徐 磊,李春艷,陳 寧,*,范晶晶,*
(1.武漢體育學(xué)院研究生院,湖北 武漢 430079;2.武漢體育學(xué)院健康科學(xué)學(xué)院,天久運動營養(yǎng)食品研發(fā)中心,湖北 武漢 430079)
老年人肌少性肥胖的機制與運動營養(yǎng)調(diào)控研究進展
徐 磊1,李春艷2,陳 寧2,*,范晶晶2,*
(1.武漢體育學(xué)院研究生院,湖北 武漢 430079;2.武漢體育學(xué)院健康科學(xué)學(xué)院,天久運動營養(yǎng)食品研發(fā)中心,湖北 武漢 430079)
老年人肌少性肥胖(sarcopenic obesity,SO)是一種伴隨著肥胖的骨骼肌質(zhì)量和功能下降的老年性疾病,多發(fā)于老年人群而嚴(yán)重影響其生活質(zhì)量。大量研究結(jié)果表明隨著年齡的增長,即使體質(zhì)量不變,老年人身體組成也會逐漸改變,肌肉質(zhì)量功能下降,脂肪比例上升且主要堆積在肌肉組織、內(nèi)臟器官,整體表現(xiàn)為肌肉脂肪量上升、炎癥因子增多、生長激素水平下降、營養(yǎng)攝入不足、活動量降低、神經(jīng)元功能下降以及胰島素抵抗等,這些現(xiàn)象都與SO相關(guān)。從分子水平闡述其相關(guān)機制,研究者發(fā)現(xiàn)骨骼肌蛋白質(zhì)合成與降解、骨骼肌糖脂代謝以及相關(guān)細(xì)胞因子均參與SO代謝通路的調(diào)控。運動干預(yù)、熱量限制及蛋白質(zhì)、VD、β-羥基-β-甲基丁酸鹽、肌酸和乳清蛋白的攝入均可在一定程度上起到防治SO的效果。由于國內(nèi)外對于SO的判斷標(biāo)準(zhǔn)、發(fā)病機制以及防治手段仍不統(tǒng)一,給SO研究帶來了較大難度。本文對國內(nèi)外最新研究報道進行整理總結(jié),從SO的定義、引起因素、涉及的細(xì)胞信號調(diào)控通路以及防治策略(運動或營養(yǎng)食品干預(yù))等方面進行了綜述,為SO治療提供新思路。
肌少性肥胖;病理機制;信號調(diào)控通路;防治策略
老年人肌肉減少癥最早于1989年提出,用來描述老年人肌肉減少和力量衰減[1]。肌肉組織增齡性丟失往往伴隨脂肪組織的蓄積,因而也稱之為“老年人肌少性肥胖(sarcopenic obesity,SO)”或“老年人肌肉衰減性肥胖”[2]。隨著年齡的增長,老年人骨骼肌質(zhì)量減少、肌肉力量衰退以及機體脂肪含量增加,并伴有生理性疾病、生活質(zhì)量下降甚至死亡率上升等危險,部分地區(qū)SO患病率可高達41%[3]。
目前SO診斷標(biāo)準(zhǔn)包括:國際肌少癥會議工作組診斷共識、亞洲肌少癥工作組診斷共識、老年肌少癥歐洲工作組診斷共識、美國國立衛(wèi)生研究院基金會肌少癥項目診斷共識[4],但由于人種、性別、環(huán)境以及測量技術(shù)等因素的影響,相關(guān)研究缺乏可比性,且缺乏統(tǒng)一的診斷標(biāo)準(zhǔn)。Baumgartner[5]使用雙能X射線骨密度儀,利用相對骨骼肌質(zhì)量指數(shù)(四肢骨骼肌質(zhì)量除以身高的平方)診斷SO,當(dāng)相對骨骼肌質(zhì)量指數(shù)低于健康中青年人平均值2 個標(biāo)準(zhǔn)差,且體脂肪百分比超過同齡人群60%時診斷為SO。Davison等[6]利用人體測量學(xué)和生物電阻抗方法測量人體成分,間接測量人體的體脂肪和去脂含量,從而計算出人體肌肉量及脂肪量來定義SO:即體脂肪含量超過人群水平60%,且肌肉質(zhì)量低于人群水平60%[6]。此外,Newman[7]與Marcus[8]等認(rèn)為骨骼肌內(nèi)脂肪組織量應(yīng)是評判SO的單獨指標(biāo),他們發(fā)現(xiàn)肥胖且骨骼肌質(zhì)量高的老年人,其肌力以及日?;顒幽芰Σ⒉焕硐搿R虼嗽诮窈髮O的判定中建議使用骨骼肌內(nèi)脂肪組織量與上述提到的綜合指標(biāo)共同進行判定[9]。
研究發(fā)現(xiàn)SO與身體成分變化密切相關(guān),機體脂肪量從中年到老年逐年增長并最終趨于平穩(wěn),同時肌肉質(zhì)量在30 歲以后呈現(xiàn)逐漸減少的趨勢,60 歲以后肌肉質(zhì)量下降的速率更加明顯[10]。肌肉質(zhì)量的減少會導(dǎo)致機體基礎(chǔ)代謝率下降、體力活動能力減退以及機體能量消耗減少,從而引起脂肪的堆積[11]。另一方面,隨著脂肪的堆積,促炎癥細(xì)胞因子水平上升,導(dǎo)致肌肉質(zhì)量與力量的衰退,最終引起增齡性肌肉減少癥[12],加重老年人肌肉下降與脂肪堆積的惡性循環(huán)。
許多相互影響的因素會導(dǎo)致SO的發(fā)生與發(fā)展,包括體力活動的減少、蛋白質(zhì)和微量元素攝入不足以及熱量攝入過多等[13],可能引起骨骼肌質(zhì)量、力量的下降,骨骼肌內(nèi)脂肪以及脂肪組織含量增多,導(dǎo)致肌少癥;也可能引起機體脂肪量增多,導(dǎo)致肥胖,最終導(dǎo)致SO;在這個過程中,炎癥因子與胰島素抵抗具有高度相關(guān)性(圖1)。
圖1 肌少性肥胖的發(fā)病機制Fig. 1 Pathogenesis of sarcopenic obesity
蛋白質(zhì)和VD攝入不足會導(dǎo)致骨骼肌質(zhì)量、力量以及功能的衰退,引起不良的生理代謝反應(yīng)[14]。VD作為人體必需的微量元素,可影響胰島素分泌、合成及其敏感性,并抑制肥胖患者炎癥機體代謝調(diào)節(jié)[15]。研究發(fā)現(xiàn)25羥基VD與四肢肌肉質(zhì)量呈正相關(guān),且SO與VD缺乏也息息相關(guān)[16-17]。
增齡性SO也與激素和肌肉營養(yǎng)信號的下降密切相關(guān),慢性炎癥狀態(tài)、胰島素抵抗以及激素失調(diào)等均可加速肌肉質(zhì)量和力量丟失[13]。在脂肪組織中,由脂肪細(xì)胞或巨噬細(xì)胞浸潤產(chǎn)生的白細(xì)胞介素(interleukin,IL)-6、腫瘤壞死因子(tumor necrosis factor,TNF)-α和脂肪因子等促炎癥細(xì)胞因子、促炎癥細(xì)胞因子上游調(diào)節(jié)炎癥反應(yīng)的瘦素或肌肉生成抑制素分泌水平改變,都可能會導(dǎo)致肌肉質(zhì)量和功能的衰退[18-19]。促炎癥細(xì)胞因子與脂肪量呈正相關(guān),與肌肉質(zhì)量呈負(fù)相關(guān)[20]。另外,肥胖且低肌肉量的老人超敏C反應(yīng)蛋白和IL-6水平明顯升高[12],因此,慢性炎癥可能是造成肥胖者肌肉力量降低甚至加重肥胖的關(guān)鍵因素之一。
