包攀峰,吳明亮,官春云,羅海峰,賀一鳴,向 偉
?
犁旋組合式油菜播種開溝起壟裝置設計
包攀峰1,2,3,吳明亮1,2,3※,官春云3,4,羅海峰1,2,3,賀一鳴1,2,3,向 偉1,2,3
(1. 湖南農(nóng)業(yè)大學工學院,長沙 410128;2. 湖南省現(xiàn)代農(nóng)業(yè)裝備工程技術研究中心,長沙 410128; 3. 南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128;4. 湖南農(nóng)業(yè)大學油料所,長沙 410128)
針對中國南方稻田土壤黏重、高含水率土壤使傳統(tǒng)油菜開溝起壟機構作業(yè)后溝壁易垮塌影響壟溝排水和后期油菜生長,研制了犁旋組合式油菜播種開溝起壟裝置。設計了犁體式成溝起壟部件的入土角、翼板角度和翼板長度等結構參數(shù),優(yōu)化了旋轉式切土部件的旋耕彎刀、溝壁切土直刀的安裝方式及其結構參數(shù)。在室內(nèi)土槽進行了多因素二次正交旋轉組合試驗,結果表明:影響溝面寬穩(wěn)定度、壟高穩(wěn)定度的主次順序為溝壁切土直刀的回轉半徑、翼板長度、翼板角度;影響回土率的主次順序為翼板長度、翼板角度、溝壁切土直刀的回轉半徑。裝置最優(yōu)的工作參數(shù)組合為溝壁切土直刀的回轉半徑為351 mm,翼板長度為78 cm,翼板角度為41°。對最優(yōu)工作參數(shù)組合進行試驗驗證,各評價指標試驗結果與軟件分析值的相對偏差均不超過1%。該研究可為油菜壟作高產(chǎn)栽培提供技術參考。
農(nóng)業(yè)機械;設計;農(nóng)作物;油菜;犁旋組合式;開溝;壟作
油菜是一種重要的油料作物,其菜籽油占中國居民食用植物油的40%左右,目前,中國油菜種植面積700萬hm2和總產(chǎn)量1 200萬t均居世界第一,但食用植物油自給率卻不足40%[1-4]。為解決中國食用植物油供給安全,需要提高油菜籽的總產(chǎn)量,在穩(wěn)定和擴大種植面積外,還需創(chuàng)新油菜種植模式,提高單位面積的油菜產(chǎn)量。壟作種植是作物生產(chǎn)中提高產(chǎn)量的重要措施,且具有改善土壤受光條件、恒定地溫、提高肥料利用率、促進根系下扎、邊行優(yōu)勢明顯的生態(tài)效應等優(yōu)點,已在玉米、大豆、油菜等主要作物上得到了廣泛應用[5-9]。玉米、大豆等低密度種植作物其壟作種植配套的機具主要采用旋耕、滅茬刀輥翻耕土壤,起壟鏵實現(xiàn)起壟作業(yè),最終得到壟距大,壟溝淺的壟體[10-13]。油菜是直根系忌水作物,種植密度大,為實現(xiàn)壟作需采用窄壟深溝種植,因此現(xiàn)有壟作配套機具難以實現(xiàn)油菜的壟作種植作業(yè)要求。
南方冬油菜種植以稻油輪作為主,前茬水稻留茬高、存量大,多為高含水率黏重土壤,傳統(tǒng)的寬壟淺溝種植模式采用犁體式或旋轉圓盤式進行開溝起壟作業(yè),犁體式作業(yè)機具無法解決稻茬田的滅茬除草,旋轉圓盤式作業(yè)機具面對部分高濕度的田塊易纏草、壅泥,2種開溝起壟裝置已無法完成窄壟深溝為主要特征的油菜壟作種植要求[14-24]?,F(xiàn)有油菜壟作種植模式中,種植密度為20~30萬株/hm2,行距為300 mm,溝面寬為400 mm,溝底寬為100 mm,壟高不小于250 mm。依據(jù)壟體幾何尺寸,倒梯形截面溝的溝壁傾角約為53°,而南方現(xiàn)有稻田土壤的自然堆積角大都低于45°[25]。因此,無法得到滿足農(nóng)藝要求的穩(wěn)定的倒梯形截面壟溝。為此,本文針對南方油菜壟作種植模式的壟體要求,結合2種傳統(tǒng)開溝起壟裝置的優(yōu)點,將壟溝截面設計成由矩形溝和倒梯形溝組合式溝形截面,并依據(jù)此溝形設計了犁旋組合式油菜播種開溝起壟裝置,在室內(nèi)土槽對樣機進行試驗,得到了溝底回土量少、溝形壟型穩(wěn)定的適合南方黏重土壤環(huán)境進行油菜壟作種植的壟體。
