向錦武,張雪嬌,趙仕偉,程 云,張志飛,李道春
(北京航空航天大學(xué) 航空科學(xué)與工程學(xué)院,北京 100191)
大展弦比復(fù)合材料機(jī)翼研究進(jìn)展
向錦武,張雪嬌,趙仕偉,程 云,張志飛,李道春
(北京航空航天大學(xué) 航空科學(xué)與工程學(xué)院,北京 100191)
長(zhǎng)航時(shí)無(wú)人機(jī)普遍采用輕質(zhì)、高比強(qiáng)度復(fù)合材料結(jié)構(gòu)大展弦比機(jī)翼,該類(lèi)機(jī)翼在飛行過(guò)程中表現(xiàn)出顯著的幾何非線(xiàn)性和氣動(dòng)非線(xiàn)性,進(jìn)而導(dǎo)致機(jī)翼的氣動(dòng)彈性非線(xiàn)性.大展弦比復(fù)合材料機(jī)翼的設(shè)計(jì)分析方法與傳統(tǒng)機(jī)翼有很大不同.為研究大展弦比復(fù)合材料機(jī)翼的進(jìn)展,并預(yù)測(cè)其未來(lái)可能的發(fā)展方向,對(duì)現(xiàn)有大展弦比復(fù)合材料機(jī)翼設(shè)計(jì)、分析、試驗(yàn)方法進(jìn)行分析總結(jié).首先,對(duì)大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)設(shè)計(jì)方法、結(jié)構(gòu)分析方法進(jìn)行了介紹;然后,介紹了兩類(lèi)用于大展弦比機(jī)翼的氣動(dòng)力分析方法:基于片條理論和二元非定常氣動(dòng)力相結(jié)合的氣動(dòng)力分析方法以及考慮展向流動(dòng)效應(yīng)的三維氣動(dòng)力分析方法,重點(diǎn)總結(jié)了復(fù)合材料大展弦比機(jī)翼靜氣動(dòng)彈性、動(dòng)氣動(dòng)彈性分析方法以及主動(dòng)控制技術(shù)在大展弦比機(jī)翼中的應(yīng)用,并分析了大展弦比復(fù)合材料機(jī)翼氣動(dòng)彈性剪裁最新進(jìn)展;最后,綜述了大展弦比復(fù)合材料機(jī)翼試驗(yàn)研究進(jìn)展.基于文獻(xiàn)分析可知,現(xiàn)有大展弦比復(fù)合材料機(jī)翼的結(jié)構(gòu)模型多采用等效梁板模型,氣動(dòng)模型多采用片條理論與考慮動(dòng)失速的二元非定常氣動(dòng)力相結(jié)合的模型.氣動(dòng)降階模型與結(jié)構(gòu)模型相耦合進(jìn)行相關(guān)研究,以及大展弦比復(fù)合材料機(jī)翼的飛行試驗(yàn),均是大展弦比復(fù)合材料機(jī)翼未來(lái)可能的研究發(fā)展方向.
大展弦比;幾何非線(xiàn)性;氣動(dòng)非線(xiàn)性;氣動(dòng)彈性;主動(dòng)控制
長(zhǎng)航時(shí)無(wú)人機(jī)能夠不間斷地執(zhí)行情報(bào)/偵察/監(jiān)視、目標(biāo)捕捉、國(guó)土邊防監(jiān)控、氣象科學(xué)研究、通信中繼和環(huán)境監(jiān)測(cè)等許多重要軍用/民用任務(wù),而且比衛(wèi)星更可控,成本更低、方式更靈活,且更易維護(hù),因此該類(lèi)飛行器成為航空研究的熱門(mén)領(lǐng)域.其中具有代表性的太陽(yáng)能無(wú)人機(jī)是美國(guó)航空環(huán)境(AeroVironment)公司的“太陽(yáng)神”(Helios)系列無(wú)人機(jī)[1]、美國(guó)波音公司的“太陽(yáng)鷹”(SolarEagle)無(wú)人機(jī)、英國(guó)奎奈蒂克(QinetiQ)公司的“西風(fēng)”系列無(wú)人機(jī)[2]、意大利都靈工業(yè)大學(xué)的“太陽(yáng)能平臺(tái)”(HELIPLAT)無(wú)人機(jī)[3].代表性長(zhǎng)航時(shí)氫動(dòng)力無(wú)人機(jī)有航空環(huán)境公司的“全球觀察者”系列無(wú)人機(jī)[4]、極光飛行科技公司(Aurora Flight Sciences)的“獵戶(hù)座”(Orion HALL)無(wú)人機(jī)和波音公司的“鬼眼”(Phantom Eye)無(wú)人機(jī)[5]等.
長(zhǎng)航時(shí)無(wú)人機(jī)為獲得高升阻比,普遍采用輕質(zhì)復(fù)合材料和大展弦比設(shè)計(jì).結(jié)構(gòu)大柔性引起幾何非線(xiàn)性,導(dǎo)致氣動(dòng)載荷重新分布,從而改變結(jié)構(gòu)的氣動(dòng)彈性特性.高空低速飛行時(shí),局部攻角較大,且受結(jié)構(gòu)大變形的影響,容易發(fā)生氣動(dòng)失速,出現(xiàn)流動(dòng)分離,從而表現(xiàn)出氣動(dòng)非線(xiàn)性.結(jié)構(gòu)非線(xiàn)性和氣動(dòng)非線(xiàn)性耦合,將引起新的非線(xiàn)性氣動(dòng)彈性特性.基于上述分析可以看出,大展弦比復(fù)合材料機(jī)翼的設(shè)計(jì)分析方法和傳統(tǒng)機(jī)翼不同,有必要對(duì)現(xiàn)有大展弦比復(fù)合材料機(jī)翼的設(shè)計(jì)、分析、試驗(yàn)方法進(jìn)行分析總結(jié).本文對(duì)大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)、氣動(dòng)、氣彈、主動(dòng)控制、氣彈剪裁、試驗(yàn)方法進(jìn)行綜述,最后對(duì)研究現(xiàn)狀進(jìn)行總結(jié),并提出了可能的研究方向.
大展弦比機(jī)翼由于氣動(dòng)力的作用,翼根承受較大的彎矩,而復(fù)合材料比強(qiáng)度高,比模量大,剛度可設(shè)計(jì),因此復(fù)合材料被廣泛應(yīng)用于大展弦比機(jī)翼結(jié)構(gòu).由于結(jié)構(gòu)柔性導(dǎo)致的結(jié)構(gòu)幾何非線(xiàn)性的影響,如圖1所示.大展弦比復(fù)合材料機(jī)翼的分析和設(shè)計(jì)方法與傳統(tǒng)機(jī)翼不同,本部分介紹大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)的設(shè)計(jì)和分析方法.
圖1 大展弦比機(jī)翼的柔性變形
1.1 大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)設(shè)計(jì)方法
大展弦比機(jī)翼的特點(diǎn)是翼根處彎矩較大,上翼面易發(fā)生屈曲,以及機(jī)翼的扭轉(zhuǎn)變形可能過(guò)大等.針對(duì)上述特點(diǎn),合理應(yīng)用復(fù)合材料可以顯著提升結(jié)構(gòu)的性能.首先,復(fù)合材料可以增大機(jī)翼的剛度特性,田坤黌等[6]通過(guò)有限元分析計(jì)算,可知在展弦比不變的條件下,復(fù)合材料機(jī)翼結(jié)構(gòu)的各階固有頻率明顯高于全鋁合金機(jī)翼結(jié)構(gòu).復(fù)合材料各向異性的特點(diǎn)還有助于機(jī)翼的減重.劉峰等[7]對(duì)某無(wú)人機(jī)復(fù)合材料主翼盒運(yùn)用等強(qiáng)度設(shè)計(jì)的思想研究了主翼盒基于載荷分段的包絡(luò)設(shè)計(jì)方法與鋪層優(yōu)化方法.給出了翼盒前、后梁的上下表面的初步鋪層設(shè)計(jì),可使結(jié)構(gòu)減重達(dá)5.23%.Benjamin等[8]將復(fù)合材料機(jī)翼進(jìn)行分塊制造拼裝,具有輕量化、檢修方便的特點(diǎn),可實(shí)現(xiàn)整個(gè)機(jī)翼的主動(dòng)扭轉(zhuǎn)彎曲.國(guó)內(nèi)外學(xué)者對(duì)機(jī)翼結(jié)構(gòu)所用的復(fù)合材料的鋪設(shè)角大小和鋪層厚度進(jìn)行了研究.Myoungkeon等[9]指出復(fù)合材料結(jié)構(gòu),采用較多的±45°鋪層,并且鋪層位于外側(cè)時(shí),結(jié)構(gòu)的屈曲強(qiáng)度和彎曲強(qiáng)度較好.楊龍[10]分析了機(jī)翼主梁碳纖維鋪層厚度與機(jī)翼結(jié)構(gòu)動(dòng)力學(xué)特性的關(guān)系,發(fā)現(xiàn)綜合剛度和厚度考慮,碳纖維鋪層并不是越厚性能就越好,而是存在某個(gè)最佳值.
