李 凡,尚慶麗,郝玉華,馬景學,葉存喜,王 鑫
(河北醫(yī)科大學第二醫(yī)院眼科,河北 石家莊 050000)
·論著·
重組CFB-siRNA在脈絡膜新生血管中抑制作用的實驗研究
李 凡,尚慶麗*,郝玉華,馬景學,葉存喜,王 鑫
(河北醫(yī)科大學第二醫(yī)院眼科,河北 石家莊 050000)
目的補體旁路途徑在脈絡膜新生血管(choroidal neovascularization,CNV)的發(fā)生發(fā)展中起重要作用,補體因子B(complement factor B,CFB)作為補體旁路途徑的重要因子可成為阻斷補體活化的靶點。本研究探討重組CFB-siRNA在實驗性CNV中的抑制作用與機制。方法取Brown Norway大鼠45只隨機分為空白對照組、實驗對照組、實驗組各15只(30只眼)??瞻讓φ战M不給予任何干預措施,實驗對照組與實驗組均激光光凝建立大鼠CNV模型。實驗對照組在CFB表達高峰前日尾靜脈注射生理鹽水0.5 μL,實驗組同一時間尾靜脈注射CFB-SiRNA(0.5 μL/75 μg),均隔日注射1次,共注射3次。各組分別于光凝后3、7、14、21、28 d進行熒光素眼底血管造影(fluorescein fundusangiography,FFA),根據熒光素滲漏程度對各光凝斑評分并檢測CNV的生長情況;采用免疫組織化學法檢測各組視網膜脈絡膜組織中CFB、血管內皮生長因子(vascular endothelial growth factor,VEGF)、堿性成纖維細胞因子(basic fibroblast growth factor,BFGF)的表達情況,并測定其灰度值。結果FFA顯示:實驗組與實驗對照組比較,在光凝后7、14、21、28 d CNV發(fā)生率差異有統(tǒng)計學意義(P<0.05)。免疫組織化學檢測結果顯示:空白對照組正常大鼠CFB、VEGF和BFGF在視網膜和脈絡膜中的表達非常弱。CFB表達情況:光凝后3 d實驗組與實驗對照組CFB表達達最高峰,隨后表達減少,光凝后7 d仍有少量表達,光凝后14~28 d表達趨于穩(wěn)定。實驗對照組VEGF、BFGF在光凝后7~14 d表達明顯增多,光凝后21 d達高峰;實驗組VEGF、BFGF在光凝后14、21、28 d表達減少。3組CFB、VEGF和BFGF灰度值在組間、時點間、組間·時點間交互作用差異均有統(tǒng)計學意義(P<0.05)。結論尾靜脈注射CFB-siRNA可抑制實驗性CNV的發(fā)展,通過抑制CFB,阻斷補體旁路途徑,減少CNV形成過程中VEGF、BFGF的表達。
脈絡膜新生血管化;補體因子B;血管內皮生長因子
10.3969/j.issn.1007-3205.2017.11.015
脈絡膜新生血管(choroidal neovascularization,CNV)受多種因素調控[1-6]。關于CNV的確切發(fā)病機制至今尚未明確,也缺少理想有效的治療手段。近期研究發(fā)現補體旁路途徑的激活在實驗性CNV的發(fā)展中起關鍵作用[7],旁路途徑中補體因子B(complement factor B, CFB)可以作為一個重要的靶點來阻斷補體活化的旁路途徑。本研究采用RNAi技術,用CFB-siRNA將CFB沉默,從而阻斷旁路途徑,觀察CFB-siRNA對CFB、血管內皮生長因子(vascular endothelial growth factor,VEGF)、堿性成纖維細胞因子(basic fibroblast growth factor,BFGF)的抑制作用,旨在為CNV的治療開辟新的思路。