犁旋組合式油菜播種開溝起壟裝置主要由機架、傳動部件、壟面整理部件、入土部件和犁旋組合式成溝起壟機構等組成,如圖1所示。其中犁旋組合式成溝起壟機構由旋轉式切土部件及安裝于其正后方的犁體式成溝起壟部件組成。作業(yè)時,牽引動力帶動機架兩側板前方的小前犁在未耕地上切土和翻垡,引導整機平穩(wěn)入土和定廂作業(yè)。旋轉動力驅動旋轉式切土部件中的旋耕軸轉動,旋耕軸上布置的旋耕彎刀完成壟體旋耕碎土作業(yè),同軸布置的溝壁切土直刀劃切溝壁土壤并配合犁體式成溝起壟部件的推土板、矩形成型體等完成溝底矩形截面成形;溝壁切土直刀劃切的土塊受到正后方的犁體式成溝起壟部件的推土板、推土鏟、分土板等共同作用將土塊提升并推送至壟體區(qū),同時在翼板和擋土板的作用下完成壟溝倒梯形截面成形;最后經(jīng)壟面整理裝置對壟面進行壓實定型,得到油菜壟作種植要求的壟體。
1.機架 2.傳動部件 3.壟面整理部件 4.入土部件 5.小前犁 6.旋耕軸 7.旋耕彎刀 8.溝壁切土直刀 9.推土板 10.推土鏟 11.矩形成形體 12.翼板 13.擋土板 14.分土板
犁旋組合式油菜播種開溝起壟裝置作業(yè)后得到3條壟溝和2個壟體,由圖3可知,其工作幅寬為1為2 400 mm,旋耕軸長度為2為2 100 mm。技術參數(shù)如表1所示。
表1 犁旋組合式油菜播種開溝起壟裝置技術參數(shù)
2.1.1 結構及組成
犁體式成溝起壟部件總體結構如圖2所示,主要由矩形成形體、翼板、推土鏟、推土板、分土板、擋土板等組成。推土板位于成溝起壟部件最前端,在牽引力作用下將溝壁切土直刀劃切的土塊推送至推土鏟處;推土鏟的垂直切刃進一步破碎土壤并將土壤提升引導至分土板并由分土板分散至翼板處的壟體區(qū)域;翼板由前往后逐漸向外延伸,兩相向布置的翼板及擋土板組合成前寬后窄、上寬下窄的箱體結構,旋轉式切土部件上的旋耕刀推送土壤經(jīng)寬口徑進入,窄口徑流出,在翼板及擋土板的擠壓作用下,形成上寬下窄的梯形壟溝。連接推土鏟和翼板的矩形成形體,設計為前高后低的U型結構形狀,隨著機具的前進,矩形成形體對溝底和垂直溝壁進一步擠壓成型,保障溝底、溝壁平直。
1.矩形成形體 2.翼板 3.鏟尖 4.推土鏟 5.垂直切刃 6.推土板 7.分土板 8.擋土板
2.1.2 翼板及矩形成形體高度
為確定犁體式成溝起壟部件的結構參數(shù)、工作參數(shù),本節(jié)在討論土粒受到機具作用的運動規(guī)律時將土壤顆粒視為質(zhì)點,土壤顆粒相互作用力忽略不計。如圖3所示,開溝起壟過程中,溝內(nèi)土壤被均勻地分布到兩側的壟體區(qū)域,因土壤在開溝起壟前后總量平衡,等長度內(nèi)的廂溝截面面積與廂面土壤覆蓋區(qū)域的截面面積相等。
注:b為溝底寬,100 mm;h1為矩形溝壁高度,h2為開溝深度,為壟壁傾角,取45°;h3為起壟后土壤堆積高度,a為溝面寬,400 mm;c為壟寬,600 mm;H為壟高,250 mm;L1為工作幅寬,2 400 mm;L2為旋耕軸長度,2 100 mm.