哺乳動物的肥胖與胰島素抵抗炎癥分子介導(dǎo)的細(xì)胞因子受體和胰島素受體存在相關(guān)聯(lián)的信號通道[21]。胰島素加強蛋白質(zhì)合成代謝,肥胖患者胰島素抵抗可能促進肌肉分解;也有研究表明,胰島素抵抗是導(dǎo)致肌肉力量下降及糖尿病老人表現(xiàn)出肌肉力量和質(zhì)量喪失加速的一個獨立相關(guān)因素[22]。肥胖也能抑制生長激素的產(chǎn)生,降低血漿類胰島素生長因子Ⅰ[13]。最近的研究表明,不同肥胖表型神經(jīng)-內(nèi)分泌系統(tǒng)調(diào)控存在差異,與單純肥胖病人和肌少癥病人相比,SO病人生長激素的分泌顯著下降[23]。睪酮是人體最重要的雄性激素之一,具有刺激組織攝取氨基酸、促進核酸與蛋白質(zhì)合成以及肌纖維生長的作用,因而老年人肌肉質(zhì)量與力量下降與機體睪酮水平降低也有關(guān)[24]。隨著脂肪量增多與機體炎癥的產(chǎn)生,骨骼肌細(xì)胞激素受體敏感性下降、激素利用率下降,從而影響骨骼肌蛋白質(zhì)的合成,因此睪酮與生長激素水平低下都可能加重肥胖患者肌肉損傷。
2.1 骨骼肌蛋白質(zhì)的合成
磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3-K)/蛋白激酶B(protein kinase B,Akt)/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號通路為促進骨骼肌細(xì)胞內(nèi)蛋白質(zhì)合成的主要途徑(圖2)[25]。當(dāng)PI3-K被其上游信號如生長因子、胰島素等激活后,在細(xì)胞膜上將磷脂酰肌醇二磷酸(phosphatidylinositol(4,5) bisphosphate,PIP2)轉(zhuǎn)化為磷脂酰肌醇三磷酸(phosphatidylinositol(3,4,5)bisphosphate,PIP3),PIP3能與細(xì)胞內(nèi)含有PH結(jié)構(gòu)域(pleckstrin homolog domain)的信號蛋白Akt和3-磷酸肌醇依賴性蛋白激酶-1(3-phosphoinositide-dependent protein kinase-1,PDK1)結(jié)合,促使PDK1磷酸化Akt蛋白的Ser308位點從而激活A(yù)kt[26-27]?;罨腁kt磷酸化結(jié)節(jié)性硬化復(fù)合體蛋白(tuberous sclerosis complex,TSC)1和TSC 2,可下調(diào)其對小G蛋白同源物——腦內(nèi)富含的小G蛋白Ras同系物(Ras homolog enriched in brain,Rheb)的負(fù)調(diào)控,進而使得Rheb富集,活化對雷帕霉素敏感的mTOR復(fù)合體1(mammalian target of rapamycin complex 1,mTORC1)。激活的mTORC1一方面可以通過使真核生物翻譯起始因子4E(eukaryotic initiation factor 4E,eIF-4E)的抑制因子——4E結(jié)合蛋白1(4E binding protein 1,4EBP1)磷酸化后失活,解除4EBP1對eIF-4E的抑制作用而使蛋白質(zhì)翻譯效率提高,從而在單位時間內(nèi)合成更多的蛋白質(zhì);另一方面可以使核糖體上的p70S6K激酶磷酸化被激活,直接增加蛋白質(zhì)的合成[28]。
隨著年齡的增加,骨骼肌的PI3-K/Akt/mTOR信號通路的信號傳導(dǎo)受限,影響骨骼肌的內(nèi)環(huán)境穩(wěn)態(tài)。實驗研究表明,老年小鼠骨骼肌在經(jīng)過高頻電流刺激之后,其肌肉中磷酸化的p70S6K和mTOR表達量下降[29]。此外,在對老年小鼠脛骨前肌進行6 h的高頻電流刺激之后,發(fā)現(xiàn)4EBP1磷酸化顯著增加[30],并且老年哺乳動物骨骼肌中的磷酸化的Akt水平是減少的[31-32]。盡管有研究發(fā)現(xiàn)老年肱二頭肌中僅僅只有磷酸化的p70S6K(T421/S424)水平有顯著性降低,磷酸化的p70S6K(T389)水平并沒有顯著性變化,但是在頭頸部、舌頭和四肢肌肉的p70S6K分子水平與年齡呈正相關(guān)[33]。上述研究表明,老年人骨骼肌中PI3-K/Akt/mTOR信號傳導(dǎo)通路受損,骨骼肌蛋白質(zhì)合成受限,引起蛋白質(zhì)合成抵抗,最終導(dǎo)致衰老性肌萎縮。
圖2 SO相關(guān)信號通路調(diào)控Fig. 2 Signaling pathways involved in the regulation of SO
2.2 骨骼肌蛋白質(zhì)的降解
2.2.1 泛素-蛋白酶體途徑
泛素-蛋白酶體系統(tǒng)(ubiquitin-proteasome system,UPS)是細(xì)胞內(nèi)蛋白質(zhì)降解的主要途徑,參與細(xì)胞內(nèi)80%以上蛋白質(zhì)的降解。UPS包括泛素(ubiquitin,Ub)、泛素活化酶E1、泛素結(jié)合酶E2、泛素蛋白連接酶E3、26S蛋白酶體和泛素解離酶DUBs。泛素蛋白連接酶E3是該途徑的關(guān)鍵酶,決定著泛素-蛋白酶體途徑的降解速率與特異性,在骨骼肌蛋白分解和肌肉萎縮過程中起著至關(guān)重要的作用,其中最為重要的兩種E3為Atrogin-1和MuRF-1[34-35]。泛素-蛋白酶體降解蛋白質(zhì)途徑主要包含胰島素類似生長因子1(insulin-like growth factor-1,IGF-1)/PI3-K/Akt/叉頭狀轉(zhuǎn)錄因子O亞家族蛋白(forkhead box O,F(xiàn)OXO)和細(xì)胞核轉(zhuǎn)錄因子κB抑制蛋白激酶β(inhibitor of nuclear factor kappa B kinase β,IKKβ)/細(xì)胞核轉(zhuǎn)錄因子κB(nuclear factor kappa B,NF-κB)兩個信號通路(圖2)[28]。