novel connection between nucleotide and carbohydrate metabolism in mitochondria:sugar regulation of the Arabidopsis, nucleoside diphosphate kinase 3a gene[J]. Plant Cell Rep, 2008, 27(3):529-534.
[55]Kihara A, Saburi W, Wakuta S, et al. Physiological and biochemical characterization of three nucleoside diphosphate kinase isozymes from rice(Oryza sativa L.)[J]. Biosci Biotech Bioch, 2011, 75(9):1740-1745.
[56]Manigbas NL, Park DS, Park SK, et al. Enhanced tolerance of transgenic rice overexpressing Arabidopsis thaliana nucleoside diphosphate kinase(AtNDPK2)against various environmental stresses[J]. Philipp Agric Sci, 2011, 94(1):29-37.
[57]Hetmann A, Kowalczyk S. Nucleoside diphosphate kinase isoforms regulated by phytochrome A isolated from oat coleoptiles[J].Acta Biochimica Poloni, 2009, 56(1):143-153.
[58]Zrenner R, Stitt M, Sonnewald U, et al. Pyrimidine and purine biosynthesis and degradation in plants[J]. Annu Rev Plant Biol,2006, 57(1):805-836.
[59]Anderca MI, Furuichi T, Muto S. Mitochondrial NDP kinase from Dunaliella tertiolecta(Chlorophyceae, Chlorophyta)[J]. Phycol Res, 2003, 51(3):147-153.
[60]Dharmasiri S, Harrington HM, Dharmasiri N. Heat shock modulates phosphorylation status and activity of nucleoside diphosphate kinase in cultured sugarcane cells[J]. Plant Cell Rep, 2010, 29(11):1305-1314.
[61]Cao TS, Srivastava S, Rahman MH, et al. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection[J]. Plant Sci, 2008, 174(1):97-115.
[62]Sharma N, Rahman MH, Strelkov S, et al. Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae[J]. Plant Sci, 2007, 172(1):95-110.
[63]Postel EH. Multiple biochemical activities of NM23/NDP kinase in gene regulation[J]. J Bioenerg Biomer, 2003, 35(1):31-40.
[64]Lübeck J, Soll J. Nucleoside diphosphate kinase from pea chloroplasts:purification, cDNA cloning and import into chloroplasts[J]. Planta, 1995, 196(4):668-673.
[65]Bovet L, Meylan-Bettex M, Eggman T, et al. CDP phosphotransferase activity in spinach intact chloroplasts:Possible involvement of nucleoside diphosphate kinase II[J].Plant Physiol Bioch, 1999, 37(37):645-652.
[66]Hamada T, Hasunuma K, Komatsu S. Phosphorylation of proteins in the stem section of etiolated rice seedling irradiated with red light[J]. Biol Pharm Bull, 1999, 22(2):122-126.
[67]Ito K, Hamada T, Hasunuma K. Blue light signal transmission to 15 kDa proteins in the crude membrane fraction from the stem section of etiolated pea seedlings[J]. J Photoch Photobio B, 1995, 28(3):223-227.
[68]Im YJ, Kim JI, Shen Y, et al. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochromemediated light signaling[J]. J Mol Biol, 2004, 343(3):659-670.
[69]Kim JI, Song PS. Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction[J]. Plant Cell, 2004, 16(10):2629-2640.
[70]Hetmann A, Wujak M, Kowalczyk S. Protein transphosphorylation during the mutual interaction between phytochrome a and a nuclear isoform of nucleoside diphosphate kinase is regulated by red light[J]. Biochemistry, 2016, 81(10):1153-1162.
[71]王麗娜, 王麗艷, 劉景文, 等. AtNDPK2基因轉(zhuǎn)化敖漢苜蓿及其耐鹽性分析[J]. 激光生物學(xué)報(bào), 2014, 23(1):65-70.