考慮土壤的膨松系數(shù)后得
同時,圖1中滿足幾何關系
開溝起壟后,壟高滿足
=123(3)
式(1)中,為土壤膨松系數(shù),1.2;聯(lián)立(1),(2),(3)式得:2=104 mm,1=100 mm,3=46 mm。即矩形成形體高度設計為100 mm,翼板高度設計為150 mm。
2.1.3 犁體入土角及鏟尖張角
就開溝起壟過程而言,犁體式成溝起壟部件的推土鏟需要有較好的導土作用,將土壤從溝底提升到地面的同時并使土壤向兩側運動,使土壤得到旋耕軸上刀片的旋耕作用,并使大部分土壤盡量堆積到壟體的中間,使土壤不回流到溝底。基于這些分析和考慮,采用三面楔模型為基礎對推土鏟做以下分析,如圖4所示,建立坐標系。
注:x軸為機具前進方向,y軸為溝寬方向,z軸為垂直方向,面OAC為推土鏟的左半部分,面ABC為壟溝橫截面。γ為鏟尖張角,(°);α為入土角,(°);β為翻土角,(°)。
同時設計推土板與溝底平面的夾角為,即犁體入土角。為避免土壤在犁體前方堆積,土塊應以最快速度穿過推土鏟進入翼板處壟體區(qū)域。故其運動軌跡應垂直平面過點作與成角的直線角為土壤堆積角,則直線為翼板在面上的投影線。由空間立體幾何關系可得:tan=/,tan/,tan/,+90°,=45°。聯(lián)立可得:tantan/tan45°=1,即。
由設計和實踐經(jīng)驗可知:入土角過大時,工作土層抬得高,工作阻力也隨之增加,入土角過小,會增加整個犁體的高度及長度,浪費材料;鏟尖張角過大,土壤易被推向兩側使土層外翻而亂,同時易纏繞秸稈,鏟尖張角過小,切斷草根的能力減弱[26]。綜合考慮設定入土角及鏟尖張角均為30°。即30o。
2.1.4 垂直切刃
圖5為垂直切刃設計示意圖。如圖5所示,垂直切刃最高點為(1,1),垂直切刃與矩形成形體接觸點為(2,2),滿足
注:垂直切刃由推土板上的OE段直線和推土鏟的GE段曲線組成,土壤顆粒在G點受到的工作阻力與正壓力的夾角為ε1,在E點受到的工作阻力與正壓力的夾角為ε2,(°);α1,α2分別過E、G兩點作切線與x軸的夾角,(°)。
如圖6所示為垂直切刃上段的任意點處單個土壤顆粒在工作狀態(tài)時的受力圖。
注:τ為垂直切刃上D點的切線方向;n為垂直切刃上D點的法線方向;ε為工作阻力與正壓力在D點的夾角,(°);T為土粒受到其他土壤阻力,方向與機具前進方向vm相反,N;FN為土粒受到推土鏟的法向支撐力,方向為垂直切刃上D點的法線方向,N;Ff為土粒受到推土鏟的滑動摩檫力,方向為垂直切刃上D點的切線方向,N。
此時土壤顆粒從點沿曲面上升至點的條件需滿足切線方向上的合力必須大于0,而法線方向合力等于0,得式(6)。則有tan≥tan,即≥。
式中為土壤與開溝起壟器的摩擦角,(°)。南方土壤與鋼材的摩擦角大致在25°~30°之間,取=28°,由式(4)可知垂直切刃上任一點的切線與軸夾角滿足=90°-,故90°-62°,犁體入土角取30°滿足設計要求。為了使土壤快速到達犁體頂端取130,260。之間的垂直高度為150 mm,代入式(5)得垂直切刃線段的方程為:(1/225)2。
2.1.5 翼板長度
犁體式成溝起壟部件翼板的另一作用是防止土壤回落入溝內(nèi),其長度設置與機具前進速度、土壤下落的高度(壟高)有關系[27]。土壤從最高點落入溝內(nèi)的運動軌跡滿足式(7)。
式中V、V為土壤顆粒在前進方向和垂直方向的速度,其中V=1.72 km/h,為土壤顆粒下落的高度,250 mm;為重力加速度,9.8 m/s2,為土壤顆粒下落時間,s。代入式(7)得到翼板的最小長度為77 cm。
2.2.1 結構及組成
旋轉式切土部件總體結構如圖7所示,主要由旋耕彎刀、溝壁切土直刀、旋耕軸組成。旋耕彎刀、溝壁切土直刀均安裝于旋耕軸上,旋耕彎刀布置于整個旋耕軸所對應的壟體區(qū),主要負責壟體區(qū)的深層旋耕及前茬秸稈埋茬;犁體式成溝起壟部件正前方的旋耕軸上布置溝壁切土直刀,溝壁切土直刀對稱布置于推土板的外邊沿,隨旋耕軸轉動而劃切出下層矩形溝的溝壁,與犁體式成溝起壟部件共同作用將由推土板推送至推土鏟作用區(qū)域的土塊,拋扔至翼板擠壓區(qū),經(jīng)翼板擠壓完成壟溝倒梯形截面成形。
1.小前犁 2.旋耕彎刀 3.溝壁切土直刀 4.旋耕軸 5.端板 6.機架 7.犁體式成溝起壟部件