在IGF-1/PI3-K/Akt通路中,激活態(tài)的Akt從細(xì)胞膜轉(zhuǎn)移到細(xì)胞核并磷酸化FOXO,磷酸化的FOXO被轉(zhuǎn)運出細(xì)胞核后對靶基因Atrogin-1和MuRF-1失去調(diào)控,從而抑制蛋白質(zhì)降解與肌萎縮;另外一個關(guān)鍵的通路就是IKKβ/NF-κB獨立調(diào)控著MuRF-1的表達[36]。當(dāng)肌細(xì)胞受到各種胞內(nèi)外刺激后,NF-κB抑制蛋白(inhibitor of NF-κB,IκB)激酶被激活,從而導(dǎo)致IκB蛋白磷酸化與泛素化,進而被降解,NF-κB二聚體得到釋放并轉(zhuǎn)移至核內(nèi),調(diào)節(jié)MuRF-1以完成蛋白質(zhì)的降解。因此,IGF-1/PI3-K/Akt/FOXO信號通路可以同時調(diào)節(jié)Atrogin-1和MuRF-1的表達,促進肌肉蛋白質(zhì)的降解,而IKKβ/NF-κB通過調(diào)節(jié)MuRF-1的表達實現(xiàn)調(diào)控蛋白質(zhì)的降解。通過轉(zhuǎn)基因小鼠MISR(抑制NF-κB)和MIKK(激活NF-κB)研究發(fā)現(xiàn),MIKK小鼠骨骼肌嚴(yán)重萎縮,而MISR小鼠骨骼肌并沒有明顯改變,其中MIKK小鼠MuRF-1表達增加,證明內(nèi)源性激活NF-κB通路能夠?qū)е旅黠@的肌萎縮[36]。2.2.2 溶酶體-自噬途徑
自噬是指細(xì)胞吞噬自身蛋白或細(xì)胞器并使其包被進入囊泡,與溶酶體融合形成自噬溶酶體,降解其所包裹的內(nèi)容物的過程,借此實現(xiàn)細(xì)胞本身的代謝和某些細(xì)胞器的更新。自噬溶酶體的形成主要包括3 個部分,第1個是依賴PI3-K/Akt/mTOR信號通路,通過mTOR抑制Atg1-Atg13-Atg17(哺乳動物同源物ULK1/2-mAtg13-FIP200)自噬相關(guān)復(fù)合物的形成[37];第2個信號通路由Atg6(哺乳動物同源物Beclin1)調(diào)控,Bcl-2的磷酸化使Bcl-2與Beclin1分離,Beclin1與Vps34以及Atg14形成Atg6(Beclin1)-Vps34-Atg14復(fù)合物,參與吞噬泡的形成[38];第3個信號通路介導(dǎo)自噬體的形成,Atg7和Atg10調(diào)節(jié)Atg12和Atg5結(jié)合,與Atg16形成Atg12-Atg5-Atg16復(fù)合體,參與自噬體的形成。之后LC3在Atg4的催化下,形成LC3-I,經(jīng)Atg7和Atg3催化與自噬泡膜表面磷脂酰乙醇胺結(jié)合形成LC3-II,調(diào)節(jié)自噬體的延伸。當(dāng)自噬體與溶酶體結(jié)合變成自噬溶酶體后,溶酶體中的蛋白酶可降解內(nèi)容物,完成自噬過程[39]。通過衰老的哺乳動物骨骼肌中自噬變化的研究發(fā)現(xiàn),衰老的小鼠足底肌肉Beclin1和LC3的表達量顯著增加[40];另外,22 月齡小鼠的LC3-II/LC3-I比率顯著性高于3 月齡的小鼠[41]。因此,衰老可能導(dǎo)致代償性細(xì)胞自噬激活或自噬流障礙,肌蛋白質(zhì)過多降解,從而導(dǎo)致衰老性肌萎縮。
2.3 骨骼肌糖代謝
骨骼肌是葡萄糖代謝的重要外周組織,占成年人體質(zhì)量40%~50%,其葡萄糖代謝水平在調(diào)節(jié)全身血糖穩(wěn)態(tài)和能量代謝中發(fā)揮著重要作用[42-43]。葡萄糖轉(zhuǎn)運體4(glucose transporter 4,GLUT4)是骨骼肌內(nèi)最重要的葡萄糖轉(zhuǎn)運蛋白,其介導(dǎo)的葡萄糖跨膜轉(zhuǎn)運至胞內(nèi)是骨骼肌葡萄糖代謝的主要機制,GLUT4的轉(zhuǎn)位和表達變化可以在一定程度上反映骨骼肌細(xì)胞的糖代謝狀況。GLUT4的轉(zhuǎn)位主要由PI3-K/Akt信號通路調(diào)控(圖2)[44-45]。
SO多伴有胰島素抵抗,細(xì)胞對葡萄糖的攝取能力受到抑制,引起血糖與血脂異常,加重SO癥狀[46],所以GLUT4轉(zhuǎn)運體對緩解胰島素抵抗、改善老年人SO起著至關(guān)重要的作用。胰島素激活骨骼肌內(nèi)胰島素受體底物(insulin receptor substrate,IRS)和PI3-K,產(chǎn)生PIP3分別與Akt和非典型蛋白激酶C結(jié)合,促使GLUT4轉(zhuǎn)位至表面細(xì)胞膜以攝取葡萄糖[45]。
在運動改善代謝障礙的老年人群骨骼肌胰島素抵抗研究中,PI3-K/Akt信號通路受到眾多研究者的關(guān)注。研究表明游泳運動可增強Wistar大鼠IRS-2、PI3-K和Akt的活性,同時增加GLUT4的蛋白表達[47]。然而,Krook等[48]認(rèn)為骨骼肌內(nèi)GLUT4轉(zhuǎn)位和表達的影響與PI3-K/Akt信號通路無關(guān),可能與AMP依賴的蛋白激酶(AMP-activated protein kinase,AMPK)信號通路有關(guān)。對肥胖Zucker大鼠進行為期7 周的跑臺訓(xùn)練,強度從15 m/min持續(xù)10 min逐漸增加至22 m/min持續(xù)90 min,發(fā)現(xiàn)此運動方式可以上調(diào)GLUT4的蛋白表達,但IRS-1的酪氨酸磷酸化水平,并無明顯變化[49]。這些研究似乎暗示PI3-K/Akt信號通路在運動調(diào)節(jié)骨骼肌內(nèi)GLUT4的轉(zhuǎn)位和表達中不起決定性作用,研究結(jié)果的不一致可能與采用的動物模型、運動的干預(yù)手段及檢測的信號分子等不同有關(guān)。
3.1 運動干預(yù)