在風(fēng)洞試驗(yàn)和飛行試驗(yàn)中常常用到縮比模型,大展弦比機(jī)翼縮比模型設(shè)計(jì)除了考慮常規(guī)的相似準(zhǔn)則以外,還要考慮非線(xiàn)性對(duì)相似律的影響.French等[11]在布金漢π定理的基礎(chǔ)上,提出兩步法建立縮比模型,先使設(shè)計(jì)模型與目標(biāo)模型之間的差異盡可能的小,然后在保證剛度等效的條件下,對(duì)模型進(jìn)行降階處理.Richards等[12]評(píng)估了聯(lián)合翼飛行測(cè)試程序的兩種線(xiàn)性縮比方法.第1種方法使用單步直接模態(tài)匹配,將固有頻率和對(duì)應(yīng)的模態(tài)形狀同時(shí)分析,設(shè)計(jì)變量包括結(jié)構(gòu)剛度和非結(jié)構(gòu)的質(zhì)量. 第2種方法先對(duì)剛度和非結(jié)構(gòu)質(zhì)量解耦,然后采用文獻(xiàn)[11]的方法進(jìn)行設(shè)計(jì).兩種方法結(jié)果比較一致,但是第1種的計(jì)算量較大.Wan[13]指出線(xiàn)性相似準(zhǔn)則對(duì)幾何非線(xiàn)性的結(jié)構(gòu)仍然適用.但是模型之間除了需要滿(mǎn)足幾何相似、質(zhì)量相似、氣動(dòng)彈性相似外,弗勞德數(shù)相似也不可忽略,同時(shí)還應(yīng)滿(mǎn)足剛度相似,[KT]=[KL]+[KNL]+[Kσ].其中:KT為全局坐標(biāo)系里一個(gè)單元的縱向剛度矩陣;KL為小變形線(xiàn)性剛度矩陣;KNL為大變形,非線(xiàn)性剛度矩陣;Kσ為預(yù)應(yīng)力剛度矩陣.
綜上所述,大展弦比復(fù)合材料機(jī)翼的設(shè)計(jì)難點(diǎn)在于如何分配剛度,使得機(jī)翼在滿(mǎn)足所需動(dòng)力學(xué)特性的基礎(chǔ)上質(zhì)量更輕.復(fù)合材料結(jié)構(gòu)形式上可以選用蜂窩夾層、多墻式和混合式結(jié)構(gòu).隨后,可以對(duì)復(fù)合材料的鋪設(shè)角、厚度等進(jìn)行進(jìn)一步的設(shè)計(jì).大展弦比機(jī)翼縮比模型的設(shè)計(jì)要考慮非線(xiàn)性對(duì)相似準(zhǔn)則的影響,為后續(xù)的風(fēng)洞試驗(yàn)奠定基礎(chǔ).
1.2 大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)分析方法
機(jī)翼結(jié)構(gòu)一般可分為有限元和理論模型兩種分析方法.其中有限元法發(fā)展的比較成熟,適用于詳細(xì)設(shè)計(jì)階段,計(jì)算較為精確.Zhe等[14]運(yùn)用非線(xiàn)性方法,基于有限元模型,通過(guò)施加陣風(fēng)分析了機(jī)翼結(jié)構(gòu)的力學(xué)性能.石慶華等[15]在剪切梁理論的基礎(chǔ)上,采用 9 節(jié)點(diǎn)平面單元模擬梁任意截面形狀,可用于復(fù)雜結(jié)構(gòu)空間薄壁復(fù)合材料梁的有限元分析計(jì)算.
而簡(jiǎn)化模型則適用于概念設(shè)計(jì)階段的后期,實(shí)現(xiàn)快速分析.1974年,Hodges等[16]最早提出了旋翼槳葉的非線(xiàn)性梁模型,該模型可用于具有中等位移的各向同性均勻預(yù)扭梁的分析.2003年,Hodges[17]又通過(guò)廣義速度、廣義應(yīng)變與位移的關(guān)系,推導(dǎo)了本征運(yùn)動(dòng)學(xué)方程,建立了不含位移和有限轉(zhuǎn)動(dòng)變量,完全本征的幾何精確各向異性運(yùn)動(dòng)梁模型.國(guó)內(nèi)方面,謝長(zhǎng)川等[18]應(yīng)用“準(zhǔn)模態(tài)”假設(shè)分析了幾何非線(xiàn)性對(duì)結(jié)構(gòu)振動(dòng)的影響.隨后張新榃等[19]通過(guò)實(shí)驗(yàn)驗(yàn)證了準(zhǔn)模態(tài)法在顫振分析中的準(zhǔn)確性.石慶華等[20]假設(shè)應(yīng)變沿薄壁厚度呈二次曲線(xiàn)形式變化,基于Timoshenko梁模型,建立了一種新的考慮剪切、翹曲復(fù)合材料大變形梁靜、動(dòng)態(tài)特性分析模型,并進(jìn)行了算例驗(yàn)證.Palacios等[21]結(jié)合二維截面分析方法與Hodges一維非線(xiàn)性梁模型,建立了嵌入傳感器和壓電驅(qū)動(dòng)器的細(xì)長(zhǎng)結(jié)構(gòu)梁模型.王睿等[22]利用空間縮聚法提升了Hodges的本征梁模型的運(yùn)算速度.
如果同時(shí)考慮弦向和展向兩個(gè)方向的彎曲變形,可以將結(jié)構(gòu)簡(jiǎn)化為板模型.傳統(tǒng)的板彎曲理論是Kirchhof 薄板理論,此理論能很好地滿(mǎn)足力邊界條件,但對(duì)中厚板或者一些面內(nèi)彈性模量之比較大的復(fù)合材料層合板而言,橫向剪切變形的影響不應(yīng)忽略.沈惠申等[23]提出了一階剪切變形理論.但該理論不能精確滿(mǎn)足力邊界條件,需要引入剪切因子作為修正,且修正過(guò)程相當(dāng)繁瑣.為了不引進(jìn)剪切因子并滿(mǎn)足板上、下表面的力邊界條件,種種高階剪切變形理論被提出.黃志強(qiáng)等[24]將Reddy的變形理論應(yīng)用于復(fù)合材料層合板的面內(nèi)應(yīng)力分布,及各向同性方板的非線(xiàn)性彎曲計(jì)算,對(duì)復(fù)合材料機(jī)翼的結(jié)構(gòu)分析也具有一定的參考價(jià)值.楊佑緒等[25]基于一階剪切變形板理論開(kāi)發(fā)了一種導(dǎo)彈翼面部件的動(dòng)力學(xué)和顫振分析方法.
綜上所述,大展弦比機(jī)翼大多采用等效梁模型,如果弦向變形不可忽略,可以采用文獻(xiàn)[19]所述的變截面梁模型或采用剪切板模型,均可以得到較為準(zhǔn)確的計(jì)算結(jié)果.
高效準(zhǔn)確的氣動(dòng)力分析方法是大展弦比機(jī)翼氣動(dòng)建模的關(guān)鍵.大展弦比機(jī)翼氣動(dòng)分析可以分為基于片條理論和二元非定常氣動(dòng)力相結(jié)合的氣動(dòng)力分析方法以及考慮展向流動(dòng)效應(yīng)的三維氣動(dòng)力分析方法.
2.1 二維氣動(dòng)力分析方法
片條理論和二元非定常氣動(dòng)力相結(jié)合的氣動(dòng)模型,計(jì)算效率較高,被廣泛應(yīng)用于大展弦比機(jī)翼氣動(dòng)彈性分析[26],二元翼型非定常氣動(dòng)力模型主要包括頻域分析模型和時(shí)域數(shù)值模型.
Theodorson非定常氣動(dòng)力模型能夠較精確和高效地描述二元薄板在小攻角下非定常氣動(dòng)力的變化,被廣泛應(yīng)用于大展弦比機(jī)翼的氣動(dòng)彈性分析.然而,頻域分析模型基于薄板簡(jiǎn)諧振動(dòng)進(jìn)行氣動(dòng)力計(jì)算,近似認(rèn)為貼近顫振邊界時(shí)有效,因此不適用于遠(yuǎn)離顫振邊界的氣動(dòng)彈性響應(yīng)分析.
二元翼型時(shí)域數(shù)值模型能夠描述二元翼型在任意運(yùn)動(dòng)形式下的氣動(dòng)力變化,具有更廣泛的適用性.文獻(xiàn)[27]對(duì)動(dòng)力入流理論的誕生和發(fā)展進(jìn)行了總結(jié).動(dòng)力入流模型數(shù)學(xué)形式簡(jiǎn)潔,而且計(jì)算效率較高,適用于大展弦比柔性飛行器氣動(dòng)彈性分析[28-29].動(dòng)失速模型針對(duì)的是二元翼型大攻角情況下的氣動(dòng)失速,通過(guò)二元翼型風(fēng)洞試驗(yàn)數(shù)據(jù)對(duì)模型中的系數(shù)進(jìn)行辨識(shí)和修正.其中應(yīng)用較為廣泛的半經(jīng)驗(yàn)動(dòng)失速模型主要包括Leishman-Beddoes (L-B)模型和ONERA模型等.文獻(xiàn)[30]對(duì)L-B的發(fā)展進(jìn)行了回顧.該模型主要包括靜態(tài)模型、附著流模型、分離流模型和渦旋流模型4部分,能夠較準(zhǔn)確地計(jì)算二維翼型的氣動(dòng)升力、俯仰力矩和阻力,而且經(jīng)驗(yàn)系數(shù)較少,但目前多用于旋翼槳葉氣動(dòng)彈性分析以及各種不同動(dòng)失速模型準(zhǔn)確性的對(duì)比和評(píng)價(jià).ONERA動(dòng)失速模型中包含了較多的經(jīng)驗(yàn)參數(shù),但其表達(dá)形式簡(jiǎn)潔,其易于與結(jié)構(gòu)模型耦合,已被用于氣動(dòng)彈性分析[31-33].