1.1 CNV動物模型的制備 健康8~10周雄性Brown Norway(BN)大鼠45只(購于北京維通利華實驗動物技術有限公司),體質量180~200 g,常規(guī)喂養(yǎng),實驗前經裂隙燈、眼底鏡檢查雙眼均正常。10%水合氯醛(0.35 mL/100 g體質量)腹腔注射麻醉,鹽酸丙美卡因滴眼液眼表麻醉,1.5 cm×3.0 cm載玻片作為角膜接觸鏡,應用Coherent Novus-Omni氪離子激光治療機(美國Coherent公司)進行激光光凝,光凝參數為:波長647 nm,光斑直徑50 μm,功率260 mW,曝光時間0.05 s,距視盤2~3個視盤直徑均勻光凝9~10個點。激光光凝時產生氣泡者為擊穿Bruch膜的標志。
1.2 方法
1.2.1 動物分組 45只大鼠隨機分為3組,每組15只、30只眼,分別為空白對照組、實驗對照組、實驗組??瞻讓φ战M不給予任何處理,實驗對照組及實驗組大鼠均氪激光光凝建立CNV模型。實驗對照組在CFB表達高峰前尾靜脈注射生理鹽水0.5 μL;實驗組在CFB表達高峰前日尾靜脈注射CFB-SiRNA(0.5 μL/75 μg)。注射時間:隔日注射1次,共注射3次。
1.2.2 熒光素眼底血管造影檢查 于光凝后3、7、14、21、28 d,隨機選取各組大鼠3只,腹腔注射10%熒光素鈉注射液(0.5 mL/kg),進行熒光素眼底血管造影(fluorescein fundusangiography,FFA),觀察熒光素滲漏范圍及程度,將各時間點出現的CNV光凝斑數目除以該時間點的光凝斑總數(百分數),記為該時段CNV的發(fā)生率。
1.2.3 免疫組織化學法檢測相關因子在視網膜脈絡膜中的表達 各組在上述時間點完成FFA檢查后6 h,待大鼠體內熒光素染料排凈,使用過量的水合氯醛腹腔注射處死大鼠,隨即摘取眼球,固定于FAA固定液中。乙醇梯度脫水,全層石蠟包埋,修整,4~5 μm連續(xù)切片。按照試劑盒說明書行CFB、VEGF、BFGF免疫組織化學檢測。一抗分別為:兔多克隆抗B因子抗體,工作濃度0.5 g/L(美國Santa Cruz Biotechnology公司);兔抗鼠單克隆抗VEGF抗體,工作濃度1 g/L(北京中杉金橋生物技術有限公司);兔多克隆抗BFGF抗體,工作濃度1 g/L(北京中杉金橋生物技術有限公司)。0.01 mol/L檸檬酸鹽緩沖液高溫高壓修復法修復抗原,采用SABC法染色,AEC顯色,經蘇木素復染后封片。于光學顯微鏡下進行100倍和400倍顯微照相,采集陽性片。采用HPIAS-1000型高清晰度彩色病理圖文分析系統(tǒng)觀察染色結果,測定灰度值。
1.3 統(tǒng)計學方法 應用SPSS 16.0軟件分析數據。計量資料比較采用重復測量的方差分析;計數資料比較采用χ2檢驗。P<0.05為差異有統(tǒng)計學意義。
2.1 FFA檢查結果 光凝后3 d,實驗組及實驗對照組的激光斑部位早期均呈弱熒光,晚期熒光增強,熒光素滲漏不明顯,CNV的發(fā)生率差異無統(tǒng)計學意義(P>0.05);光凝后7 d,2組激光光斑部位均有輕度熒光滲漏,實驗組CNV發(fā)生率低于實驗對照組,差異有統(tǒng)計學意義(P<0.05);光凝后14 d,2組激光光斑均呈強熒光,后期熒光素滲漏明顯,CNV發(fā)生率差異有統(tǒng)計學意義(P<0.05);光凝后21 d,實驗對照組與實驗組激光光斑部位出現清晰的不規(guī)則顆粒狀、環(huán)狀及條狀熒光(圖1,2),晚期2組均形成邊界略模糊的高熒光區(qū)(圖3,4),形如花瓣狀的2組CNV發(fā)生率均達高峰,但實驗組CNV發(fā)生率顯著低于實驗對照組,差異有統(tǒng)計學意義(P<0.05);光凝后28 d,2組激光光斑仍有熒光滲漏,實驗組CNV發(fā)生率仍低于實驗組,差異有統(tǒng)計學意義(P<0.05)。見表1。
表1 激光誘導CNV在不同時間的發(fā)生率Table 1 The incidence rate of laser-induced CNV in different time (例數,%)