合理的運動(方式、持續(xù)時間以及強度)對SO有顯著的預(yù)防和改善作用,對患有SO的老年人進行運動干預(yù)可以顯著提高身體機能[50]。受試者在12 周內(nèi)每周進行2~3 d的抗阻訓(xùn)練可引起肌肉肥大,同時Ⅰ型和Ⅱ型肌纖維的橫截面積均有所增加,說明抗阻運動對老年人肌肉耐力和力量有促進作用[51]。對70~89 歲的受試者進行生活方式干預(yù)和獨立實驗,結(jié)果發(fā)現(xiàn),聯(lián)合運動(有氧、抗阻、平衡以及靈活)以及健康教育干預(yù)顯著提高他們身體表現(xiàn)指數(shù)[52]。Davidson等[53]對腹型肥胖的老年男性和女性進行了為期6 個月的單一型和聯(lián)合型運動訓(xùn)練(抗阻、有氧、抗阻結(jié)合有氧),結(jié)果發(fā)現(xiàn)聯(lián)合型運動組減脂效果最好,抗阻運動組和聯(lián)合型運動組骨骼肌質(zhì)量與力量顯著改善。因此聯(lián)合型運動方式對SO有顯著的改善效果,不僅可以減少脂肪含量,同時也能夠抑制骨骼肌的萎縮或促進骨骼肌的生長。
抗阻運動作為防治SO的關(guān)鍵性干預(yù)方式,是一種安全且能有效維持并增加骨骼肌質(zhì)量與力量、改善骨骼肌功能和提高老年人生活質(zhì)量的干預(yù)方法[54]。肌衛(wèi)星細(xì)胞是具有增殖、自我更新能力和參與骨骼肌修復(fù)的成肌前體細(xì)胞。大量研究表明,經(jīng)過12 周抗阻運動后老年人肌衛(wèi)星細(xì)胞含量增加近31%,停訓(xùn)3、10、60 d后肌衛(wèi)星細(xì)胞含量保持在基礎(chǔ)值之上,可見抗阻訓(xùn)練有利于激活肌衛(wèi)星細(xì)胞增殖與分化[55]。Zanchi等[56]讓W(xué)istar大鼠進行為期3 個月的負(fù)重爬梯訓(xùn)練,發(fā)現(xiàn)抗阻運動組大鼠跖肌和比目魚肌較對照組增加近12%,且MuRF-1、Atrogin-1的表達量分別下降41.64%和61.19%。研究人員讓小鼠每3 d進行一次爬梯訓(xùn)練,為期5 周,發(fā)現(xiàn)其趾長伸肌中p70S6K與4EBP-1蛋白的磷酸化水平較對照組顯著上升[57]。由此可見抗阻運動一方面有助于激活肌衛(wèi)星細(xì)胞增殖與分化,產(chǎn)生新肌細(xì)胞,促進肌纖維的加粗;另一方面可以有效抑制由MuRF-1和Atrogin-1調(diào)控骨骼肌蛋白質(zhì)的降解,且能上調(diào)p70S6K和4EBP-1蛋白的磷酸化水平,提高機體骨骼肌蛋白質(zhì)的合成,從而穩(wěn)定骨骼肌蛋白質(zhì)合成與降解的動態(tài)平衡。
3.2 營養(yǎng)食品干預(yù)
3.2.1 熱量限制與蛋白質(zhì)攝入
通過熱量限制可以緩解炎癥所導(dǎo)致的骨骼肌萎縮,但是肥胖老年人單純進行熱量限制不能解決SO這一問題,應(yīng)該增肌與減脂雙管齊下,且不能只以體質(zhì)量變化來衡量減脂效果,應(yīng)結(jié)合身體成分或功能變化來衡量減脂效果[58]。
針對老年人體質(zhì)量管理的簡單干預(yù)是有爭議的,因為通過飲食限制減肥的過程有可能引起肌肉減少癥、骨質(zhì)疏松以及營養(yǎng)物質(zhì)缺失而產(chǎn)生危害,甚至導(dǎo)致死亡率的上升[59-61]。據(jù)報道,大約25%通過短期能量限制的減肥方法達到體質(zhì)量減少的老年人,都會伴有瘦肌肉質(zhì)量的減少[62-64]。此外,研究表明,體質(zhì)量減輕后的反彈主要增加的是脂肪成分,因此體質(zhì)量反彈可能加重SO[65-66],此外,營養(yǎng)干預(yù)后長期控制機體脂肪的比例與維持骨骼肌質(zhì)量是至關(guān)重要的。
用于年輕人體質(zhì)量管理的方法不能簡單應(yīng)用于低肌肉質(zhì)量與虛弱的老年人群,應(yīng)該更加重視老年人體質(zhì)量控制的干預(yù)方式[67-68]。針對這類老年人,極低熱量攝入的飲食方式(小于1 000 kcal/d)的營養(yǎng)干預(yù)法是不推薦的[62,66]。應(yīng)保證200~750 kcal/d的適度能量同時配合蛋白質(zhì)以及微量元素的攝入,每周體質(zhì)量降低0.5~1.0 kg或6 個月減輕原體質(zhì)量的8%~10%,同時保證每天每千克體質(zhì)量攝入1 g的蛋白質(zhì)以及適當(dāng)?shù)奈⒘吭?,這類飲食干預(yù)法對老年人群體質(zhì)量管理更有效果[62,66,69]??紤]到體質(zhì)量的反復(fù)增減所帶來的危害,建議肌少性肥胖老年人長期改變飲食,并進行適當(dāng)?shù)捏w力活動干預(yù)。
3.2.2 VD的攝入
VD是重要的微量元素,其攝入量的減少會導(dǎo)致肌肉質(zhì)量與力量的衰退、步態(tài)障礙、平衡能力下降以及摔倒風(fēng)險的劇增,這些癥狀與SO相關(guān)[58]。VD與VD受體結(jié)合形成的復(fù)合體既能調(diào)控血鈣濃度,影響胰島素分泌與合成,也能刺激外周胰島素靶細(xì)胞表達胰島素受體,優(yōu)化胰島素敏感性,并抑制IL-1、IL-6、IL-8以及TNF-α等促炎癥細(xì)胞因子的生成[15]。據(jù)報道,缺乏VD是中老年人群的常見問題[58],25羥基VD是人體內(nèi)源性的VD,在光照的作用下直接轉(zhuǎn)化為VD,正常人體內(nèi)25羥基VD水平為75 nmol/L[70]。在美國的調(diào)查研究中,超過30%的70 歲以上的老年人體內(nèi)25羥基VD含量低于50 nmol/L[71],肥胖也與低VD水平有關(guān)。此外,對社區(qū)老年人的橫向研究發(fā)現(xiàn),VD水平與身體活動能力存在直接聯(lián)系,特別是25羥基VD水平低于75 nmol/L的老年人[72-74]。由此可見,VD對于維持老年人骨骼肌質(zhì)量以及力量至關(guān)重要。
3.2.3 β-羥基-β-甲基丁酸