2.2 三維氣動(dòng)力分析方法
計(jì)算三維氣動(dòng)力的數(shù)值方法主要有偶極子網(wǎng)格法和非定常渦格法.偶極子網(wǎng)格法通常用于固定翼的氣動(dòng)彈性分析,由于大展弦比機(jī)翼變形較大,偶極子網(wǎng)格無(wú)法模擬大變形狀態(tài)下的曲面.非定常渦格法通過(guò)在物面和尾跡區(qū)域布置渦格,渦格的形狀可以隨著物面的形狀變化而變化.因此,通常采用非定常渦格法計(jì)算大展弦比機(jī)翼非定常氣動(dòng)力[34-37].傳統(tǒng)的非定常渦格法是基于時(shí)間序列進(jìn)行分析計(jì)算,然而由于控制律以及穩(wěn)定性分析的需求,需要對(duì)非定常渦格法進(jìn)行線(xiàn)性化.Murua等[34]對(duì)非定常渦格線(xiàn)性化進(jìn)而計(jì)算配平狀態(tài)的大展弦比機(jī)翼的穩(wěn)定性.
此外,計(jì)算流體力學(xué)方法(CFD)也常被用于大展弦比機(jī)翼的氣動(dòng)彈性分析計(jì)算[38-39],目前多用于靜氣動(dòng)彈性分析和動(dòng)響應(yīng)分析,計(jì)算效率較低.為提高計(jì)算效率,可采用基于CFD的降階模型進(jìn)行氣動(dòng)力建模.常用的降階模型方法包括基于流場(chǎng)內(nèi)部特征結(jié)構(gòu)分析的本征正交分解方法(POD)以及基于系統(tǒng)辨識(shí)的方法,如Volterrra級(jí)數(shù)方法、ARMA方法等,相關(guān)研究工作詳見(jiàn)文獻(xiàn)[40-41].
為有效減輕質(zhì)量,大展弦比機(jī)翼多采用復(fù)合材料.復(fù)合材料的各向異性和幾何非線(xiàn)性特性,使機(jī)翼氣動(dòng)彈性問(wèn)題更加復(fù)雜.國(guó)內(nèi)外學(xué)者對(duì)復(fù)合材料機(jī)翼的氣動(dòng)彈性問(wèn)題進(jìn)行了較深入的研究.具體可分為靜氣動(dòng)彈性、動(dòng)氣動(dòng)彈性以及陣風(fēng)減緩與主動(dòng)控制.
3.1 靜氣動(dòng)彈性
Smith等[42]基于幾何精確本征梁理論和Euler求解器,研究了大展弦比柔性機(jī)翼的靜態(tài)氣動(dòng)彈性特性.Joseph等[43-44]耦合三維幾何非線(xiàn)性梁模型與Euler/Navier-Stokes CFD方法,研究了大展弦比柔性機(jī)翼跨音速靜氣動(dòng)彈性特性.其直機(jī)翼算例結(jié)果顯示,非線(xiàn)性模型與線(xiàn)性模型的機(jī)翼扭轉(zhuǎn)顯著不同,主要?dú)w因于跨音速阻力與機(jī)翼彎曲大變形的耦合作用;后掠翼算例結(jié)果顯示,機(jī)翼翼尖處易發(fā)生失速.
針對(duì)大展弦比復(fù)合材料機(jī)翼的靜氣動(dòng)彈性特性分析, 國(guó)內(nèi)學(xué)者[19,32,45-49]大多采用線(xiàn)性結(jié)構(gòu)模型及氣動(dòng)模型,沒(méi)有考慮復(fù)合材料機(jī)翼的剛度耦合問(wèn)題.在此基礎(chǔ)上,Lu等[50]將一維非線(xiàn)性梁的結(jié)構(gòu)模型與非定常渦格法氣動(dòng)模型相耦合,研究大展弦比柔性翼的靜氣動(dòng)彈性特性.郝帥等[51]針對(duì)氫動(dòng)力超長(zhǎng)航時(shí)無(wú)人機(jī)大展弦比機(jī)翼,基于CFD/CSD 強(qiáng)耦合,給出了一種考慮靜氣動(dòng)彈性效應(yīng)的剛性機(jī)翼氣動(dòng)特性修正方法.張強(qiáng)等[52]基于 CFD/CSD 松耦合,研究了大展弦比飛翼布局無(wú)人機(jī)的靜氣動(dòng)彈性問(wèn)題.
3.2 動(dòng)氣動(dòng)彈性
20世紀(jì)中期,非線(xiàn)性氣動(dòng)彈性的相關(guān)研究已經(jīng)起步.李道春[53]以二元翼型為對(duì)象,較詳細(xì)地研究了結(jié)構(gòu)剛度非線(xiàn)性對(duì)二元翼型非線(xiàn)性氣動(dòng)彈性的影響,并進(jìn)行了非線(xiàn)性顫振主動(dòng)控制的研究.上述研究側(cè)重于結(jié)構(gòu)剛度非線(xiàn)性對(duì)飛行器氣動(dòng)彈性的影響,忽略了結(jié)構(gòu)幾何非線(xiàn)性的作用.針對(duì)大展弦比復(fù)合材料機(jī)翼,結(jié)構(gòu)大變形引起的幾何非線(xiàn)性也會(huì)改變結(jié)構(gòu)的振型和頻率,影響機(jī)翼的氣動(dòng)彈性特性.傳統(tǒng)氣動(dòng)彈性分析方法都不考慮幾何非線(xiàn)性的影響,在進(jìn)行氣動(dòng)彈性分析預(yù)測(cè)時(shí)會(huì)產(chǎn)生較大誤差,因此有必要針對(duì)大展弦比柔性機(jī)翼進(jìn)行非線(xiàn)性氣動(dòng)彈性分析.
3.2.1 非線(xiàn)性顫振
隨著大展弦比柔性機(jī)翼非線(xiàn)性結(jié)構(gòu)建模的深入研究,Tang等[54]開(kāi)展了基于Hodges-Dowell非線(xiàn)性運(yùn)動(dòng)梁模型的大展弦比機(jī)翼氣動(dòng)彈性的理論和實(shí)驗(yàn)研究,其結(jié)果表明大展弦比柔性機(jī)翼的結(jié)構(gòu)變形對(duì)彎曲和扭轉(zhuǎn)特性影響較大,二元機(jī)翼無(wú)法精確模擬大展弦比柔性機(jī)翼的結(jié)構(gòu)幾何非線(xiàn)性效應(yīng),以及結(jié)構(gòu)變形引起的彎曲與扭轉(zhuǎn)剛度的非線(xiàn)性變化.Patil等[55-57]針對(duì)大展弦比HALE飛機(jī)的非線(xiàn)性氣動(dòng)彈性和飛行動(dòng)力學(xué)及控制問(wèn)題進(jìn)行了較完整的研究,大展弦比機(jī)翼的結(jié)構(gòu)動(dòng)氣動(dòng)彈性特性會(huì)受到結(jié)構(gòu)幾何非線(xiàn)性和機(jī)翼變形狀態(tài)的影響.基于幾何精確本征梁,Cesnik等[58]針對(duì)大展弦比復(fù)合材料柔性機(jī)翼建立了低階高精度的非線(xiàn)性氣動(dòng)彈性分析模型,研究了復(fù)合材料鋪層角對(duì)線(xiàn)性發(fā)散和線(xiàn)性顫振的影響,分析了幾何非線(xiàn)性對(duì)靜氣動(dòng)彈性變形和發(fā)散臨界動(dòng)壓的顯著影響.
國(guó)內(nèi)的趙永輝等[59-60]研究了大展弦比復(fù)合材料機(jī)翼的線(xiàn)性顫振,氣動(dòng)力模型采用ONERA-EDlin動(dòng)失速模型,結(jié)構(gòu)模型忽略了幾何非線(xiàn)性,非線(xiàn)性時(shí)域響應(yīng)求解是通過(guò)結(jié)構(gòu)模型和氣動(dòng)模型間的數(shù)據(jù)獨(dú)立傳遞來(lái)實(shí)現(xiàn)的.劉湘寧等[61-62]基于結(jié)構(gòu)幾何非線(xiàn)性的大變形歐拉梁和ONERA動(dòng)失速模型,建立了大展弦比復(fù)合材料機(jī)翼的非線(xiàn)性氣動(dòng)彈性分析模型,對(duì)復(fù)合材料機(jī)翼的非線(xiàn)性失速顫振特性和剪裁剛度的影響進(jìn)行了較為詳盡的研究.張健等[63]基于本征梁理論研究了側(cè)向隨動(dòng)載荷作用下柔性機(jī)翼的氣動(dòng)彈性穩(wěn)定性,分析了機(jī)翼剛度比、集中質(zhì)量大小和位置、機(jī)翼后掠角和上反角等參數(shù)對(duì)側(cè)向隨動(dòng)載荷作用下柔性機(jī)翼穩(wěn)定性的影響.