2.2.2 切土部件回轉半徑
旋耕彎刀旋切土壤時不能破壞到矩形溝壁,溝壁切土直刀均需要擴大旋耕深度來滿足作業(yè)要求[28-29]。圖8為犁旋組合式裝配示意圖。
溝壁切土直刀的回轉半徑1、旋耕彎刀回轉半徑2需滿足以下關系式
得到1=350 mm,2≤250 mm。則溝壁切土直刀的回轉半徑為350 mm,選用60Si2Mn彈簧鋼材料加工而成,刃口光滑過渡;旋耕彎刀采用ⅡT245彎刀,其回轉半徑為2為245 mm。
2.2.3 切削面刀片數(shù)量
土壤顆粒的粒徑大小與切土節(jié)距存在關系,由于小顆粒的土壤可以相互填充空隙,使顆粒間的接觸面積增大,相互結合就會越緊密,從而形成穩(wěn)定的土壤團粒結構。同時土壤顆粒越細碎越有利于油菜的生長,所以設定切土節(jié)距為=6 cm,同一旋轉切削面內(nèi)的刀具數(shù)量
式中為旋耕速比,正常作業(yè)取=12.5,2取值 250 mm,由式(10)得刀片數(shù)量為2把。
為檢驗犁旋組合式油菜播種開溝起壟裝置的作業(yè)效果,探討各因素對開溝起壟性能的影響規(guī)律,優(yōu)化設計結構參數(shù),進行了多因素二次正交旋轉組合試驗。開溝起壟裝置的作業(yè)效果評價指標依據(jù)行業(yè)標準NY/T740-2003《田間開溝機械作業(yè)質(zhì)量》和機械行業(yè)推薦標準JB/T8401.2-2007《旋耕聯(lián)合作業(yè)機旋耕深松滅茬起壟機》要求,選取溝面寬穩(wěn)定度、壟高穩(wěn)定度、回土率作為評價指標。壟高穩(wěn)定度及溝面寬穩(wěn)定度指給定的工作條件下工作時壟高及溝面寬的穩(wěn)定程度,回土率指開溝起壟后單位體積內(nèi)回到溝內(nèi)的土壤質(zhì)量與工作前單位體積內(nèi)土壤質(zhì)量的比值。
試驗于2017年3月在湖南農(nóng)業(yè)大學農(nóng)業(yè)機械化工程實訓中心的室內(nèi)土槽完成。土槽長50 m、寬3 m、土壤厚度0.8 m,土槽內(nèi)為黏土。試驗前一周用TCC電力四驅土槽試驗臺配備的旋耕機和壓輥分別對土槽試驗區(qū)進行翻耕和壓實,耕作深度達到20 cm,適量灑水滲透,通風靜置一周。圖9為試驗機具及試驗結果圖。圖9b為溝壁切土直刀回轉半徑351 mm,翼板長度78 cm,翼板角度41o時的試驗效果。
1.犁體式成溝起壟部件 2.壟面整理裝置
試驗前測定單位體積內(nèi)的土壤質(zhì)量,5點法測量0~20 cm深度區(qū)域堅實度和土壤含水率,TDR-300型土壤水分測試儀測得0~20 cm土壤平均含水率為23.2%,SC-900型土壤緊實度儀測得0~20 cm土壤平均堅實度為864 kPa。
依據(jù)前文中設計的主要結構參數(shù)及考慮結構參數(shù)對開溝起壟性能的影響程度,選擇溝壁切土直刀的回轉半徑、翼板長度、翼板角度為試驗因素,并依據(jù)結構設計中的參數(shù)數(shù)值設定各因素的取值范圍,按照二次回歸正交旋轉試驗設計方法,利用Design-Expert數(shù)據(jù)處理軟件,進行三因素五水平二次正交旋轉組合試驗,建立回歸方程和優(yōu)化模型。因素水平編碼表如表2所示。
表2 因素水平編碼
注:回轉半徑均指溝壁切土直刀的回轉半徑。
Note: Turning radius is the turning radius of straight tilling blade.
根據(jù)多因素二次正交旋轉組合試驗設計進行試驗,以各影響因素取值為自變量,以溝面寬穩(wěn)定度、壟高穩(wěn)定度、回土率為相應指標的試驗結果,如表3所示。
表3 試驗方案和結果
3.3.1 方差分析
對回歸模型中各項回歸系數(shù)進行檢驗和方差分析,經(jīng)軟件處理后,得出溝面寬穩(wěn)定度、壟高穩(wěn)定度及回土率的方差分析結果如表4所示。
表4 目標函數(shù)y1、y2與y3的二次項模型方差分析
注:<0.01,極顯著,**;<0.05,顯著,*。
Note: Whenis less than 0.01 the test is highly significant,**. Whenis less than 0.05, the test is significant, *.