β-羥基-β-甲基丁酸(β-hydroxy-β-methyl-butyrate,HMB)是亮氨酸代謝過程中產(chǎn)生的天然化合物,具有促進骨骼肌蛋白質(zhì)合成、抑制骨骼肌蛋白質(zhì)降解以及降低機體炎癥等作用,被廣大健身愛好者以及運動員接受。研究表明,對養(yǎng)老院老年人實施2~3 g/d的HMB補充,一年后HMB組骨骼肌質(zhì)量增加了0.88 kg[75]。同樣的研究發(fā)現(xiàn)給社區(qū)老年人補充3 g/d的HMB且聯(lián)合每周5 d的抗阻運動,HMB聯(lián)合抗阻運動組瘦體質(zhì)量增加0.8 kg,且上肢與下肢力量分別增加近15%與20%[76]。從這些研究可以看出,適量HMB的攝入加上聯(lián)合運動(有氧、抗阻、平衡以及靈活訓(xùn)練)能改善老年人骨骼肌質(zhì)量和力量,維持骨骼肌功能。
3.2.4 肌酸
肌酸是一種由甘氨酸、精氨酸及甲硫氨酸合成的含氮有機酸,適量補充肌酸能維持并改善老年人骨骼肌質(zhì)量、力量和功能。Gotshalk等[77]將30 名58~79 歲的女性分為肌酸組和安慰劑組,分別注射0.3 g/(kg·d)肌酸與安慰劑,為期7 d,最后發(fā)現(xiàn)肌酸組受試者臥推、腿舉、體質(zhì)量、無脂肪體質(zhì)量較安慰劑組顯著增加,且串聯(lián)步態(tài)以及站立完成時間顯著縮短。此外,Devries等[78]將357 個老年人分為肌酸聯(lián)合抗阻運動組和抗阻運動組進行為期6 周的干預(yù),發(fā)現(xiàn)肌酸聯(lián)合抗阻運動組受試者骨骼肌質(zhì)量、力量以及功能表現(xiàn)都好于抗阻運動組。由此可見單純的補充肌酸可以改善老年人的肌少癥,但是在補充肌酸的基礎(chǔ)上再聯(lián)合抗阻運動效果會更好。
肌酸影響骨骼肌合成代謝的機制尚未研究透徹。大量實驗表明攝入肌酸可使骨骼肌磷酸化4EBP1和p70S6K的水平、AMPK和GLUT4的蛋白水平上調(diào)[79]。但是,肌酸是通過激活PI3-K/Akt通路,使4EBP1和p70S6K磷酸化水平以及GLUT4蛋白水平的上調(diào),促進蛋白質(zhì)合成,增強葡萄糖的轉(zhuǎn)運效率,從而起到維持骨骼肌質(zhì)量、力量和功能的作用,還是通過其他途徑來防治增齡性肌少癥,此類機制性研究還較少。此外肌酸可以通過肌酸轉(zhuǎn)運蛋白滲入骨骼肌,在ATP的作用下磷酸化成磷酸激酶,參與ADP-ATP供能系統(tǒng),給骨骼肌供能??墒菍夏耆巳褐泄趋兰〉募∷徂D(zhuǎn)運蛋白數(shù)量以及功能變化的相關(guān)研究甚少。今后,在肌酸影響骨骼肌合成代謝機制這方面的研究還有待進一步深入,但是肌酸對維持老年人骨骼肌質(zhì)量、力量以及功能起一定的作用。
3.2.5 乳清蛋白
乳清蛋白是一種氨基酸種類齊全,且比例均衡,并能提供人體必需蛋白質(zhì)的優(yōu)質(zhì)蛋白質(zhì)來源。其主要由α-乳球蛋白、β-乳白蛋白、牛血清蛋白、免疫球蛋白等組成,具有易消化吸收和增強機體蛋白質(zhì)合成等功效,廣泛運用于專業(yè)運動員和健美人群,也逐漸成為老年人的營養(yǎng)補劑。Bauer等[80]將380 名衰老性肌萎縮老年人分為VD乳清蛋白復(fù)合補劑組和對照組,進行為期13 周每天兩次的干預(yù),發(fā)現(xiàn)復(fù)合補劑組四肢骨骼肌顯著增加,座位站立、步速以及平衡都有顯著性的提高。研究人員對49 名73 歲左右老年人進行了兩個階段的實驗,第一階段,隨機分為復(fù)合營養(yǎng)補充組(乳清蛋白為主)和對照組,6 周后發(fā)現(xiàn)復(fù)合物營養(yǎng)補充組較對照組瘦體質(zhì)量和肌肉力量顯著增強;第二階段,在此前基礎(chǔ)上聯(lián)合運動干預(yù),12 周干預(yù)后發(fā)現(xiàn)兩組受試者瘦體質(zhì)量和肌肉力量都增加,且復(fù)合營養(yǎng)補充組較對照組增加更為明顯[81]。由此可見,單純補充乳清蛋白對老年人群骨骼肌質(zhì)量、力量以及功能都有一定的功效,但是配合適量肌酸、VD等一系列促進骨骼肌蛋白質(zhì)合成的營養(yǎng)物對衰老性肌萎縮的防治效果更佳,再配合適量的運動訓(xùn)練(抗阻、有氧等)效果更為顯著。
目前國際上對SO正在進行大規(guī)模研究,我國作為人口老齡化大國,這方面還處于空白階段,未來加強對SO的關(guān)注是必然趨勢。SO的定義缺乏精確化與統(tǒng)一化,且SO并不是肌少癥與肥胖的簡單結(jié)合,其病理較單純肌少癥與單純肥胖更復(fù)雜,因此迫切需要一個統(tǒng)一的診斷標(biāo)準(zhǔn)。
骨骼肌作為機體主要能量代謝場所,調(diào)控著蛋白質(zhì)合成、降解以及糖代謝,對維持機體能量穩(wěn)態(tài)至關(guān)重要。臨床上正研究開發(fā)調(diào)控骨骼肌蛋白合成、降解以及糖代謝相關(guān)基因蛋白藥物,加強骨骼肌內(nèi)壞境穩(wěn)態(tài),維持骨骼肌質(zhì)量和功能,對SO起到防治作用。事實上SO作為一種老年慢性病,單一藥物治療效果并不理想,應(yīng)引導(dǎo)老年人自主性生活方式的改變,通過運動或營養(yǎng)干預(yù)從而有效地預(yù)防和治療SO,包括抗阻運動聯(lián)合有氧運動、熱量限制、蛋白質(zhì)補充、VD、HMB、肌酸、乳清蛋白的攝入以及充足的光照。隨著我國SO患病率逐年增高,未來開展SO研究以維持老年人肌肉質(zhì)量與力量、提高生活質(zhì)量和機體功能顯得尤為重要。
[1] ROSENBERG I H. Sarcopenia: origins and clinical relevance[J].Clinics in Geriatric Medicine, 2011, 27(3): 337-339.
[2] CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia:European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age and Ageing, 2010, 39(4): 412-423. DOI:10.1093/ageing/afq034.
[3] CAULEY J A. An overview of sarcopenic obesity[J]. Journal of Clinical Densitometry, 2015, 18(4): 499-505. DOI:10.1016/j.jocd.2015.04.013.
