仲秋艷 張興秋
(1.濟(jì)寧醫(yī)學(xué)院 信息技術(shù)中心,山東 濟(jì)寧 272067;2.濟(jì)寧醫(yī)學(xué)院 醫(yī)學(xué)信息工程學(xué)院,山東 日照 276826)
含p-Laplacian算子高階分?jǐn)?shù)階微分方程的唯一迭代正解①
仲秋艷1張興秋2
(1.濟(jì)寧醫(yī)學(xué)院 信息技術(shù)中心,山東 濟(jì)寧 272067;2.濟(jì)寧醫(yī)學(xué)院 醫(yī)學(xué)信息工程學(xué)院,山東 日照 276826)
利用單調(diào)迭代技巧,得到了一類含p-Laplacian算子的高階分?jǐn)?shù)階微分方程非局部問題迭代正解的唯一性結(jié)果,同時(shí)給出了解的迭代程序和誤差估計(jì).
分?jǐn)?shù)階方程, 單調(diào)迭代,p-Laplacian算子,正解,唯一性
近年來,由于在復(fù)雜介質(zhì)的電動力學(xué)、電磁學(xué)、聚合物流變學(xué)、分?jǐn)?shù)控制系統(tǒng)與分?jǐn)?shù)控制器、神經(jīng)的分?jǐn)?shù)模型以及分?jǐn)?shù)回歸模型等諸多方面的應(yīng)用[1-3],分?jǐn)?shù)階微分方程的研究得到了廣泛的關(guān)注和迅速的發(fā)展.文獻(xiàn)[4-16],在不同的邊值條件下,獲得了分?jǐn)?shù)階非局部邊值問題正解以及多個(gè)正解的存在性.
如何求出分?jǐn)?shù)階微分方程的正解在應(yīng)用上具有重要的意義.本文主要目的是給出下列具有P-Laplacian算子和積分邊值條件的分?jǐn)?shù)階微分方程(下稱PFDE)
(1)
與文獻(xiàn)[4-7]相比,本文具有以下特征:首先邊值條件更加廣泛;其次,微分方程含有P-Laplacian,這使得考慮的問題更加一般;最后,本文不但給出了解的存在性結(jié)果,而且給出了解的迭代程序及誤差估計(jì).顯然,稍加修改,本文結(jié)果可用于含Riemann-Stieltjes積分的邊值問題.
有關(guān)分?jǐn)?shù)階微積分的基本定義和性質(zhì)可在文獻(xiàn)[1-4]找到,從略.
(2)
引理1[17]對y∈C[0,1],y≥0,(2)的唯一解為
其中
G(t,s)=G1(t,s)+G2(t,s),
(3)
(4)
(5)
顯然,G(t,s)在[0,1]×[0,1]上連續(xù).
(a1)G(t,s)≥m1tα-1s(1-s)α-1-i,?t,s∈[0,1];
(a2)G(t,s)≤M1tα-2s(1-s)α-1-i,?t,s∈[0,1];
(a3)G(t,s)>M1tα-1(1-s)α-1-i,?t,s∈[0,1];
(a4)G(t,s)>0,?t,s∈(0,1);
記e(t)=tα-1,本文使用以下條件.