3.2.2 極限環(huán)振蕩
當(dāng)來(lái)流速度高于顫振速度時(shí),線(xiàn)性氣動(dòng)彈性系統(tǒng)受到小擾動(dòng)后,其響應(yīng)振幅會(huì)不斷增大直至結(jié)構(gòu)破壞.而在非線(xiàn)性氣動(dòng)彈性系統(tǒng)中,鑒于幾何剛化效應(yīng)和氣動(dòng)非線(xiàn)性特性,振幅在響應(yīng)初期不斷增大,最終進(jìn)入振幅有限的振動(dòng)狀態(tài),表現(xiàn)為極限環(huán)振蕩現(xiàn)象.振幅不變的情況下,極限環(huán)振蕩能有效避免氣動(dòng)發(fā)散引起的結(jié)構(gòu)破壞,但會(huì)導(dǎo)致結(jié)構(gòu)疲勞,降低結(jié)構(gòu)壽命,因此有必要研究極限環(huán)振蕩.
Patil等[57,64,87]分別針對(duì)小展弦比和大展弦比柔性機(jī)翼的極限環(huán)振蕩特性進(jìn)行了研究,模型中考慮了結(jié)構(gòu)幾何非線(xiàn)性和氣動(dòng)失速非線(xiàn)性的作用.結(jié)果表明,當(dāng)來(lái)流速度大于顫振速度,或來(lái)流速度小于顫振速度但擾動(dòng)足夠大時(shí),機(jī)翼均會(huì)發(fā)生極限環(huán)振蕩,并且隨著速度的增加,極限環(huán)振蕩頻率成分增多,表現(xiàn)為多周期運(yùn)動(dòng),速度繼續(xù)增大時(shí)甚至出現(xiàn)混沌.Kim等[65]在Crespo非線(xiàn)性梁模型中加入了外掛,研究外掛非線(xiàn)性對(duì)機(jī)翼極限環(huán)振蕩的影響.Kouchakzadeh等[66]和Kuo[67]將機(jī)翼簡(jiǎn)化成復(fù)合材料板,研究了超音速顫振問(wèn)題.Attaran等[68]建立復(fù)合材料板,分析了后掠角、展弦比等對(duì)顫振速度的影響.Kameyama等[69]建立變截面的復(fù)合材料板,并研究后掠角、纖維鋪層角對(duì)顫振發(fā)散特性的影響.
國(guó)內(nèi)有關(guān)幾何非線(xiàn)性的大展弦比柔性機(jī)翼/飛機(jī)極限環(huán)振蕩的研究也已開(kāi)展,但仍較少.張健等[32]基于幾何精確本征梁和Extended-ONERA動(dòng)失速模型,對(duì)大展弦比機(jī)翼的極限環(huán)振蕩現(xiàn)象進(jìn)行了研究,結(jié)果表明氣動(dòng)阻力對(duì)極限環(huán)振蕩的形式影響較小,但在精確預(yù)測(cè)顫振邊界和極限環(huán)振蕩現(xiàn)象時(shí)應(yīng)考慮阻力的影響,算例研究結(jié)果表明極限環(huán)振蕩對(duì)速度比較敏感.謝亮等[70]基于NASTRAN和CFD求解器,開(kāi)發(fā)了一套基于CFD/CSD耦合求解的氣動(dòng)彈性時(shí)域仿真程序,并計(jì)算了切尖三角翼極限環(huán)振蕩現(xiàn)象的動(dòng)氣動(dòng)彈性仿真,結(jié)果表明結(jié)構(gòu)非線(xiàn)性對(duì)氣動(dòng)彈性和極限環(huán)振蕩有顯著影響.趙振軍[71]基于多體系統(tǒng)動(dòng)力學(xué)對(duì)懸臂柔性機(jī)翼的氣動(dòng)彈性進(jìn)行研究,并進(jìn)一步分析了折疊間隙對(duì)折疊翼極限環(huán)響應(yīng)的影響.肖艷平等[72]采用基于Wagner函數(shù)的非定常氣動(dòng)力,考慮大展弦比機(jī)翼的幾何大變形和機(jī)翼外掛系統(tǒng)的結(jié)構(gòu)非線(xiàn)性,運(yùn)用伽遼金法進(jìn)行離散,對(duì)大展弦比機(jī)翼及機(jī)翼外掛系統(tǒng)的非線(xiàn)性響應(yīng)進(jìn)行了深入的研究,分析了各種參數(shù)對(duì)系統(tǒng)顫振特性的影響以及系統(tǒng)發(fā)生分叉失穩(wěn)的復(fù)雜運(yùn)動(dòng)形態(tài).肖志鵬等[73]將機(jī)翼簡(jiǎn)化為復(fù)合材料板,對(duì)機(jī)翼的顫振和氣動(dòng)彈性進(jìn)行了優(yōu)化分析.張偉等[74]考慮高階橫向剪切效應(yīng)、幾何大變形和橫向阻尼的影響,基于Reddy的高階剪切變形理論和Von Karman的大變形理論,利用Hamilton原理研究了復(fù)合材料層合懸臂板的非線(xiàn)性動(dòng)力學(xué)問(wèn)題.QIAO 等[75]基于CFD/CSD 建立了非線(xiàn)性顫振分析方法,可用于分析大變形引起的幾何非線(xiàn)性問(wèn)題.
3.3 氣動(dòng)彈性仿真框架
開(kāi)展柔性飛行器結(jié)構(gòu)幾何非線(xiàn)性、氣動(dòng)非線(xiàn)性等方面的氣動(dòng)彈性與飛行力學(xué)耦合問(wèn)題的相關(guān)研究,需建立結(jié)構(gòu)中等/大變形運(yùn)動(dòng)自由度與全機(jī)運(yùn)動(dòng)自由度的統(tǒng)一模型,對(duì)其耦合求解.隨著大展弦比柔性長(zhǎng)航時(shí)無(wú)人機(jī)相關(guān)問(wèn)題的深入探索,國(guó)外逐漸衍生出若干柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合的仿真工具/框架.
ASWING可求解靜平衡、頻域和時(shí)域響應(yīng)以及動(dòng)穩(wěn)定性等問(wèn)題,具有一定的工程精度.Love等[76]利用ASWING研究了后掠翼飛翼布局傳感器飛機(jī)的剛體自由顫振.GonzáLez等[77]基于ASWING建立了氣動(dòng)彈性模型并進(jìn)行了靜穩(wěn)定性分析.但ASWING對(duì)連翼布局飛行器氣動(dòng)彈性的分析求解能力不足.
UM/NAST(The University of Michigan’s Nonlinear Simulation Toolbox)最初是由密歇根大學(xué)的Cesnik等[78-79]和Brown[80]建立的一套用于大展弦比柔性飛行器非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合的仿真框架,適用于常規(guī)、飛翼和連翼等多種布局形式.Su等[81]引入了陣風(fēng)模型,并以雙線(xiàn)性剛度模型考慮蒙皮褶皺效應(yīng),研究了柔性飛機(jī)的配平、縱向穩(wěn)定性和陣風(fēng)響應(yīng)等;對(duì)連翼布局的邊界約束進(jìn)行改進(jìn),使用拉格朗日乘子法代替了法函數(shù)法[82];研究了BWB布局傳感器飛機(jī)的固有振動(dòng)特性、剛體自由顫振特性、剛?cè)狁詈蠒r(shí)域響應(yīng)和陣風(fēng)響應(yīng)等[83].
國(guó)內(nèi)針對(duì)柔性飛行器非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合分析的仿真工具尚不多見(jiàn).其中,趙振軍等[71,84]基于多體動(dòng)力學(xué)方法和ONERA-Edlin動(dòng)失速氣動(dòng)力模型,研究了各種飛行狀態(tài)下的時(shí)域響應(yīng),通過(guò)時(shí)域響應(yīng)計(jì)算獲得全機(jī)配平等系統(tǒng)靜穩(wěn)態(tài)解.張健等[85-86]建立了大展弦比柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)的剛?cè)狁詈夏P?,機(jī)身簡(jiǎn)化為剛體,機(jī)翼結(jié)構(gòu)由具有大位移和大轉(zhuǎn)動(dòng)的運(yùn)動(dòng)梁建模,綜合考慮了掛載和集中載荷等非連續(xù)因素.因此,建立一套能夠完整地進(jìn)行大展弦比柔性飛行器非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合分析的研究工具,充分考慮結(jié)構(gòu)幾何非線(xiàn)性、氣動(dòng)非線(xiàn)性以及結(jié)構(gòu)彈性與飛行力學(xué)之間的非線(xiàn)性效應(yīng),具有一定的現(xiàn)實(shí)和工程意義.文獻(xiàn)[86]當(dāng)機(jī)翼垂直彎曲變形較小,鉛垂方向上有效升力損失較小時(shí),由于機(jī)翼扭轉(zhuǎn)彈性變形對(duì)其局部迎角的貢獻(xiàn),柔性飛機(jī)配平迎角小于剛性飛機(jī)配平迎角;當(dāng)機(jī)翼垂直彎曲變形較大,鉛垂方向上有效升力損失較大時(shí),柔性飛機(jī)配平迎角大于剛性飛機(jī)配平迎角,如圖2所示.針對(duì)完整非線(xiàn)性剛?cè)狁詈系臅r(shí)域響應(yīng),機(jī)翼變形較小時(shí),失速區(qū)域可能由翼根向翼尖擴(kuò)展,翼展失速區(qū)域較大,全機(jī)升力損失顯著,飛行高度迅速降低;機(jī)翼變形較大時(shí),失速首先發(fā)生于翼尖,而后向翼根擴(kuò)展,失速范圍有限,全機(jī)升力損失相對(duì)較小,如圖3、4所示.