[4] 金菊香, 孫麗娟, 張麗玲, 等. 肌少癥的流行病學(xué)和診斷評估研究進展[J]. 中華老年醫(yī)學(xué)雜志, 2015, 34(10): 1154-1157. DOI:10.3760/cma.j.issn.0254-9026.2015.10.029.
[5] BAUMGARTNER R N. Body composition in healthy aging[J]. Annals of the New York Academy of Sciences, 2000, 904(1): 437-448.
[6] DAVISON K K, FORD E S, COGSWELL M E, et al. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III[J]. Journal of the American Geriatrics Society, 2002, 50(11): 1802-1809.
[7] NEWMAN A B, KUPELIAN V, VISSER M, et al. Sarcopenia:alternative definitions and associations with lower extremity function[J]. Journal of the American Geriatrics Society, 2003, 51(11):1602-1609.
[8] MARCUS R L, ADDISON O, DIBBLE L E, et al. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals[J]. Journal of Aging Research, 2012, 2012(10): 629-637.DOI:10.1155/2012/629637.
[9] ZAMBONI M, MAZZALI G, FANTIN F, et al. Sarcopenic obesity:a new category of obesity in the elderly[J]. Nutrition, Metabolism,and Cardiovascular Diseases, 2008, 18(5): 388-395. DOI:10.1016/j.numecd.2007.10.002.
[10] STRUGNELL C, DUNSTAN D W, MAGLIANO D J, et al. Influence of age and gender on fat mass, fat-free mass and skeletal muscle mass among Australian adults: the Australian diabetes, obesity and lifestyle study (AusDiab)[J]. The Journal of Nutrition, Health & Aging, 2014,18(5): 540-546. DOI:10.1007/s12603-014-0464-x.
[11] ROUBENOFF R. Sarcopenic obesity: does muscle loss cause fat gain?lessons from rheumatoid arthritis and osteoarthritis[J]. Annals of the New York Academy of Sciences, 2000, 904(1): 553-557.
[12] SCHRAGER M A, METTER E J, SIMONSICK E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study[J]. Journal of Applied Physiology, 2007, 102(3): 919-925. DOI:10.1152/japplphysiol.00627.2006.
[13] WANG C Y, BAI L. Sarcopenia in the elderly: basic and clinical issues[J]. Geriatrics and Gerontology International, 2012, 12(3): 388-396. DOI:10.1111/j.1447-0594.2012.00851.x.
[14] CAMPBELL W W, LEIDY H J. Dietary protein and resistance training effects on muscle and body composition in older persons[J]. Journal of the American College of Nutrition, 2007, 26(6): 696S-703S.
[15] 王雪芹, 黃乙歡, 趙柯湘, 等. 肌少性肥胖與代謝綜合征[J].國際老年醫(yī)學(xué)雜志, 2016, 37(3): 138-141. DOI:10.3969/j.issn.1674-7593.2016.03.013.
[16] LIU G, LU L, SUN Q, et al. Poor vitamin D status is prospectively associated with greater muscle mass loss in middle-aged and elderly Chinese individuals[J]. Journal of the Academy of Nutrition and Dietetics, 2014, 114(10): 1544-1551; 1542. DOI:10.1016/j.jand.2014.05.012.
[17] KIM T N, PARK M S, LIM K I, et al. Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: the Korean sarcopenic obesity study[J]. Clinical Endocrinology,2013, 78(4): 525-532. DOI:10.1111/j.1365-2265.2012.04433.x.
[18] FANTUZZI G, MAZZONE T. Adipose tissue and atherosclerosis:exploring the connection[J]. Arteriosclerosis, Thrombosis,and Vascular Biology, 2007, 27(5): 996-1003. DOI:10.1161/ATVBAHA.106.131755.
[19] SAKUMA K, YAMAGUCHI A. Sarcopenic obesity and endocrinal adaptation with age[J]. International Journal of Endocrinology, 2013,2013(2): 1-12. DOI:10.1155/2013/204164.
[20] CESARI M, KRITCHEVSKY S B, BAUMGARTNER R N, et al.Sarcopenia, obesity, and inflammation: results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study[J]. American Journal of Clinical Nutrition, 2005,82(2): 428-434.
[21] BASTARD J P, MAACHI M, LAGATHU C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance[J]. European Cytokine Network, 2006, 17(1): 4-12.
[22] PARK S W, GOODPASTER B H, STROTMEYER E S, et al.Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study[J]. Diabetes Care, 2007, 30(6): 1507-1512. DOI:10.2337/dc06-2537.
[23] WATERS D L, QUALLS C R, DORIN R I, et al. Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes[J]. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences,2008, 63(5): 536-541.
[24] ALLAN C A, STRAUSS B J, MCLACHLAN R I. Body composition,metabolic syndrome and testosterone in ageing men[J]. International Journal of Impotence Research, 2007, 19(5): 448-457. DOI:10.1038/sj.ijir.3901552.
[25] VENTADOUR S, ATTAIX D. Mechanisms of skeletal muscle atrophy[J]. Current Opinion in Rheumatology, 2006, 18(6): 631-635.DOI:10.1097/01.bor.0000245731.25383.de.
[26] SHAVLAKADZE T, CHAI J, MALEY K, et al. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo[J].Journal of Cell Science, 2010, 123(6): 960-971. DOI:10.1242/jcs.061119.
[27] WITKOWSKI S, LOVERING R M, SPANGENBURG E E. Highfrequency electrically stimulated skeletal muscle contractions increase p70s6k phosphorylation independent of known IGF-I sensitive signaling pathways[J]. FEBS Letters, 2010, 584(13): 2891-2895.DOI:10.1016/j.febslet.2010.05.003.
[28] 劉雪云, 李高權(quán), 徐守宇. 廢用性肌萎縮的蛋白質(zhì)合成和降解途徑[J].中國運動醫(yī)學(xué)雜志, 2013, 32(7): 654-657; 632.
[29] PARKINGTON J D, LEBRASSEUR N K, SIEBERT A P, et al.Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle[J]. Journal of Applied Physiology, 2004, 97(1):243-248. DOI:10.1152/japplphysiol.01383.2003.
[30] FUNAI K, PARKINGTON J D, CARAMBULA S, et al. Ageassociated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle[J]. American Journal of Physiology Regulatory Integrative and Comparative Physiology,2006, 290(4): 1080-1086. DOI:10.1152/ajpregu.00277.2005.
[31] HADDAD F, ADAMS G R. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy[J]. Journal of Applied Physiology, 2006, 100(4): 1188-1203. DOI:10.1152/japplphysiol.01227.2005.
[32] LéGER B, DERAVE W, DE BOCK K, et al. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation[J]. Rejuvenation Research, 2008, 11(1): 163-175. DOI:10.1089/rej.2007.0588.
[33] RAHNERT J A, LUO Q, BALOG E M, et al. Changes in growthrelated kinases in head, neck and limb muscles with age[J]. Experimental Gerontology, 2011, 46(4): 282-291. DOI:10.1016/j.exger.2010.11.004.