(H)f∈C((0,1)×R+,R+),對于固定的t∈(0,1)以及c∈(0,1),f(t,u)關(guān)于u非減且存在常數(shù)0 f(t,cu)≥φp[c(1+η(c))]f(t,u), (6) 這里η(c)=m(c-r-1). 注1 如果c≥1,那么(6)式等價(jià)于 (7) 設(shè)E=C[0,1],令P={x∈C[0,1]∶x(t)≥0,t∈[0,1]}.則P是Banach空間E中正規(guī)常數(shù)為1的正規(guī)錐.定義E的子集D如下 D={u∈P∶存在正數(shù)lu<1 (8) 注意到e(t)∈P,易知D非空.定義算A如 (9) 定理1 設(shè)條件(H)滿足.如果 (10) 那么PFDE(1)有唯一正解w*∈D,且存在常數(shù) 使得ke(t)≤w*(t)≤Ke(t),t∈[0,1], 證明首先證明算子A映D到D. 事實(shí)上,對任意u∈D,存在正數(shù)Lu>1>lu滿足 lue(t)≤u(t)≤Lue(t),t∈[0,1]. (11) 由條件(H),引理2,(7),(10),(11)諸式得 (12) 及 (13) 這里, 令 于是 取 (14) 則0<δ<1.由(14)式得 [1+η(δ)]-1w0≤Aw0≤[1+η(δ)]w0. (15) un=Aun-1,vn=Avn-1,n=1,2,…, (16) 注意到f(t,u)關(guān)于u非減,由(6)和(7)兩式得 (17) (18) 根據(jù)(15)-(18)諸式,我們有 u1=Au0≥δ[1+η(δ)]Aw0≥δw0=u0, (19) (20) 由(19)、(20)式,利用數(shù)學(xué)歸納法,我們有 u0≤u1≤…≤un≤…≤vn≤…≤v1≤v0. (21) 此外,由(17)式得 (22) 注意到u0=δ2v0,我們有 (23) 由于P為正規(guī)常數(shù)為1的正規(guī)錐,故對于任意正整數(shù)P,由un+p-un≤vn-un,我們有 (24) 即{un}是一個(gè)Cauchy列.于是un收斂于某w*∈D.顯然 ‖vn-w*‖≤‖vn-un‖+‖un-w*‖, 結(jié)合(24)式,我們有vn→w*及un≤w*≤vn,故,un+1=Aun≤Aw*≤Avn=vn+1,n=1,2,…,令n→+∞取極限得w*=Aw*,即,w*∈D是A的一個(gè)不動點(diǎn). 取初值w0=e(t), 則le≤Ae≤Le,這里 u1=Au0≥k[1+η(k)]Ae≥k[1+η(k)]le≥ke=u0, (25) v1=Av0≤K[1+η(K-1)]-1Ae≤K[1+η(K-1)]-1Le≤Ke=v0. (26) 根據(jù)(25)及(26)兩式可知唯一解w*滿足ke(t)≤w*(t)≤Ke(t),t∈[0,1]. (27) 下面在比條件(H)更強(qiáng)的條件下研究PFDE(1).列出以下條件: (H*)f∈C((0,1)×R+,R+),對于任意固定的t∈(0,1),c∈(0,1),f(t,u)關(guān)于u非減,且存在常數(shù)0<λ*<1使得對于任意(t,u)∈(0,1)×R+,f(t,cu)≥φp(cλ*)f(t,u). (H0)f∈C((0,1)×R+,R+),對于任意固定的t∈(0,1),c∈(0,1),f(t,u)關(guān)于u非減,且存在常數(shù)0<λ<1使得對于任意(t,u)∈(0,1)×R+,f(t,cu)≥cλf(t,u). (H1)f∈C(0,1)×R+,R+),存在常數(shù)0<λ1≤λ2<1使得對于任意(t,u)∈(0,1)×R+,cλ2f(t,u)≤f(t,cu)≤cλ1f(t,u),0 證由條件(H*),對任意c∈(0,1),(t,u)∈(0,1)×R+,我們有 f(t,cu)≥φp(cλ*)f(t,u)=φp(cc-1(1-λ*))f(t,u)≥φp[c(1+η(c))]f(t,u), 這里η(c)=m(c-r-1),m=1,r=1-λ*,于是,由定理1可證定理2. 注2 從定理2的證明過程可知,條件(H)弱于(H*).另外,由文獻(xiàn)[12]注 3.4可知(H0)弱于(H1).文獻(xiàn)[12],[14]利用條件(H0)研究微分方程解的存在唯一性,而文獻(xiàn)[18-20]則利用條件(H1)研究某些整數(shù)階微分方程正解存在的充要條件.易知當(dāng)p>2時(shí),(H*)弱于(H0). 考察下列分?jǐn)?shù)階微分方程 (28) [1] Samko S G, Kilbas A A, Marichev O I. Fractional Integral and Derivativs[C].//Theory and Applications. Gordon and Breach, Switzerland, 1993. [2] Podlubny I.Fractional Differential Equations[C].//Mathematics in science and Engineering.NewYork, London, Toronto: Academic Press, 1999. [3] Kilbas A A,Srivastava H M,TrujilloJ J.Theory and Applications of Fractional Differential Equationss[C]. //North-Holland Mathematics Studies. Elsevier Science B V Amsterdam, 2006. [4] Wang Yong-qing,Liu Li-shan,Wu Yong-hong. Positive solutions for a nonlocal fractional differential equation[J]. Nonlinear Anal, 2011, 74: 3 599-3 605. [5] Cabada A, Wang Guotao.Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J].J Math Anal App,2012,389:403-411. [6] Feng Mei-qiang, Zhang Xue-mei, Ge Wei-gao.New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J].Boundary Value Problems,2011,2011:1-20. [7] Wang Lin,Zhang Xing-qiu.Existence of positive solutions for a class of higher-order nonlinear fractional differential equations with integral boundary conditions and a parameter[J].J Appl Math Comput, 2014, 44: 293-316. [8] Zhang Xing-qiu, Wang Lin Sun Qian. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter[J]. Appl Math Comput, 2014, 226: 708-718. [9] Zhang Xin-guang, Liu Li-shan, Wu Yong-hong, et al. The iterative solutions of nonlinear fractional differential equations[J]. Appl Math Comput, 2013, 219: 4 680-4 691. [10] Li Shun-jie, Zhang Xin-guang,Wu Yong-hong,et al. Extremal solutions forp-Laplacian differential systems via iterative computation[J]. Appl Math Lett, 2013, 26:1 151-1 158. [11] Sun Yong-ping, Zhao Min. Positive solutions for a class of fractional differential equations with integral boundary conditions[J]. Appl Math Lett, 2014, 34: 17-21. [12] Zhang Xin-guang, Han Yue-feng. Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations[J]. Appl Math Lett, 2012, 25: 555-560. [13] Tian Yuan-sheng, Li Xiao-ping. Existence of positive solution to boundary value problem of fractional differential equations withp-Laplacian operator[J]. J Math Anal Appl, 2015, 47: 237-248. [14] 仲秋艷,張興秋.一類具有p-Laplacian算子的奇異分?jǐn)?shù)階微分方程無窮點(diǎn)邊值問題的正解[J]. 聊城大學(xué)學(xué)報(bào):自然科學(xué)版,2016, 29(2):25-32. [15] Zhang Xing-qiu. Positive solutions for singular higher-order fractional differential equations with nonlocal conditions[J]. J Appl Math Comput, 2015, 49: 69-89. [16] Zhang Xin-guang, Liu Li-shan. A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems withp-Laplacian[J]. Nonlinear Anal, 2008, 68: 3 127-3 137. [17] 仲秋艷,張興秋.含參數(shù)及p-Laplacian算子的奇異分?jǐn)?shù)階微分方程積分邊值問題的正解[J].山東大學(xué)學(xué)報(bào):理學(xué)版, 2016, 51(6): 78-84. [18] Wei Zhong-li. A necessary and sufficient condition for the existence of positive solutions of singular super-linearm-point boundary value problems[J]. Appl Math Comput, 2006, 179: 67-78. [19] Wei Zhong-li, Pang Chang-ci. The method of lower and upper solutions for fourth order singularm-point boundary value problems[J]. J Math Anal Appl, 2006, 322:675-692. [20] Wei Zhong-li.A class of fourth order singular boundary value problems[J].Appl Math Comput,2004, 153: 865-884. UniqueIterativePositiveSolutionforHigher-orderFractionalDifferentialEquationswithp-Laplacian ZHONG Qiu-yan ZHANG Xing-qiu (1.Department of Information Technology, Jining Medical College, Jining 272067, China; 2.School of Medical Information Engineering, Jining Medical College, Rizhao 276826, China) By means of monotone iterative technique, uniqueness results of positive solutions for a class of higher nonlocal fractional differential equations withp-Laplacian are obtained. The iterative sequences of solution and error estimation are also considered. fractional differential equations,monotone iterative technique,p-Laplacian, positive solution, uniqueness 2017-05-12 國家自然科學(xué)基金項(xiàng)目(11571296,11571197);山東省高校科技發(fā)展計(jì)劃項(xiàng)目(J15LI16);山東省自然科學(xué)基金項(xiàng)目(ZR2015AL002)資助 張興秋,E-mail:zhxq197508@163.com. O175.8 A 1672-6634(2017)03-0028-073 應(yīng)用舉例