對表4中的數(shù)據(jù)進行二次多元回歸擬合,選用二次項模型建立溝面寬穩(wěn)定度1、壟高穩(wěn)定度2、回土率3與各影響因素間的回歸模型,并去除不顯著項,得到1、2、3對編碼自變量溝壁切土直刀的回轉半徑1、翼板長度2、翼板角度3的簡化二次多元回歸方程為如式(11)所示。
表4中的模型失擬項表示所用模型與試驗的擬合程度(二者差異度),一般要求失擬項>0.05。由表4知目標函數(shù)1、2、3的模型值分別為0.262 7、0.052 1、0.061 8,均大于0.05,說明無失擬因素存在,可用該回歸方程替代試驗真實點對試驗結果進行分析。
由表4方差分析結果可知,溝面寬穩(wěn)定度、壟高穩(wěn)定度及回土率的模型顯著性值均為0.000 1,遠遠小于0.05,說明該模型具有統(tǒng)計學意義。值的大小表示各因素對評價指標的影響程度,值越大則影響程度越高,各因素對溝面寬穩(wěn)定度和壟高穩(wěn)定度的顯著性順序從大到小依次均為回轉半徑、翼板長度、翼板角度;各因素對回土率的顯著性順序從大到小依次為翼板長度、翼板角度、回轉半徑。
3.3.2 響應曲面分析
運用軟件的Optimization功能,進行優(yōu)化分析,調(diào)整各評價指標的最佳取值,即溝面寬穩(wěn)定度和壟高穩(wěn)定度取最大值,回土率取最小值,得到機具工作的最優(yōu)參數(shù)組合,各參數(shù)的取值為:回轉半徑為350.61 mm,翼板長度為77.53 cm,翼板角度為40.92°。此時,溝面寬穩(wěn)定度達到99.2706%,壟高穩(wěn)定度達到99.053%,回土率為6.52%,綜合評價指數(shù)為最大0.994[30]。運用軟件的Central Composite Design中心組合試驗原理,利用Numerical工具進行響應面分析,由于翼板角度相對而言對開溝起壟性能的影響最小,故固定其為40.92°,考察回轉半徑、翼板長度對綜合評價指數(shù)的影響,得到綜合評價響應曲面圖如圖10所示。
圖10 綜合評價響應曲面圖(翼板角度40.92°)
從圖10響應曲面圖可知,回轉半徑與翼板長度對開溝起壟性能影響呈非線性變化,隨著回轉半徑和翼板長度的增加,響應曲面的綜合評價指數(shù)呈現(xiàn)先增加后減少的趨勢,當回轉半徑位于345~350.61mm區(qū)域時,隨著回轉半徑的增加,綜合評價指數(shù)逐漸增大,當回轉半徑大于350.61 mm時,隨著回轉半徑的增加,綜合評價指數(shù)逐漸減?。划斠戆彘L度位于70.00~80.00 cm區(qū)域時,隨著翼板長度的增加,綜合評價指數(shù)逐漸增大;由此可見,在回轉半徑為350.61 mm,翼板長度為75.00~80.00 cm區(qū)域存在最優(yōu)值點,該點即為響應曲面圖中的極值點。
3.3.3 驗證試驗
根據(jù)響應曲面分析得到的最優(yōu)參數(shù)組合,取整回轉半徑為351 mm,翼板長度為78 cm,翼板角度為41°,在室內(nèi)土槽進行驗證試驗,保證試驗前的各土壤參數(shù)誤差在10%以內(nèi)。為消除隨機誤差,進行5次重復試驗,取5次試驗結果的平均值,得到試驗結果如表5所示。
表5 最優(yōu)參數(shù)值驗證結果
溝面寬穩(wěn)定度為99.11%,壟高穩(wěn)定度為98.84%,回土率為6.92%,試驗結果與軟件分析值基本相符,且相對偏差均不超過1%,驗證了理論分析的準確性,最佳參數(shù)組合滿足設計要求。
本文結合窄壟深溝的壟作技術要求,創(chuàng)新研究出深層旋耕從動開溝起壟機理,研制了犁旋組合式油菜播種開溝起壟裝置。得到以下結論:
1)基于最大土壤輸送量和三面楔模型設計了犁體式成溝起壟器的入土角、翼板角度和翼板長度等結構參數(shù),創(chuàng)新配置了旋轉式切土裝置的旋耕彎刀、溝壁切土直刀的同軸安裝方式,優(yōu)化設計了各功能刀片的回轉半徑。
2)試制犁旋組合式油菜播種開溝起壟裝置試驗臺,對土槽內(nèi)土壤進行了二次正交旋轉組合試驗。借助Design-Expert數(shù)據(jù)分析軟件,得出了各因素與犁旋組合式油菜播種開溝起壟裝置工作性能的數(shù)學模型,運用值檢驗得到了各因素對溝面寬穩(wěn)定度、壟高穩(wěn)定度影響程度的高低順序為回轉半徑、翼板長度、翼板角度;各因素對回土率影響程度的高低順序為翼板長度、翼板角度、回轉半徑。
3)運用Design-Expert軟件的Optimization工具得到了犁旋組合式油菜播種開溝起壟裝置工作的最優(yōu)參數(shù)組合:回轉半徑為351 mm,翼板長度為78 cm,翼板角度為41°。對最優(yōu)參數(shù)組合進行試驗驗證,溝面寬穩(wěn)定度為99.11%,壟高穩(wěn)定度為98.84%,回土率為6.92%,試驗結果與軟件分析值基本相符,且相對偏差均不超過1%,該研究可為油菜壟作高產(chǎn)栽培提供技術保障。
[1] 官春云. 中國油菜產(chǎn)業(yè)發(fā)展方向[J]. 糧食科技與經(jīng)濟,2011,36(2):5-6.