[72]侯夫云, 趙兵, 王慶美, 等. 轉(zhuǎn)AtNDPK2基因甘薯的耐鹽性鑒定[J]. 山東農(nóng)業(yè)科學(xué), 2014(2):29-31.
[73]Kim YH, Kim MD, Choi YI, et al. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance[J]. Plant Biotechnol J, 2011, 9(3):334-347.
[74]Manigbas NL, Park DS, Park SK, et al. Enhanced tolerance of transgenic rice overexpressing Arabidopsis thaliana nucleoside diphosphate kinase(AtNDPK2)against various environmental stresses[J]. Philipp Agric Sci, 2011, 94(1):29-37.
[75]Kim YH, Lim S, Yang KS, et al. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweet potato plants[J]. Mol Breeding, 2009, 24(3):233-244.
[76]Tang L, Kim MD, Yang KS, et al. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase2 against multiple environmental stresses[J]. Transgenic Res,2008, 17(4):705-715.
[77]Verslues PE, Batelli G, Grillo S, et al. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2signaling in Arabidopsis thaliana[J]. Mol Cell Biol, 2007, 27(22):7771-7780.
[78]Yang KA, Moon H, Kim G, et al. NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis[J]. P Jpn Acad B-Phys,2003, 79(3):86-91.
[79]Spetea C, Hundal T, Lundin B, et al. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen[J]. P Natl Acad Sci USA, 2004, 101(5):1409-1414.
[80]Monika J, Jenni H, Eva U, et al. The activities of nucleoside diphosphate kinase and adenylate kinase are influenced by their interaction[J]. Plant Sci, 2008, 174(2):192-199.
[81]Matsushita Y, Suzuki T, Kubota R, et al. Isolation of a cDNA for a nucleoside diphosphate kinase capable of phosphorylating the kinase domain of the self-incompatibility factor SRK of Brassica campestris[J]. J Exp Bot, 2002, 53(369):765-767.
Research Advances of NDPKs in Plants
ZHU Xin-ni1WANG Shan-shan1ZHOU Jia-qin2ZHU Shi-hua2
(1. School of Marine Science,Ningbo University,Ningbo 315211 ;2. College of Science and Technology,Ningbo University,Ningbo 315211)
Nucleoside diphosphate kinases(NDPKs)are a class of highly conserved proteins with a size between 70 to 100 kD. They exist as hexamers in most organisms while as tetramers only in few prokaryotes. NDPKs are mainly responsible for keeping the in vivo cellular balance between nucleoside diphosphates and nucleoside triphosphates. Four types of NDPKs,i.e.,NDPK Ⅰ,NDPK Ⅱ,NDPK Ⅲ and NDPK Ⅳ,are found in plants,however,till now researches have been mainly focused on the first three. NDPKIs are found to be involved in plant growth and development,and response to abiotic stress,pathogens and hormones. NDPK Ⅱ s take part in photosynthesis and removal of reactive oxygen species. NDPKIIIs are involved in energy metabolism and programmed cell death. NDPKIVs are only found in Arabidopsis and rice genomes and predicted to be located in endoplasmic reticulum with unknown function. Besides,NDPKs also display special functions in certain plants,such as DNA replication,starch and cellulose synthesis,auxin signaling and ribozyme activities;however,whether these functions are species-specific needs further study. This article summarizes the phylogenetic analysis and the most recent research progress on biological functions of NDPKs. Finally,the article discusses the prospect of NDPKs research,thus it will facilitate the in-depth and comprehensive study of their function in plants in the future.
nucleoside diphosphate kinase;NDPK;phylogeny analysis;function
10.13560/j.cnki.biotech.bull.1985.2017-0261
2017-04-01
國(guó)家自然科學(xué)基金項(xiàng)目(31371595)
朱馨妮,女,碩士研究生,研究方向:水稻根系發(fā)育;E-mail:xinnizhu@163.com
朱世華,博士,教授,研究方向:水稻分子生物學(xué);E-mail:zhushihua@nbu.edu.cn
(責(zé)任編輯 狄艷紅)