2.2 CFB、VEGF和BFGF免疫組織化學結果 實驗對照組CFB免疫組織化學檢測:光凝后CFB陽性染色信號見于光凝損傷區(qū)的視網膜全層,損傷區(qū)光斑內CFB表達不均勻,光斑近脈絡膜部位CFB陽性信號的強度明顯高于光斑內部(圖5);光凝后3 d,光斑區(qū)可見大量紅色的團狀CFB陽性反應物,陽性表達達到最高峰(圖6);光凝后7 d,光斑區(qū)內CFB陽性反應物減少(圖7);2~4周時陽性表達趨于穩(wěn)定(圖8)。CFB表達高峰為光凝后3 d。3組CFB、VEGF和BFGF灰度值在組間、時點間、組間·時點間交互作用差異均有統(tǒng)計學意義(P<0.05)。見表2~4。
組別3d7d14d21d28d空白對照組 1.32×106±67862.521.33×106±38186.181.32×106±53474.921.31×106±37417.021.31×106±34647.26實驗對照組 4.87×106±95672.653.58×106±84264.461.34×106±45242.631.24×106±59263.441.21×106±15463.23實驗組 3.70×106±45711.622.25×106±86723.541.24×106±95471.661.21×106±34521.221.19×106±144.37組間 F=204.407 P=0.000時點間 F=139.624 P=0.000組間·時點間F=7.717 P=0.016
組別3d7d14d21d28d空白對照組 1.36×106±26459.891.34×106±41927.211.32×106±50150.471.33×106±48839.931.34×106±38702.89實驗對照組 1.84×106±42854.373.57×106±24465.277.45×106±19473.849.65×106±39372.819.03×106±67859.33實驗組 1.30×106±12243.571.21×106±15463.598.05×105±21897.147.23×105±36232.967.18×105±43408.38組間 F=249.368 P=0.000時點間 F=152.817 P=0.000組間·時點間F=7.945 P=0.008
組別3d7d14d21d28d空白對照組 1.31×106±50426.681.29×106±52464.381.29×106±44561.331.30×106±50921.191.30×106±53851.65實驗對照組 1.26×106±45679.442.78×106±21495.936.74×106±27933.748.37×106±37650.248.12×106±37492.57實驗組 1.20×106±29606.201.08×106±27574.109.86×105±63160.708.17×105±65660.788.09×105±25549.50組間 F=215.694 P=0.000時點間 F=156.314 P=0.000組間·時點間F=8.015 P=0.011
CNV可見于多種眼科疾病,進一步探索其發(fā)病機制及臨床治療手段一直是眼科學者的關注重點。目前應用于臨床上的治療方法主要是對于已經生成的CNV具有一定的作用,并且需要反復多次注射,并不能從根源上防止CNV的發(fā)生、發(fā)展和復發(fā)。研究表明補體旁路途徑異常激活是黃斑區(qū)發(fā)生病變的誘因,可以引起黃斑萎縮、變性和新生血管形成[8-10]。CFB是補體旁路途徑的重要因子,本研究采用前期研究[11]成功構建的CFB-siRNA將CFB沉默,阻斷補體旁路途徑,通過觀察VEGF、BFGF因子的變化,探討CFB-siRNA對實驗性CNV的抑制作用,為從根本上治愈CNV提供可能性。