Guan Chunyun. The development trend of China’s rape industry[J]. Grain Science and Technology and Economy, 2011, 36(2): 5-6. (in Chinese with English abstract)
[2] 張富,高旺盛. 我國農(nóng)作物育種高技術研究發(fā)展歷程及策略探討[J]. 中國農(nóng)業(yè)科技導報,2010(12):67-72.
Zhang Fu, Gao Wangsheng. The development process and strategy of high-tech research on crops breeding in China[J]. Journal of Agricultural Science and Technology, 2010(12): 67-72. (in Chinese with English abstract)
[3] 官春云,陳社員,吳明亮. 南方雙季稻區(qū)冬油菜早熟品種選育和機械栽培研究進展[J]. 中國工程科學,2010,12(2):4-10.
Guan Chunyun, Chen Sheyuan, Wu Mingliang. Research evolution on breeding and mechanical cultivation of early-mature winter rapeseed in double-crop rice area in southern China[J]. Engineering Sciences, 2010, 12(2): 4-10. (in Chinese with English abstract)
[4] 湯楚宙,官春云,吳明亮,等. 油菜機械化生產(chǎn)中農(nóng)藝與農(nóng)機相結合的探索與實踐[J]. 湖南農(nóng)業(yè)大學學報:自然科學版,2011,37(6):674-677.
Tang Chuzhou, Guan Chunyun, Wu Mingliang, et al. Exploration and application of the integration of agronomy and mechanization in rapeseed production[J]. Journal of Hunan Agricultural University: Natural Sciences, 2011, 37(6): 674-677. (in Chinese with English abstract)
[5] 連政國,王延耀,高成福,等. 2BHL-4 型花生起壟播種機的研制[J]. 花生科技,2000(3):20-22.
Lian Zhengguo, Wang Yanyao, Gao Chengfu, et al. Development of model 2BHL-4 peanut planter[J]. Peanut Science and Technology, 2000(3): 20-22. (in Chinese with English abstract)
[6] 劉慶福,欒文輝,侯季理,等. 2BLZ-2型壟上鎮(zhèn)壓精密播種機研制與試驗[J]. 吉林農(nóng)業(yè)大學學報,2000,22(4):105-107.
Liu Qingfu, Luan Wenhui, Hou Jili, et al. 2BLZ-2,A new precise suppressed sowing machine[J]. Journal of Jilin Agricultural University: Natural Sciences, 2000, 22(4): 105-107. (in Chinese with English abstract)
[7] 趙滿全,趙士杰,竇衛(wèi)國,等. 2BM-9型免耕播種機關鍵部件的設計與研究[J]. 中國農(nóng)機化,2003(6):33-35.
Zhao Manquan, Zhao Shijie, Dou Weiguo, et al. The design and study of the key components of 2BM-9 model no-till planter[J]. Journal of Chinese Agricultural Mechanization, 2003(6): 33-35. (in Chinese with English abstract)
[8] 姚宗路,王曉燕,李洪文,等. 2BMD-12 型小麥對行免耕施肥播種機改進與試驗研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2005,23(5):46-51. Yao Zonglu, Wang Xiaoyan, Li Hongwen, et al. Modification and experiment on 2BMD-12 row –controlled no -till wheat drill[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 46-51. (in Chinese with English abstract)
[9] 陳禮德,鄂卓茂,王繼成,等. 2BSL-1型壟作施水播種機的開發(fā)研究[J]. 中國農(nóng)業(yè)大學學報,2000,5(6):43-46.
Chen Lide, E Zhuomao, Wang Jicheng, et al. Development and Study on 2BSL-1 Sowing Machine[J]. Journal of China Agricultural University, 2000, 5(6): 43-46. (in Chinese with English abstract)
[10] 王文智,譚靜. 1GZ-60V型山地旋耕起壟機研制與試驗[J].中國農(nóng)機化學報,2013,34(2):67-69.
Wang Wengzhi, Tan Jing. 1GZ-60V mountain development and tset of rotary tilling ridger[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(2): 67-69. (in Chinese with English abstract)
[11] 姬江濤,賈世通,杜新武,等. 1GZN-130V1型旋耕起壟機的設計與試驗[J]. 中國農(nóng)機化學報,2016,37(1):1-5.
Ji Jiangtao, Jia Shitong, Du Xinwu, et al. Design and promotion of 1GZN-130V1 rotary cultivation ridger[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(1): 1-5. (in Chinese with English abstract)
[12] 陳長林,閩啟超,梁蘇寧,等. 1KS-1200型起壟開溝機的設計與試驗[J]. 中國農(nóng)機化學報,2014,35(3):4-7.