主動(dòng)控制技術(shù)(active control technology, ACT)是一種通過(guò)控制器來(lái)消除氣動(dòng)彈性不穩(wěn)定性的技術(shù)或方案,可廣泛應(yīng)用于多種飛行器,包括大展弦比機(jī)翼.主動(dòng)控制技術(shù)可用于載荷減緩[87-89],用于陣風(fēng)響應(yīng)[90]、穩(wěn)定性、極限環(huán)振蕩以及經(jīng)典的顫振抑制[91],不同控制器有各自對(duì)應(yīng)的用途.
4.1 主動(dòng)陣風(fēng)減緩
陣風(fēng)減緩一直是大展弦比機(jī)翼的熱點(diǎn)研究領(lǐng)域.飛行器在飛行中常會(huì)受到大氣擾動(dòng)以及機(jī)動(dòng)操縱誘導(dǎo)載荷的影響而產(chǎn)生附加過(guò)載,其中垂直陣風(fēng)的影響尤為顯著[92].大展弦比柔性飛行器的非線(xiàn)性氣動(dòng)彈性特性使得其對(duì)陣風(fēng)載荷尤為敏感,內(nèi)部結(jié)構(gòu)產(chǎn)生較大的應(yīng)力載荷,因此有必要研究陣風(fēng)載荷減緩的相關(guān)問(wèn)題.
圖2 柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行動(dòng)力學(xué)耦合建模示意
圖4 飛翼布局柔性飛機(jī)的時(shí)間歷程
Shearer等[93-94]擴(kuò)展了UM/NAST的剛體線(xiàn)性模型和非線(xiàn)性模型的時(shí)域仿真功能,在微分方程中引入了修改的Generalized時(shí)域積分算法[95],開(kāi)展了柔性飛行器軌跡控制研究[96].BI 等[97]針對(duì)大展弦比柔性機(jī)翼,利用壓電制動(dòng)器主動(dòng)控制技術(shù)進(jìn)行陣風(fēng)載荷減緩.利用Hamilton原理推導(dǎo)壓電材料柔性翼運(yùn)動(dòng)方程,數(shù)值求解陣風(fēng)響應(yīng).利用經(jīng)典的PID控制器進(jìn)行陣風(fēng)載荷減緩.楊俊斌等[98]針對(duì)大展弦比飛翼布局飛機(jī),設(shè)計(jì)了風(fēng)洞模型、沉浮-俯仰2自由度的支持系統(tǒng)以及能夠產(chǎn)生連續(xù)正弦陣風(fēng)的陣風(fēng)發(fā)生器,采用經(jīng)典控制律理論設(shè)計(jì)了能夠同時(shí)減緩翼尖過(guò)載和翼根彎矩的3種控制方案,開(kāi)展了陣風(fēng)減緩主動(dòng)控制風(fēng)洞試驗(yàn),并對(duì)開(kāi)環(huán)、閉環(huán)試驗(yàn)數(shù)據(jù)進(jìn)行了分析.
為了減緩陣風(fēng)載荷的影響,飛行器通常安裝陣風(fēng)載荷減緩系統(tǒng)(gust load alleviation,GLA),或在飛行計(jì)算機(jī)中安裝陣風(fēng)減緩模塊(loads alleviation function,LAF),通過(guò)控制面來(lái)改變飛行器的姿態(tài)進(jìn)而達(dá)到陣風(fēng)載荷減緩的效果,或利用傳感器閉環(huán)控制,或利用飛控操縱控制.
Regan等[99]和Bray[100]通過(guò)LAF來(lái)實(shí)現(xiàn)陣風(fēng)載荷減緩,上述設(shè)計(jì)多采用主動(dòng)控制來(lái)實(shí)現(xiàn).而對(duì)于無(wú)人機(jī)系統(tǒng),主動(dòng)陣風(fēng)減緩控制勢(shì)必會(huì)增加系統(tǒng)設(shè)計(jì)的復(fù)雜性,而且還需要加裝傳感器系統(tǒng)和應(yīng)對(duì)操縱裝置失效的余度系統(tǒng),這勢(shì)必增加結(jié)構(gòu)質(zhì)量,不利于航程擴(kuò)展.因此,被動(dòng)陣風(fēng)減緩方式一直是重要的研究方向.Perron等[101-102]針對(duì)民機(jī)機(jī)翼,利用復(fù)合材料機(jī)翼鋪層彎扭耦合設(shè)計(jì)降低陣風(fēng)載荷.Vio等[103]基于傳感器飛機(jī)利用復(fù)合材料氣動(dòng)剪裁實(shí)現(xiàn)陣風(fēng)載荷減緩,并對(duì)復(fù)合材料鋪層進(jìn)行優(yōu)化設(shè)計(jì).Miller等[104]利用氣動(dòng)彈性減縮模型研究了連翼布局無(wú)人機(jī)被動(dòng)陣風(fēng)減緩,結(jié)果表明該裝置能夠有效地減緩陣風(fēng)響應(yīng)且對(duì)機(jī)翼的顫振特性影響較小.Guo等[105]利用有限元軟件和解析方法研究了飛翼布局無(wú)人機(jī)的被動(dòng)陣風(fēng)減緩.
4.2 顫振主動(dòng)控制
大展弦比機(jī)翼顫振速度相對(duì)較低,基于顫振主動(dòng)控制技術(shù)能有效提高大展弦比飛機(jī)的顫振速度,擴(kuò)大大展弦比飛機(jī)的飛行包線(xiàn).文獻(xiàn)[84]研究了大展弦比柔性翼的飛行動(dòng)力學(xué)、氣動(dòng)彈性和控制.文獻(xiàn)[87]針對(duì)HALE機(jī)翼設(shè)計(jì)了一種SOF控制器用于陣風(fēng)載荷減緩與極限環(huán)振蕩抑制.文獻(xiàn)[96]開(kāi)發(fā)了一種針對(duì)大展弦比柔性翼的軌跡控制器.在文獻(xiàn)[96]開(kāi)發(fā)控制器的基礎(chǔ)上,Dillsaver等[106]設(shè)計(jì)了一個(gè)針對(duì)大展弦比柔性翼軌跡控制的雙層控制律.文獻(xiàn)[89]針對(duì)HALE機(jī)翼,研究了陣風(fēng)載荷減緩和沉浮模態(tài)穩(wěn)定性的后緣舵面控制器.Wang等[107]針對(duì)大展弦比柔性翼在模態(tài)坐標(biāo)中的飛行仿真,研究了一種非線(xiàn)性氣動(dòng)彈性伺服方案.文獻(xiàn)[91]基于 IST航空航天集團(tuán)的非線(xiàn)性氣動(dòng)彈性框架,設(shè)計(jì)了抑制大展弦比機(jī)翼氣彈失穩(wěn)的控制律.
纖維鋪層復(fù)合材料具有高強(qiáng)度、高彈性模量、各向異性等特點(diǎn),通過(guò)改變鋪層角度、層數(shù)以及鋪層順序,可以獲得滿(mǎn)足對(duì)應(yīng)要求的材料性能,這種特性為大展弦比機(jī)翼的優(yōu)化提供了很高的可設(shè)計(jì)性.氣動(dòng)彈性剪裁優(yōu)化的目標(biāo)為減輕質(zhì)量、減少阻力、改善陣風(fēng)響應(yīng)、優(yōu)化顫振特性,以及上述目標(biāo)的綜合化結(jié)果,從而改善機(jī)翼的剛度和機(jī)翼彎扭變形的被動(dòng)彈性耦合,提高翼面的顫振、發(fā)散速度,改善機(jī)翼的氣動(dòng)彈性性能.
由于大展弦比復(fù)合材料機(jī)翼具有顯著的幾何非線(xiàn)性特征,且在結(jié)構(gòu)設(shè)計(jì)中有低質(zhì)量的要求,在優(yōu)化設(shè)計(jì)中具有設(shè)計(jì)變量多,影響因素復(fù)雜的特點(diǎn).采用合理的算法與優(yōu)化策略,并結(jié)合復(fù)合材料的特性,可以在最小質(zhì)量約束前提下極大地提高機(jī)翼性能.