隨著對年齡相關性黃斑變性的不斷探索,研究者們發(fā)現補體旁路途徑及經典途徑的多個重要因子均與CNV密切相關,如CFB、CFH、C2和C3[12-15]。其中C3作為補體旁路途徑激活的中心環(huán)節(jié),是補體系統(tǒng)中最重要、含量最豐富的一個因子。CFB是C3激活劑前體,C3形成的C3b與CFB結合,旁路途徑就會被激活,隨后經一系列瀑布式反應,形成膜攻擊復合物(membrane attack complex,MAC)而導致細胞裂解[16]。那么,構建CFB-siRNA將CFB沉默后,即可阻止C3b與CFB的相互作用,從而抑制旁路途徑C3的形成,同時減少旁路激活途徑中活化的C3轉化酶中的Bb片段,使之失去酶活性,加速C3轉化酶衰變。本研究空白對照組CFB在視網膜脈絡膜組織中的表達非常弱,且隨時間的改變CFB無明顯變化;而實驗對照組光凝后損傷部位出現了大量CFB表達,在光凝后3 d達高峰,隨后表達逐漸減少,在光凝后7 d仍有少量表達。CFB作為補體旁路途徑的重要因子,光凝后3 d實驗對照組中CFB表達達最高峰,說明了實驗性CNV形成過程中伴隨著補體旁路途徑的激活。提示可通過CFB作為靶點阻斷補體旁路激活途徑,從而影響CNV的形成與發(fā)展。
免疫組織化學檢測結果顯示,空白對照組大鼠VEGF、BFGF在視網膜脈絡膜組織中的表達非常弱,且各時間點均無明顯變化。實驗對照組光凝后7 d,兩因子開始出現表達并逐漸增多,光凝后21 d達高峰。而實驗組尾靜脈注射CFB-siRNA后,在光凝后21 d兩因子的表達水平較實驗對照組顯著減少,并持續(xù)至光凝后28 d。因此,筆者推測CFB與CNV的發(fā)病機制高度相關。通過氪激光破壞Bruch膜,導致視網膜的炎癥反應,從而激活了補體旁路途徑,增加了CFB的表達,同時誘導了VEGF、BFGF的表達上調,脈絡膜毛細血管內皮細胞必然隨之分化增殖,然后穿過破裂的Bruch膜進入視網膜色素上皮層下或視網膜下腔形成CNV。也就是說,CFB在旁路途徑中扮演重要角色,可以對CFB的表達情況進行調控,從而干預新生血管的形成過程,最終抑制CNV的形成發(fā)展。此外,VEGF和BFGF兩者關系密切,在新生血管形成的各個環(huán)節(jié)共同作用,兩者表達的增多從一定意義上促使和加速了CNV發(fā)生,推動了CNV整個復雜發(fā)病機制的發(fā)展。
近年來有研究認為補體異常激活造成MAC的生成和沉積增加,是參與CNV發(fā)生發(fā)展的重要因素之一[17-18]。補體系統(tǒng)的激活途徑有3種,包括經典途徑、旁路途徑和凝集素途徑。補體激活后,一系列的生物學效應隨之出現。C3自然水解開啟了旁路途徑的變化反應,經過C3、C5到C9、CFH、CFB等多個因子共同參與反應,最終形成MAC。MAC也稱為C5b-9,是補體系統(tǒng)3條途徑激活后形成的共同末端效應產物,旁路途徑被激活,形成C5轉化酶,C5轉化酶裂解產生C5a及C5b,C5b于細胞表面結合,與C6、C7、C8、C9形成末端補體復合物,其中結合在細胞膜上的稱為MAC。也就是說,MAC的不斷沉積,使生長因子釋放增多,膜通透性必然隨之發(fā)生改變,脈絡膜血管內皮細胞發(fā)生異常增生,即導致了CNV的產生[19]。但關于CNV中MAC主要依賴于哪條補體途徑生成尚不明確。本研究通過沉默CFB,對實驗性CNV產生抑制作用,這就意味著旁路途徑是激光誘導CNV發(fā)生發(fā)展的主要途徑。補體旁路途徑中CFB的缺乏,促進了C3b的裂解,進而抑制C5轉化酶的生成,使得MAC的沉積減少。所以,MAC的沉積可能依賴于補體旁路途徑的異常激活發(fā)生改變。
在未來的研究中,需要進一步檢測CFB-siRNA在體內轉染的靶向性。并且本實驗僅僅從蛋白水平檢測相關因子的表達,尚未從核酸水平進行定量定性檢測,同時在給藥劑量上存在研究空間,在今后的實驗中有待進一步的研究。(本文圖見封三)
[1] Velez-Montoya R,Oliver SC,Olson JL,et al. Current knowledge and trends in age-related macular degeneration: today's and future treatments[J]. Retina,2013,33(8):1487-1502.