Chen Changlin, Min Qichao, Liao Suning, et al. Design and tset of 1KS-1200 ridging-ditching machine[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(3): 4-7. (in Chinese with English abstract)
[13] 何進,李洪文,張學敏,等. 1QL-70 型固定壟起壟機設計與試驗[J]. 農(nóng)業(yè)工程學報,2009,40(7):50-60.
He Jin, Li Hongwen, Zhang Xuemin, et al. Design and experiment of 1QL-70 bed former for permanent raised beds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 40(7): 50-60. (in Chinese with English abstract)
[14] 汲文峰,賈洪雷,佟金,等. 旋耕-碎茬仿生刀片田間作業(yè)性能的試驗研究[J]. 農(nóng)業(yè)工程學報,2012,28(12):24-30.
Ji Wenfeng, Jia Honglei, Tong Jin, et al. Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 24-30. (in Chinese with English abstract)
[15] 張青松,廖慶喜,汲文峰,等. 油菜直播機開溝犁體曲面優(yōu)化與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(1):53-59.
Zhang Qingsong, Liao Qingxi, Ji Wenfeng, et al. Surface Optimization and experiment on ditch plow of direct rapessd seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 53-59. (in Chinese with English abstract)
[16] 吳明亮,官春云,羅海峰,等. 2BYD-6型油菜淺耕直播施肥聯(lián)合播種機設計與試驗研究[J]. 農(nóng)業(yè)工程學報,2010,26(11):136-140.
Wu Mingliang, Guan Chunyun, Luo Haifeng, et al. Design and experiments of 2BYD-6 shallow tilling and fertilizing seeder forrapes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 136-140. (in Chinese with English abstract)
[17] 吳明亮,官春云,湯楚宙,等. 2BF-6 型稻茬田油菜免耕聯(lián)合播種機的研究[J]. 農(nóng)業(yè)工程學報,2005,21(3):103-106.
Wu Mingliang, Guan Chunyun, Tang Chuzhou, et al. 2BF-6 type no- tillage combine seeder for rape in stubbly field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(3): 103-106. (in Chinese with English abstract)
[18] 羅海峰,官春云,湯楚宙,等. 稻茬田油菜免耕播種機開溝部件的研究[J]. 農(nóng)業(yè)工程學報,2007,23(11):153-157.
Luo Haifeng, Guan Chunyun, Tang Chuzhou, et al. Ditching parts of no-tillage sower in paddy stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 153-157. (in Chinese with English abstract)
[19] 羅海峰,官春云,湯楚宙,等. 旋耕開溝機橫向拋土性能試驗[J]. 湖南農(nóng)業(yè)大學學報:自然科學版,2006,32(4):441-444.Luo Haifeng, Guan Chunyun, Tang Chuzhou, Experimentation on the performance of aoil lateral throwing of rotary- cultivated ditchers[J]. Journal of Hunan Agricultural University: Natural Sciences, 2006, 32(4): 441-444. (in Chinese with English abstract)
[20] Matin M A, Fielke J M, Desbiolles J M A.Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade[J]. Biosystems Engineering, 2015, 129: 329-340.
[21] Saimbhi V S, Wadhwa D S, Grewal P S. Development of a rotary tiller blade using three-dimensional computer graphics[J]. Biosystems Engineering, 2004, 89(1): 47-58.
[22] 吳明亮. 一種油菜壟作開溝起壟機:201520875107.0[P] 2015-11-05.
[23] 吳明亮. 一種油菜壟作直播聯(lián)合播種機:201520875179.5[P] 2015-11-05.
[24] 吳明亮. 縱軸回轉式壟作開溝機:201620544133.X[P] 2016-06-07.
[25] 張銳,韓佃雷,吉巧麗,等. 離散元模擬中沙土參數(shù)標定方法研究[J]. 農(nóng)業(yè)機械學報,2017,48(3):49-56.
Zhang Rui, Han Dianlei, Ji Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract)
[26] 賈洪雷,姜鑫銘,郭明卓,等. V-L 型秸稈粉碎還田刀片設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(1):28-33.
Jia Honglei, Jiang Xinming, Guo Mingzhuo, et al. Design and experiment of V-L shaped smashed straw blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 28-33. (in Chinese with English abstract)
[27] 曾山,湯海濤,羅錫文,等. 同步開溝起壟施肥水稻精量旱穴直播機設計與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(20):12-19.
Zeng Shan,Tang Haitao, Luo Xiwen, et al. Design and experimental of precision rice hill-drop drilling machine for dry land with synchronous fertilizing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 12-19. (in Chinese with English abstract).
[28] 林靜,李寶筏,李宏澤,等. 阿基米德螺線型破茬開溝和切撥防堵裝置的設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(17):10-19.