在大展弦比復(fù)合材料機(jī)翼優(yōu)化中,質(zhì)量通常被設(shè)定為目標(biāo)函數(shù).約束條件是機(jī)翼在外部載荷作用下的強(qiáng)度條件、剛度條件或其他性能指標(biāo).對(duì)于機(jī)翼的質(zhì)量?jī)?yōu)化,所采用的方法是在盡可能減少質(zhì)量增加量的前提下,對(duì)復(fù)合材料鋪層進(jìn)行合理的剪裁.傳統(tǒng)的大展弦比復(fù)合材料機(jī)翼優(yōu)化方法包括敏度算法[63]、遺傳算法[108]等,也包括各算法的復(fù)合應(yīng)用,如萬(wàn)志強(qiáng)等[109]以機(jī)翼各結(jié)構(gòu)鋪層厚度為變量,以結(jié)構(gòu)質(zhì)量最小化為目標(biāo)的遺傳敏度混合設(shè)計(jì)方法.Macquart等[110]采用混合約束法對(duì)復(fù)合材料鋪層角度與厚度進(jìn)行優(yōu)化,從而求出每一層的屬性,進(jìn)一步匯同截面求出鐵摩辛柯梁剛度矩陣.Liu等[111]對(duì)于設(shè)計(jì)變量的變化性,對(duì)總體布局-局部材料鋪層兩個(gè)目標(biāo)函數(shù)采用并行優(yōu)化法,顯著減小了復(fù)合材料機(jī)翼結(jié)構(gòu)的質(zhì)量?jī)?yōu)化結(jié)果因不確定變量產(chǎn)生的誤差.
機(jī)翼的顫振臨界速度作為飛行器飛行包線(xiàn)的邊界之一,也是一個(gè)比較重要的優(yōu)化設(shè)計(jì)參數(shù),由于大展弦比柔性機(jī)翼的顫振臨界速度相對(duì)較低,通常也作為目標(biāo)函數(shù)對(duì)結(jié)構(gòu)進(jìn)行優(yōu)化.對(duì)于多目標(biāo)、不同目標(biāo)包含各自的約束條件的優(yōu)化,往往采用二級(jí)或多級(jí)優(yōu)化法,即每一級(jí)設(shè)定不同的目標(biāo)函數(shù),并以上一級(jí)的結(jié)果作為約束條件帶入下一級(jí)優(yōu)化中.這種以分步的、并行的局部?jī)?yōu)化構(gòu)成整體優(yōu)化的方法,需要設(shè)定合理的優(yōu)化策略,使優(yōu)化的結(jié)果更接近最優(yōu)解.如Guo等[112]將機(jī)翼翼盒的結(jié)構(gòu)質(zhì)量設(shè)定為目標(biāo)函數(shù),將蒙皮層數(shù)和鋪層角度作為設(shè)計(jì)變量,求得質(zhì)量最優(yōu)解后,將結(jié)果帶入陣風(fēng)響應(yīng)減緩條件中,通過(guò)使鋪層角度-層數(shù)的順序增加,逐步提高機(jī)翼剛度,最后完成氣動(dòng)彈性剪裁優(yōu)化.白俊強(qiáng)等[113]提出了三級(jí)優(yōu)化法,以質(zhì)量為目標(biāo)函數(shù),在滿(mǎn)足靜強(qiáng)度的條件下進(jìn)行結(jié)構(gòu)優(yōu)化后,以顫振速度為約束條件對(duì)鋪層比例優(yōu)化,再進(jìn)行鋪層順序優(yōu)化,通過(guò)對(duì)鋪層參數(shù)的調(diào)整,在不改變質(zhì)量的情況下進(jìn)一步提高顫振速度.Yang等[114]基于響應(yīng)面法對(duì)大展弦比復(fù)合材料機(jī)翼進(jìn)行多目標(biāo)遺傳算法優(yōu)化.
近年來(lái),隨著優(yōu)化算法在大展弦比復(fù)合材料機(jī)翼上應(yīng)用的不斷拓展,與傳統(tǒng)的優(yōu)化法相比,采用現(xiàn)代優(yōu)化算法的算例在收斂速度以及精確度上有了很大的提高.Wan等[115]驗(yàn)證了采用粒子群算法(PSO)的優(yōu)化方法,該方法是一種模擬鳥(niǎo)類(lèi)覓食策略的進(jìn)化算法,在求得一個(gè)隨機(jī)的,非優(yōu)化的目標(biāo)后,通過(guò)評(píng)估、迭代找到最優(yōu)解,收斂速度非???文獻(xiàn)[113]提出一種基于BLISS算法的混合多級(jí)結(jié)構(gòu)優(yōu)化算法,通過(guò)靜強(qiáng)度優(yōu)化-鋪層比例優(yōu)化-鋪層順序優(yōu)化的逐級(jí)優(yōu)化法減少每一級(jí)中不必要的約束,從而減少約束個(gè)數(shù)和運(yùn)算次數(shù),達(dá)到快速運(yùn)算的目的.
除了算法的應(yīng)用,優(yōu)化方法也與近年來(lái)氣動(dòng)彈性新的發(fā)展方向相結(jié)合,例如Alyanak等[116]提出了將機(jī)翼進(jìn)行氣動(dòng)彈性剪裁后,再進(jìn)行主動(dòng)氣動(dòng)彈性方面的優(yōu)化,給予了復(fù)合材料大展弦比機(jī)翼優(yōu)化的新的思路與方向.
大展弦比復(fù)合材料機(jī)翼的試驗(yàn)研究?jī)?nèi)容包括:非線(xiàn)性氣動(dòng)彈性影響,例如極限環(huán)震蕩[54,117]、陣風(fēng)響應(yīng)[118-120]、非線(xiàn)性氣動(dòng)彈性響應(yīng)[121],同時(shí)驗(yàn)證數(shù)值計(jì)算的有效性.
風(fēng)洞試驗(yàn)的安裝機(jī)制需要精確的設(shè)置與校正,不同的支持系統(tǒng)取決于不同類(lèi)型的氣動(dòng)彈性測(cè)試試驗(yàn).Su等[122]在大展弦比柔性翼的研究中,采用結(jié)構(gòu)動(dòng)模態(tài)與剛體模態(tài)的耦合效應(yīng),這會(huì)導(dǎo)致自由顫振,由于飛行器被約束,所以該現(xiàn)象在傳統(tǒng)風(fēng)洞中不可觀測(cè).傳統(tǒng)風(fēng)洞試驗(yàn)不適用于該類(lèi)型的飛行器,Tang等[123]提出了一種模擬剛體模態(tài)的柔性支持系統(tǒng).
文獻(xiàn)[117-119]針對(duì)帶有翼尖細(xì)長(zhǎng)體的大展弦比柔性機(jī)翼,進(jìn)行了顫振邊界預(yù)測(cè)、極限環(huán)振蕩、陣風(fēng)響應(yīng)等方面的風(fēng)洞試驗(yàn)研究.基于Hodges-Dowell非線(xiàn)性梁模型開(kāi)展了相應(yīng)的理論分析,利用時(shí)域仿真和諧波平衡法分析了試驗(yàn)?zāi)P偷臉O限環(huán)遲滯響應(yīng)特性,理論結(jié)果與試驗(yàn)吻合較好,研究揭示了機(jī)翼根部攻角和幾何非線(xiàn)性對(duì)顫振邊界、極限環(huán)振蕩、突風(fēng)響應(yīng)的影響規(guī)律,指出機(jī)翼的幾何非線(xiàn)性主要依賴(lài)于展向與弦向彎曲剛度之比.Dowell等[124]對(duì)其非線(xiàn)性氣動(dòng)彈性的建模理論、計(jì)算分析以及試驗(yàn)?zāi)芰M(jìn)行了階段性的回顧與總結(jié).
Dietz等[125]針對(duì)大展弦比后掠機(jī)翼的極限環(huán)振蕩進(jìn)行了風(fēng)洞試驗(yàn)研究,發(fā)現(xiàn)在機(jī)翼未發(fā)生流動(dòng)分離時(shí)也會(huì)出現(xiàn)低幅值的極限環(huán)振蕩現(xiàn)象,針對(duì)這一現(xiàn)象,Bendiksen等[126]基于CFD方法對(duì)大展弦比后掠機(jī)翼的極限環(huán)振蕩進(jìn)行了研究,并與文獻(xiàn)[125]風(fēng)洞試驗(yàn)吻合較好,指出后掠機(jī)翼具有“洗脫”(washout)效應(yīng),其有效攻角在沿展向從翼根到翼尖逐漸減小,影響極限環(huán)振蕩的發(fā)生.Cesnik等[127-128]制作了大展弦比長(zhǎng)航時(shí)飛翼無(wú)人機(jī)模型X-HALE,旨在開(kāi)展非線(xiàn)性氣動(dòng)彈性飛行測(cè)試,為柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合仿真工具提供試驗(yàn)支持.