[2] Lin WJ,Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells[J]. Autophagy,2014,10(10):1692-1701.
[3] Maguire MG,Daniel E,Shah AR,et al. Incidence of choroidal neovascularization in the fellow eye in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology,2013,120(10):2035-2041.
[4] Arcondeguy T,Lacazette E,Millevoi S,et al. VEGF-A mRNA processing,stability and teaslation:a paradigm for intricate regulation of gene expression at the post-transcriptional level[J]. Nucleic Acids Res,2013,41(17):7997-8001.
[5] Rezaei KA,Toma HS,Cai J,et al. Reduced choroidal neovascular membrane formation in cyclooxygenase-2 null mice[J]. Invest Ophthalmol Vis Sci,2011,52(2):701-707.
[6] Michels S,Kurz-Levin M. Age-related macular degeneration(AMD)[J]. Ther Umsch,2009,66(3):189-195.
[7] Wolf-Schnurrbusch UE,Hess R,Jordi F,et al. Detection of Chlamydia and complement factors in neovascular membranes of patients with age-related macular degeneration[J]. Ocul Immunol Inflamm,2013,21(1):36-43.
[8] Rohrer B,Long Q,Coughlin B,et al. A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration[J]. Adv Exp Med Biol,2010,703:137-149.
[9] Buschini E,Piras A,Nuzzi R,et al. Age related macular degeneration and drusen:neuroinflammation in the retina[J]. Prog neurobiol,2011,95(1):14-25.
[10] Zhao T,Gao J,Van J,et al. Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye[J]. J Neuroinflammation,2015,12:121.
[11] 仝歡,尚慶麗,馬景學,等.重組B因子小干擾RNA對激光誘導大鼠脈絡膜新生血管的抑制作用[J].中華眼底病雜志,2010,26(1):37-41.
[12] Liu X,Zhao P,Tang S,et al. Association study of complement factor H,C2,CFB,and C3 and age-related macular degeneration in a Han Chinese population[J]. Retina,2010,30(8):1177-1184.
[13] Menghini M,Kloeckener-Gruissem B,Fleischhauer J,et al. Impact of loading phase,initial response and CFH genotype on the long-term outcome of treatment for neovascular age-related macular degeneration[J]. PLoS One,2012,7(7):e42014.
[14] Tanaka K,Nakayama T,Mori R,et al. Associations of complement factor B and complement component 2 genotypes with subtypes of polypoidal choroidal vasculopathy[J]. BMC Ophthalmol,2014,14:83.
[15] Schnabolk G,Coughlin B,Joseph K,et al. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization[J]. Invest Ophthalmol Vis Sci,2015,56(3):1850-1863.
[16] Gold B,Merriam JE,Zemant J,et al. Variation in factor B(BF) and Complement component 2(C2)genes is associated with age-related macular degeneration[J]. Nat Genet,2006,38(4):458-462.