Lin Jing, Li Baofa, Li Hongzhe, et al. Design and experimental of Archimedes spiral type stubble breaking ditching device and stubble breaking anti blocking device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 10-19. (in Chinese with English abstract).
[29] 王徐建,宋建農(nóng),劉彩玲,等. 甘草傾斜移栽開溝器的設計與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(13):16-23.
Wang Xujian, Song Jiannong, Liu Cailing, et al. Design and experiment on licorice tilt transplanting furrow opener[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 16-23. (in Chinese with English abstract)
[30] 邱進,吳明亮,官春云,等. 動定刀同軸水稻秸稈切碎還田裝置結構設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(10):11-19.
Qiu Jin, Wu Mingliang, Guan Chunyun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial forrice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 11-19. (in Chinese with English abstract)
Design of plow-rotary style ditching and ridging device for rapeseed seeding
Bao Panfeng1,2,3, Wu Mingliang1,2,3※, Guan Chunyun3,4, Luo Haifeng1,2,3, He Yiming1,2,3, Xiang Wei1,2,3
(1.,,410128,; 2.,410128,; 3.,410128,; 4.,,410128,)
The crop rotation of rice and rapeseed is the main planting pattern for winter rapeseed in South China. In a traditional broad-ridge shallow-furrow planting mode, the ditching machine plow or rotary disc is used to ditch the field. However, the plow cannot solve the problem of high rice stubble in field, while the rotary disc is easy to be entangled by grass and backwater mud in high humidity field, which often causes the traditional parts of ditching and ridging for rapeseed to be loose and collapse. Aimed to solve the problem of high stubble of rice after harvesting and reduce the influence of high-water content in sticky soil, in this paper, a plow-rotary style ditching and ridging device for rapeseed seeding is designed, which can meet the requirements of narrow ridge and deep ditch. Based on the maximum transported soil volume and the triangular wedge model, the structural parameters such as the embedded angle, the angle of the wing and the length of the wing are designed. The installing way of the rotary machetes and the straight tilling blade are innovated in the same roller. The turning radius and the length of each functional blade are optimized based on the biggest installation space, the uniformity coefficient of groove surface, the stability of ridge high and the soil return rate are taken as evaluating indicator. The turning radius of straight cutting blade, and the length and angle of wing are taken as experiment factors, and the multifactor quadratic orthogonal rotation combination test was carried out. The quadratic model is selected to establish the regression model which is related to the uniformity coefficient of groove surface, the stability of ridge high and the soil return rate. Thetest and variance analysis are carried out for the coefficients of the regression model to establish quadratic multiple regression model related to the evaluation indices and influence factors. The results show that, the order of the factors influencing the uniformity coefficient of groove surface and the stability of ridge high from high to low is the turning radius of straight cutting blade, the length of wing and the angle of wing; the order of the factors influencing the soil return rate from high to low is the length of wing, the angle of wing and the rotary radius of straight cutting blade. The optimal combination of operating parameters is obtained after the application of the optimization function of the software: The turning radius of straight cutting blade is 351 mm, the length of wing is 78 cm and the angle of wing is 41°. And the evaluation indices are analyzed and the optimum values are selected: The uniformity coefficient of groove surface and the stability of ridge high reach the maximum values, and the soil return rate gets the minimum value. The optimal combination of operating parameters is verified, which meets the design requirements. All of the evaluation indices are basically the same as the software analysis, and the relative errors are less than 1%. The study results may provide technical support for high yield cultivation of rapeseed ridge planting.
agricultural machinery; design; crops; rapeseed; plow-rotary style; ditching; ridging
10.11975/j.issn.1002-6819.2017.20.003
S222.4
A
1002-6819(2017)-20-0023-09
2017-06-06
2017-08-11
南方稻田油菜機械化起壟栽培技術研究與示范(2016NK2105),湖南省研究生科研創(chuàng)新項目(CX201613286)。
包攀峰,主要從事農(nóng)業(yè)機械創(chuàng)新設計與試驗研究。 Email:1152801554@qq.com.
※通信作者:吳明亮,教授,博士生導師,主要從事農(nóng)業(yè)機械創(chuàng)新設計與試驗研究。Email:mlwu@hunau.edu.cn.
包攀峰,吳明亮,官春云,羅海峰,賀一鳴,向 偉. 犁旋組合式油菜播種開溝起壟裝置設計[J]. 農(nóng)業(yè)工程學報,2017,33(20):23-31. doi:10.11975/j.issn.1002-6819.2017.20.003 http://www.tcsae.org
Bao Panfeng, Wu Mingliang, Guan Chunyun, Luo Haifeng, He Yiming, Xiang Wei. Design of plow-rotary style ditching and ridging device for rapeseed seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 23-31. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.003 http://www.tcsae.org