[34] BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy[J]. Science,2001, 294: 1704-1708. DOI:10.1126/science.1065874.
[35] SANDRI M, SANDRI C, GILBERT A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J]. Cell, 2004, 117(3): 399-412.
[36] CAI D S, FRANTZ J D, TAWA N E, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice[J]. Cell, 2004, 119(2):285-298. DOI:10.1016/j.cell.2004.09.027.
[37] NEUFELD T P. TOR-dependent control of autophagy: biting the hand that feeds[J]. Current Opinion in Cell Biology, 2010, 22(2): 157-168.DOI:10.1016/j.ceb.2009.11.005.
[38] CHEONG H, YORIMITSU T, REGGIORI F, et al. Atg17 regulates the magnitude of the autophagic response[J]. Molecular Biology of the Cell, 2005, 16(7): 3438-3453. DOI:10.1091/mbc.E04-10-0894.
[39] PAPACKOVA Z, CAHOVA M. Important role of autophagy in regulation of metabolic processes in health, disease and aging[J].Physiological Research, 2014, 63(4): 409-420.
[40] WOHLGEMUTH S E, SEO A Y, MARZETTI E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise[J]. Experimental Gerontology, 2010,45(2): 138-148. DOI:10.1016/j.exger.2009.11.002.
[41] WENZ T, ROSSI S G, ROTUNDO R L, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20405-20410. DOI:10.1073/pnas.0911570106.
[42] WOLFE R R. The underappreciated role of muscle in health and disease[J]. American Journal of Clinical Nutrition, 2006, 84(3): 475-482.
[43] DEFRONZO R A, TRIPATHY D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes[J]. Diabetes Care, 2009,32(Suppl 2): S157-S163. DOI:10.2337/dc09-S302.
[44] JESSEN N, GOODYEAR L J. Contraction signaling to glucose transport in skeletal muscle[J]. Journal of Applied Physiology, 2005,99(1): 330-337. DOI:10.1152/japplphysiol.00175.2005.
[45] HABETS D D J, LUIKEN J J F P, OUWENS M, et al. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake[J]. Frontiers in Physiology, 2012, 3: 1-8.DOI:10.3389/fphys.2012.00361.
[46] CLEASBY M E, JAMIESON P M, ATHERTON P J. Insulin resistance and sarcopenia: mechanistic links between common comorbidities[J]. Journal of Endocrinology, 2016, 229(2): 67-81.DOI:10.1530/JOE-15-0533.
[47] CHIBALIN A V, YU M, RYDER J W, et al. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulinreceptor substrates 1 and 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): 38-43.
[48] KROOK A, WALLBERG-HENRIKSSON H, ZIERATH J R. Sending the signal: molecular mechanisms regulating glucose uptake[J].Medicine and Science in Sports and Exercise, 2004, 36(7): 1212-1217.
[49] CHRIST C Y, HUNT D, HANCOCK J, et al. Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats[J]. Journal of Applied Physiology, 2002, 92(2):736-744. DOI:10.1152/japplphysiol.00784.2001.
[50] NICKLAS B J, CHMELO E, DELBONO O, et al. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2015, 101(5):991-999. DOI:10.3945/ajcn.114.105270.
[51] KOSEK D J, KIM J S, PETRELLA J K, et al. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults[J]. Journal of Applied Physiology, 2006,101(2): 531-544. DOI:10.1152/japplphysiol.01474.2005.
[52] PAHOR M, BLAIR S N, ESPELAND M, et al. Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for elders pilot (LIFE-P)study[J]. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 2007, 62(3): 1157-1165.
[53] DAVIDSON L E, HUDSON R, KILPATRICK K, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial[J]. Archives of Internal Medicine, 2009, 169(2): 122-131. DOI:10.1001/archinternmed.2008.558.
[54] 盧健. 骨骼肌衰減癥與運動干預(yù)研究進展[J]. 體育科研, 2015, 36(3):1-7. DOI:10.3969/j.issn.1006-1207.2015.03.001.
[55] 余群, 翁錫全, 王麗平. 骨骼肌減少癥與運動訓(xùn)練對肌衛(wèi)星細(xì)胞影響的研究現(xiàn)狀及展望[J]. 中國組織工程研究, 2016, 20(15): 2248-2254. DOI:10.3969/j.issn.2095-4344.2016.15.017.
[56] ZANCHI N E, DE SIQUEIRA F M A, LIRA F S, et al. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3beta and p70S6K levels in rats[J].European Journal of Applied Physiology, 2009, 106(3): 415-423.DOI:10.1007/s00421-009-1033-6.
[57] PITHON-CURI T C, RODRIGUES C F, DE SOUSA L G O, et al.Effect of glutamine supplementation and resistive training in signaling pathways of protein synthesis and degradation in rat skeletal muscle[C]// Experimental Biology. Boston, USA: American Association of Anatomists, 2013.
[58] GOISSER S, KEMMLER W, PORZEL S, et al. Sarcopenic obesity and complex interventions with nutrition and exercise in communitydwelling older persons: a narrative review[J]. Clinical Interventions in Aging, 2015, 10: 1267-1282. DOI:10.2147/CIA.S82454.
[59] HAN T S, TAJAR A, LEAN M E. Obesity and weight management in the elderly[J]. British Medical Bulletin, 2011, 97: 169-196.DOI:10.1093/bmb/ldr002.
[60] MATHUS-VLIEGEN E M. Obesity and the elderly[J]. Journal of Clinical Gastroenterology, 2012, 46(7): 533-544. DOI:10.1097/MCG.0b013e31825692ce.
[61] FITZPATRICK A L, KULLER L H, LOPEZ O L, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study[J]. Archives of Neurology, 2009, 66(3): 336-342. DOI:10.1001/archneurol.2008.582.
[62] VILLAREAL D T, APOVIAN C M, KUSHNER R F, et al. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society[J]. Obesity Research, 2005, 13(11): 1849-1863. DOI:10.1038/oby.2005.228.
[63] BOUCHONVILLE M F, VILLAREAL D T. Sarcopenic obesity:how do we treat it?[J]. Current Opinion in Endocrinology,Diabetes, and Obesity, 2013, 20(5): 412-419. DOI:10.1097/01.med.0000433071.11466.7f.
[64] KOHARA K. Sarcopenic obesity in aging population: current status and future directions for research[J]. Endocrine, 2014, 45(1): 15-25.DOI:10.1007/s12020-013-9992-0.
[65] PRADO C M, WELLS J C, SMITH S R, et al. Sarcopenic obesity: a critical appraisal of the current evidence[J]. Clinical Nutrition, 2012,31(5): 583-601. DOI:10.1016/j.clnu.2012.06.010.
[66] PARR E B, COFFEY V G, HAWLEY J A. ‘Sarcobesity’: a metabolic conundrum[J]. Maturitas, 2013, 74(2): 109-113. DOI:10.1016/j.maturitas.2012.10.014.