Liu等[129]提出了一種預(yù)測(cè)大展弦比柔性翼幾何非線(xiàn)性陣風(fēng)響應(yīng)的多學(xué)科耦合的數(shù)值計(jì)算方法,并在風(fēng)洞試驗(yàn)中采用新型非接觸三維相機(jī)測(cè)量分析系統(tǒng),進(jìn)而獲得空間大變形和響應(yīng),數(shù)值計(jì)算與風(fēng)洞試驗(yàn)結(jié)果吻合較好.謝長(zhǎng)川等[18,130-131]利用結(jié)構(gòu)/氣動(dòng)界面耦合的曲面插值方法,耦合結(jié)構(gòu)和氣動(dòng)力模型,開(kāi)展了面向工程應(yīng)用的實(shí)例研究與風(fēng)洞試驗(yàn),并基于靜態(tài)變形平衡位置附近小幅振動(dòng)的“準(zhǔn)模態(tài)法”假設(shè),提出了考慮幾何非線(xiàn)性的大展弦比柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性穩(wěn)定性分析的線(xiàn)性化方法,分析結(jié)構(gòu)幾何非線(xiàn)性對(duì)大展弦比機(jī)翼振動(dòng)特性的影響.
1)現(xiàn)有大展弦比復(fù)合材料機(jī)翼的結(jié)構(gòu)模型多采用等效梁板模型,大大提高了計(jì)算分析效率.
2)現(xiàn)有大展弦比復(fù)合材料機(jī)翼的氣動(dòng)模型多采用片條理論與考慮動(dòng)失速的二元非定常氣動(dòng)力相結(jié)合的模型,可以較為準(zhǔn)確地描述大展弦比機(jī)翼的氣動(dòng)特性.
3)基于CFD的氣動(dòng)降階模型可以計(jì)算不同馬赫數(shù)以及氣動(dòng)失速情況下的氣動(dòng)力,且具備較高的計(jì)算精度和計(jì)算效率,該方法耦合大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)模型,進(jìn)行氣動(dòng)彈性分析、控制律設(shè)計(jì)、氣動(dòng)彈性剪裁等,是大展弦比復(fù)合材料機(jī)翼研究的發(fā)展方向之一.
4)現(xiàn)有大展弦比復(fù)合材料機(jī)翼的研究大多停留在理論研究與地面試驗(yàn)階段,飛行試驗(yàn)數(shù)據(jù)較少,因此,飛行試驗(yàn)是大展弦比復(fù)合材料機(jī)翼研究的重要方向之一.
[1] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap[R]. NASA Report, 2004.
[2] RAPINETT A. Zephyr: a high altitude long endurance unmanned air vehicle[D]. Guildford: University of Surrey, 2009.
[3] ROMEO G, FRULLA G, CESTINO E,et al. ELIPLAT: design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6):1505-1520.DOI: 10.2514/1.2723.
[4] DENNIS T Y, LIM. A methodological approach for conducting a business case analysis of the global observer joint capability technology demonstration (JCTD)[D].Monterey: Naval Postgraduate School, 2007.
[5] MILLS G L, BUCHHOLTZ B, OLSEN A.Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft[J]. AIP Conference Proceedings, 2012, 1434(1): 773-780.DOI:10.1063/1.4706990.
[6] 田坤黌, 谷良賢, 王洪偉. 基于Hamilton原理的大展弦比直機(jī)翼固有特性分析[J]. 機(jī)械強(qiáng)度, 2010, 32(5):854-858. DOI:10.16579/j.issn.1001.9669.2010.05.025.
TIAN Kunhong, GU Liangxian, WANG Hongwei. Inherence characteristic analysis of high aspect ration wing based on hamilton′s principle[J]. Journal of Mechanical Strength, 2010, 32(5):854-858. DOI:10.16579/j.issn.1001.9669.2010.05.025.
[7] 劉峰, 馬佳, 張春, 等. 某無(wú)人機(jī)復(fù)合材料主翼盒準(zhǔn)等強(qiáng)度設(shè)計(jì)與有限元分析[J]. 玻璃鋼/復(fù)合材料,2015(4):16-21.
LIU Feng, MA Jia, ZHANG Chun, et al. Quasi-equal strength design and finite element analysis for composite main wing box of X uav[J]. Fiber Reinforced Plastics/Composites, 2015(4):16-21.
[8] BENJAMIN J, SAM C, DANIEL C, et al. Digital morphing wing active wing shaping concept using composite lattice-based cellular structures[J].SOFT ROBOTICS, 2017,4(1):33-48.DOI: 10.1089/soro.2016.0032.
[9] MYOUNGKEON L, CHANGMIN C, SEYONG J. HALE UAV composite wing structure design[J]. Advanced Materials Research, 2010, 123-125:105-108. DOI:10.4028/www.scientific.net/AMR.123125.105.
[10]楊龍. 大展弦比太陽(yáng)能無(wú)人機(jī)結(jié)構(gòu)動(dòng)力學(xué)研究[D].長(zhǎng)沙:國(guó)防科學(xué)技術(shù)大學(xué), 2013.
YANG Long. Research on structural dynamics of solar energy unmanned aerial vehicle[D]. Changsha: National University of Defense Science and Technology, 2013.
[11]FRENCH M, EASTEP F E. Aeroelastic model design using parameter identification[J]. Journal of Aircraft, 1996, 33(1): 198-202.
[12]RICHARDS J, SULEMAN A, CANFIELD R,et al. Design of a scaled RPV for investigation of gust response of joined-wing sensorcraft[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, Califormia:AIAA, 2013:1-14.DOI.10.251416.2009-2218.
[13]WAN Zhiqiang. Geometrically nonlinear aeroelastic scaling for very flexible aircraft[J]. AIAA Journal.2014, 52(10):2251-2260. DOI: 10.2514/1.J052855.
[14]JI Zhe, LIU Bin, XU Fei. Wing structural design of a high altitude long endurance solar-powered platform[J]. Advanced Materials, 2013, 753(1): 1287-1291.DOI:10.4028/www.scientific.net/AMR.753-755.1287.
[15]石慶華, 向錦武. 復(fù)合材料空間薄壁梁的有限元分析模型[J].復(fù)合材料學(xué)報(bào), 2006, 23(2):169-174 .DOI:10.3321/j.issn:1000-3851.2006.02.029.
SHI Qinghua, XIANG Jinwu. Finite element analysis model of composite thin space beam[J]. Journal of Composites, 2006, 23(2):169-174 .DOI:10.3321/j.issn:1000-3851.2006.02.029.
[16]HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA TN D-7818[R].Moffett Field, CA:NASA Ames. Research Center, 1974.
[17]HODGES D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal, 2003, 41(6): 1131-1137. DOI: 10.2514/1.40556.
[18]謝長(zhǎng)川, 吳志剛, 楊超. 大展弦比柔性機(jī)翼的氣動(dòng)彈性分析[J]. 北京航空航天大學(xué)學(xué)報(bào), 2003, 29 (12):1087-1090. DOI:10.13700/j.bh.1001-5965.2003.12.007.
XIE Changchuan, WU Zhigang, YANG Chao. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29 (12):1087-1090. DOI:10.13700/j.bh.1001-5965.2003.12.007.
[19]張新榃, 吳志剛, 楊超. 大變形狀態(tài)機(jī)翼振動(dòng)試驗(yàn)與氣動(dòng)彈性分析[J]. 航空工程進(jìn)展, 2010, 1(1):76-79. DOI:10.16615/j.cnki.1674-8190.2010.01.013.
ZHANG Xintan, WU Zhigang, YANG Chao. Vibration test and aeroelastic analysis of wing in large static deformation[J]. Aeronautical Science and Engineering, 2010, 1 (1):76-79. DOI:10.16615/j.cnki.1674-8190.2010.01.013.
[20]石慶華, 向錦武. 大變形薄壁復(fù)合材料旋轉(zhuǎn)梁靜動(dòng)態(tài)特性分析[J]. 工程力學(xué), 2008, 25 (1):86-91.
SHI Qinghua, XIANG Jinwu. Tatic and dynamic analysis for composite rotating beams using large deformation theory[J]. Engineering Mechanics, 2008, 25(1):86-91.
[21]PALACIOS R, CESNIK, C E S. Geometrically nonlinear theory of composite beams with deformable cross sections[J]. AIAA Journal, 2008, 46(2):439-450.DOI:10.2514/1.31620.
[22]王睿, 周洲, 祝小平, 等. 幾何非線(xiàn)性機(jī)翼本征梁元素模型的高效化改進(jìn)[J]. 航空學(xué)報(bào),2013, 34(6): 1309-1318.DOI:10.7527/S1000-6893.2013.0233.
WANG Rui, ZHOU Zhou, ZHU Xiaoping, et al. Improving the geometrically nonlinear intrinsic beam element model of wing for high efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1309-1318.DOI:10.7527/S1000-6893.2013.0233.
[23]沈惠申. 板殼后屈曲行為[M]. 上海:上海科學(xué)技術(shù)出版社, 2002.
SHEN Huishen. Postbuckling behavior of plate[M]. Shanghai: Shanghai Science and Technology Press, 2002.
[24]黃志強(qiáng), 周云. 一種新型板彎單元及其在幾何非線(xiàn)性下的應(yīng)用[J]. 太原科技大學(xué)學(xué)報(bào), 2012, 33(2):154-157. DOI:10.3969/j.issn.1673-2057.2012.02.016.
HUANG Zhiqiang, ZHOU Yun. A new type of bending unit and its application in geometric nonlinearity[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(2):154-157. DOI:10.3969/j.issn.1673-2057.2012.02.016.