[17] Liu J, Jha P, Lyzogubov VV,et al. Relationship between complement membrane attack complex,chemokine(C-C motif) ligand 2(CCL2) and vascular endothelial growth factor in mouse model of laser-induced choroidal neovascularization[J]. J Biol Chem,2011,286(23):20991-21001.
[18] Birke K,Lipo E,Birke MT,et al. Topical application of PPADS inhibits complement activation and choroidal neovascularization in a model of age-related macular degeneration[J]. PLoS One,2013,8(10):e76766.
[19] Lipo E,Cashman SM,Kumar-Singh R. Aurintricarboxylic acid inhibits complement activation,membrane attack complex,and choroidal neovascularization in a model of macular degeneration[J]. Invest Ophthalmol Vis Sci,2013,54(10):7107-7114.
InhibitionefficacyofCFB-siRNAonlaser-inducedchoroidalneovascularizationinrat
LI Fan, SHANG Qing-li*, HAO Yu-hua, MA Jing-xue, YE Cun-xi, WANG Xin
(DepartmentofOphthalmology,theSecondHospitalofHebeiMedicalUniversity,Shijiazhuang050000,China)
ObjectiveAlternative complement pathway plays important roles in the pathogenesis and development of choroidal neovascularization(CNV). Complement factor B(CFB), an essential factor for the alternative complement pathway, has been considered as a target to block the activity of complement. In this study, we aim to investigate the inhibitive effects and the potential mechanism of recombinant CFB-siRNA in the CNV.MethodsForty-five Brown Norway rats were randomly divided into: blank control(n=15), subject to no treatment; control group(n=15), which was subject to CNV induction by laser photocoagulation, followed by administration of normal saline(0.5 μL) via caudal vein injection one day before the expression peak of CFB, and test group, which was subject to laser photocoagulation to induce CNV, followed by administration of CFB-siRNA(0.5 μL/75 μg) via caudal vein injection one day before the expression peak of CFB. The injection of normal saline and CFB-siRNA was performed every two days for thrice. Fundus fluorescein angiography(FFA) was performed on day 3, 7, 14, 21, and 28 after laser photocoagulation. Photocoagulation score was determined according to the leakage of the fluorescein, based on which to detect the growth of CNV. Expression of CFB, VEGF, and BFGF in the retina and the choroid was measured using immunohistochemical method.ResultsFFA showed that the difference of CNV incidence between the experimental group and the experimental group was statistically significant at 7, 14, 21 and 28 days after photocoagulation(P<0.05). In the blank control, the expression of CFB, VEGF, and BFGF in the retina and choroid was comparatively lower as revealed by immunohistochemical method. For the expression of CFB, peak value was obtained 3 days after photocoagulation in the experimental and control group, followed by down-regulation of CFB. Low content of CFB was still detected 7 days after photocoagulation, while the expression was stable from day 14 to day 28. In the control group, significant up-regulation was observed in the BEGF and BFGF 7-14 days after photocoagulation, and reached the peak value on day 21 after photocoagulation. In the experimental group, down-regulation of BFGF and BFGF was noticed on day 14, 21, and 28 after photocoagulation.ConclusionAdministration of CFB-siRNA via caudal vein inhibits the progression of CNV through prohibiting CFB expression, blocking the alternative complement pathway, and down-regulating the expression of VEGF and BFGF in the pathogenesis of CNV.
choroidal neovascularization; complement factor B; vascular endothelial growth factors
2016-12-26;
2017-06-02
河北省應用基礎研究計劃重點基礎研究項目(09966111D)
李凡(1982-),女,河北大名人,河北省石家莊市第一醫(yī)院主治醫(yī)師,醫(yī)學碩士,從事眼科疾病診治研究。
*通訊作者。E-mail:qinglishang2013@sina.cn
R773.4
A
1007-3205(2017)11-1305-06
(本文編輯:劉斯靜)