[67] CETIN D C, NASR G. Obesity in the elderly: more complicated than you think[J]. Cleveland Clinic Journal of Medicine, 2014, 81(1): 51-61.DOI:10.3949/ccjm.81a.12165.
[68] WATERS D L, WARD A L, VILLAREAL D T. Weight loss in obese adults 65 years and older: a review of the controversy[J].Experimental Gerontology, 2013, 48(10): 1054-1061. DOI:10.1016/j.exger.2013.02.005.
[69] MATHUS-VLIEGEN E M H, BASDEVANT A, FINER N, et al.Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: a guideliner[J]. Obesity Facts, 2012,5(3): 460-483. DOI:10.1159/000341193.
[70] BISCHOFF-FERRARI H. Vitamin D: what is an adequate vitamin D level and how much supplementation is necessary?[J] Best Practice &Research: Clinical Rheumatology, 2009, 23(6): 789-795. DOI:10.1016/j.berh.2009.09.005.
[71] HOUSTON D K, TOOZE J A, HAUSMAN D B, et al. Change in 25-hydroxyvitamin D and physical performance in older adults[J].Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 2011, 66(4): 430-436. DOI:10.1093/gerona/glq235.
[72] CEGLIA L. Vitamin D and its role in skeletal muscle[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12(6): 628-633. DOI:10.1097/MCO.0b013e328331c707.
[73] CIPRIANI C, PEPE J, PIEMONTE S, et al. Vitamin D and its relationship with obesity and muscle[J]. International Journal of Endocrinology, 2014, 2014: 1-11. DOI:10.1155/2014/841248.
[74] MITHAL A, BONJOUR J P, BOONEN S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults[J]. Osteoporosis International, 2013, 24(5): 1555-1566. DOI:10.1007/s00198-012-2236-y.
[75] FULLER J C, BAIER S, FLAKOLL P, et al. Vitamin D status affects strength gains in older adults supplemented with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and lysine: a cohort study[J]. Journal of Parenteral and Enteral Nutrition, 2011, 35(6): 757-762. DOI:10.1177/0148607111413903.
[76] ALLEY D E, KOSTER A, MACKEY D, et al. Hospitalization and change in body composition and strength in a population-based cohort of older persons[J]. Journal of the American Geriatrics Society, 2010,58(11): 2085-2091. DOI:10.1111/j.1532-5415.2010.03144.x.
[77] GOTSHALK L A, KRAEMER W J, MENDONCA M A G, et al.Creatine supplementation improves muscular performance in older women[J]. European Journal of Applied Physiology, 2008, 102(2):223-231. DOI:10.1007/s00421-007-0580-y.
[78] DEVRIES M C, PHILLIPS S M. Creatine supplementation during resistance training in older adults-a meta-analysis[J]. Medicine and Science in Sports and Exercise, 2014, 46(6): 1194-1203. DOI:10.1249/MSS.0000000000000220.
[79] GUALANO B, RAWSON E S, CANDOW D G, et al. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain[J]. Amino Acids, 2016, 48(8): 1793-1805.DOI:10.1007/s00726-016-2239-7.
[80] BAUER J M, VERLAAN S, BAUTMANS I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the providestudy: a randomized, double-blind, placebo-controlled trial[J]. Journal of the American Medical Directors Association, 2015, 16(9): 740-747.DOI:10.1016/j.jamda.2015.05.021.
[81] BELL K E, SNIJDERS T, ZULYNIAK M, et al. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: a randomized controlled trial[J]. PLoS ONE, 2017, 12(7): 1-18. DOI:10.1371/journal.pone.0181387.
Exercise and Nutrition Interventions of Sarcopenic Obesity and Underlying Mechanisms
XU Lei1,LI Chunyan2,CHEN Ning2,*,F(xiàn)AN Jingjing2,*
(1. Graduate School, Wuhan Sports University, Wuhan 430079, China; 2. Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan 430079, China)
Sarcopenic obesity (SO) is a progressive disease characterized by obesity accompanied by declining skeletal muscle mass and/or strength in aging populations, which seriously affects the quality of life of patients. A large number of studies have shown that the body composition of the elderly could gradually change with age, even if the body weight remains at the same level, skeletal muscle mass and functions could decrease and fat deposition could increase mainly in muscle tissues and visceral organs, leading to increased accumulation of intramuscular fat, accelerated secretion of inflammatory phenomena, reduced level of growth hormones, deficient intake of nutrients, increased daily physical inactivity,degenerated neuronal function, and improved insulin resistance, which are highly associated with sarcopenic obesity. Based on the molecular underlying molecular mechanisms, protein synthesis and degradation, glucose and lipid metabolism and related cytokines in skeletal muscle are involved in the regulation of skeletal muscle metabolism during sarcopenic obesity.Exercise intervention, calorie restriction, and consumption of proteins, vitamin D, β-hydroxy-β-methyl-butyrate (HMB),creatine and whey protein can play an important role in the prevention and treatment of sarcopenic obesity. Although the number of population with sarcopenic obesity increases, the pathogenesis of sarcopenic obesity is inconsistently understood and inconsistent evaluation criteria and prevention and treatment strategies for this disease are used by researchers, causing great difficulties in studying sarcopenic obesity. In this article, we summarize and discuss the literature to date regarding the definition, pathogenesis and related signal pathways of sarcopenic obesity, as well as the corresponding prevention and treatment strategies (exercise or nutrition interventions), which will provide a novel insight into the prevention and treatment of sarcopenic obesity.
sarcopenic obesity; pathogenesis; signal pathway; prevention and treatment strategies
2017-06-30
國家自然科學(xué)基金面上項目(31571228);國家體育總局科教司科學(xué)研究項目(2014B093);湖北省高等學(xué)校優(yōu)秀中青年科技創(chuàng)新團隊項目(T201624);湖北省體育教育與健康促進學(xué)科群項目
徐磊(1994—),男,碩士研究生,研究方向為運動與營養(yǎng)干預(yù)對慢性疾病康復(fù)。E-mail:924822285@qq.com
*通信作者:陳寧(1972—),男,教授,博士,研究方向為運動與營養(yǎng)干預(yù)對慢性疾病預(yù)防與康復(fù)。E-mail:nchen510@gmail.com范晶晶(1984—),女,講師,博士,研究方向為運動與營養(yǎng)干預(yù)對慢性疾病預(yù)防與康復(fù)。E-mail:jie_jing_1@163.com
10.7506/spkx1002-6630-201721044
R151.4
A
1002-6630(2017)21-0279-08
徐磊, 李春艷, 陳寧, 等. 老年人肌少性肥胖的機制與運動營養(yǎng)調(diào)控研究進展[J]. 食品科學(xué), 2017, 38(21): 279-286.
10.7506/spkx1002-6630-201721044. http://www.spkx.net.cn
XU Lei, LI Chunyan, CHEN Ning, et al. Exercise and nutrition interventions of sarcopenic obesity and underlying mechanisms[J]. Food Science, 2017, 38(21): 279-286. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201721044. http://www.spkx.net.cn