[25]楊佑緒,吳志剛. 基于等效板模型彈翼顫振分析[J]. 航空學(xué)報(bào), 2011, 32(5): 833-840.DOI:CNKI:11-1929/V.20101213.1757.008
YANG Youxu, WU Zhigang. Flutter analysis of missile wing using equivalent plate model[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):833-840. DOI:CNKI:11-1929/V.20101213.1757.008.
[26]XIANG Jinwu, YAN Yongju, LI Daochun. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1): 12-22. DOI:10.1016/j.cja.2013.12.009.
[27]PETERS D A. Two-dimensional incompressible unsteady airfoil theory—an overview[J]. Journal of Fluids and Structures, 2008, 3(24): 295-312.DOI:10.1016/j.jfluidstructs.2007.09.001.
[28]CHANG C S, HODGES D H, PATIL M J. Flight dynamics of highly flexible aircraft[J]. Journal of Aircraft, 2008, 45(2): 538-545. DOI:10.2514/1.30890.
[29]SU Weihua, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2): 324-339. DOI:10.2514/1.J050496.
[31]LIU Xiangning, XIANG Jinwu. Stall flutter analysis of high-aspect-ratio composite wing[J]. Chinese Journal of Aeronautics, 2006, 19(1): 36-41. DOI: 10.1016/S1000-9361(11)60265-3.
[32]ZHANG Jian, XIANG Jinwu. Nonlinear aeroelastic response of high-aspect-ratio flexible wings[J]. Chinese Journal of Aeronautics, 2009, 22(4): 355-363. DOI: 10.1016/S1000-9361(08)60111-9.
[33]ZHANG Jian, XIANG Jinwu. Preliminary validation of a coupled model of nonlinear aeroelasticity and flight dynamics for HALE Aircraft[C]// Proceedings of the 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. Harbin, China: IEEE Press, 2010. DOI:10.1109/ISSCAA.2010.5633261.
[34]MURUA J, PALACIOS R, GRAHAM J M R.Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55(5):46-72. DOI:10.1016/j.paerosci.2012.06.001.
[35]HESSE H.Consistent aeroelastic linearisation and reduced-order modelling in the dynamics of manoeuvring flexible aircraft[D]. London: Imperial College London, 2013.
[36]劉燚, 謝長(zhǎng)川, 王立波,等. 柔性飛機(jī)大變形曲面氣動(dòng)力計(jì)算及配平分析[J]. 工程力學(xué), 2015, 32(10):239-249.DOI: 10.6052/j.issn.1000-4750.2014.04.0284.
LIU Yan, XIE Changchuan, WANG Libo. Nonplanar aerodynamic computation and trim analysis under large deflection flexible aircraft[J]. Engineering Mechanics, 2015, 32(10):239-249.DOI: 10.6052/j.issn.1000-4750.2014.04.0284.
[37]馬艷峰, 賀爾銘, 曾憲昂, 等. 基于流固耦合方法的大展弦比機(jī)翼非線(xiàn)性顫振特性分析[J]. 西北工業(yè)大學(xué)學(xué)報(bào), 2014(4):536-541. DOI: 10.6052/j.issn.1000-4750.2014.04.0284.
MA Yanfeng, HE Erming, ZENG Xian’ang, et al. Studying nonlinear flutter of high-aspect-ratio wing based on fluid solid coupling[J]. Journal of Northwestern Polytechnical University, 2014(4):536-541.DOI: 10.6052/j.issn.1000-4750.2014.04.0284.
[38]柳兆偉. 大展弦比大撓性機(jī)翼流固耦合數(shù)值分析研究[D]. 長(zhǎng)沙:國(guó)防科學(xué)技術(shù)大學(xué), 2012.
LIU Zhaowei. The numerical research on fluid-structure interaction of high-aspect-ratio flexible wings[D]. Changsha:National University of Defense Technology, 2012.
[39]CARNIE G, QIN N. Fluid-structure interaction of HALE wing configuration with an efficient moving grid method[C]// Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2008. DOI: 10.2514/6.2008-309.
[40]BERAN P, SILVA W. Reduced-order modeling-new approaches for computational physics[C]// Proceedings of 39th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2001. DOI: 10.2514/6.2001-853.
[41]GHOREYSHI M, JIRSEK A, CUMMINGS R M.Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences, 2014, 71:167-217. DOI: 10.1016/j.paerosci.2014.09.001.
[42]SMITH M J, PATIL M J, HODGES D H. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect-ratio wings[C]// Proceedings of the 19th AIAA Applied Aerodynamics conference, Fluid Dynamics and Co-located Conference. Anaheim, CA: AIAA, 2001.DOI:10.2514/6.2001-1582.
[43]JOSEPH A G. A numerical investigation of nonlinear aeroelastic effects on flexible high aspect ratio wings[D]. California, Palo Alto: Stanford University. 2002.
[44]JOSEPH A. Garcia. Numerical investigation of nonlinear aeroelastic effects on flexible high-aspect-ratio wings[J]. Journal of Aircraft. 2005, 42(4):1025-1036. DOI: 10.2514/1.6544.
[45]尹星研, 馮振宇, 盧翔. 基于MSC.Nastran的無(wú)人機(jī)復(fù)合材料機(jī)翼有限元分析[J]. 玻璃鋼/復(fù)合材料, 2010(1):3-6.DOI:10.3969/j.issn:1003-0999.2010.01.001.
YIN Xingyan, FENG Zhenyu, LU Xiang. Finite element analysis of unmanned aerial vehicle composite wing based on MSC.Nastran[J]. Fiber Reinforced Plastics/Composites, 2010(1):3-6.DOI:10.3969/j.issn:1003-0999.2010.01.001.
[46]冷佳偵,謝長(zhǎng)川,楊超. 水平彎曲剛度對(duì)大展弦比機(jī)翼顫振的影響[J]. 北京航空航天大學(xué)學(xué)報(bào), 2009,35(6):718-722.DOI: 10.13700/j.bh.1001-5965.2009.06.010.
LENG Jiazhen, XIE Changchuan, YANG Chao. Influence of chordwise bending stiffness on aeroelastic characteristics of flexible high-aspect-ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6):718-722. DOI: 10.13700/j.bh.1001-5965.2009.06.010.
[47]潘登, 吳志剛, 楊超, 等. 大柔性飛機(jī)非線(xiàn)性飛行載荷分析及優(yōu)化[J]. 航空學(xué)報(bào), 2010, 31(11): 2146-2151.
PAN Deng, WU Zhigang, YANG Chao, et al. Nonlinear flight load analysis and optimization for large flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2146-2151.
[48]安效民, 許敏. 一種幾何大變形下的非線(xiàn)性氣動(dòng)彈性求解方法[J].力學(xué)學(xué)報(bào), 2011, 43(1):97-104
AN Xiaomin, XU Min. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):97-104.
[49]張旭, 吳志剛, 楊超. 基于等效梁模型的長(zhǎng)直機(jī)翼動(dòng)力學(xué)與顫振分析[J]. 北京航空航天大學(xué)學(xué)報(bào), 2010, 36(11):1373-1377. DOI:10.13700/j.bh.1001-5965.2010.11.014.
ZHANG Xu, WU Zhigang, YANG Chao. Dynamic and flutter analysis of long-straight-wing based on equivalent beam model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1373-1377. DOI:10.13700/j.bh.1001-5965.2010.11.014.
[50]LU Liu, KIM T, LAI K L, Efficient analysis of HALE aircraft structure for static aeroelasticbehavior[J]. Journal of Aerospace Engineering, 2017, 30(1): 1-1. DOI: 10.1061/(ASCE)AS.1943-5525.0000663.
[51]郝帥, 馬鐵林, 甘文彪, 等. 氫動(dòng)力無(wú)人機(jī)大展弦比機(jī)翼靜氣彈特性分析[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017,43(8):1670-1676. DOI:10.13700/j.bh.1001-5965.2016.0611.
HAO Shuai, MATielin, GAN Wenbiao, et al. Static aeroelastic characteristics analysis of high-aspect-ratio wing for hydrogen-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017,43(8):1670-1676. DOI:10.13700/j.bh.1001-5965.2016.0611.
[52]張強(qiáng), 祝小平, 周洲, 等. 高空長(zhǎng)航時(shí)飛翼布局無(wú)人機(jī)靜氣動(dòng)彈性研究[J]. 飛行力學(xué), 2016, 34(1): 40-45.DOI:10.13645/j.cnki.f.d.20150918.001.
ZHANG Qiang, ZHU Xiaoping, ZHOU Zhou, et al. Study on static aeroelasticity of high altitude long endurance flying wing UAV[J]. Flight Dynamics, 2016, 34(1): 40-45.DOI:10.13645/j.cnki.f.d.20150918.001.
[53]李道春. 飛行器結(jié)構(gòu)非線(xiàn)性氣動(dòng)彈性分析與控制[D]. 北京:北京航空航天大學(xué), 2007.
LI Daochun. Nonlinear aeroelastic analysis and control of aircraft[D]. Beijing: Beihang University, 2007.
[54]TANG D, DOWELL E H. Experimental and theoretical study of gust response for high-aspect-ratiowing[J]. AIAA Journal, 2002, 40(3):419-429. DOI: 10.2514/2.1691.
[55]PATIL M J, HODGES D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratiowings[J]. Journal of Fluids and Structures, 2004, 19(7): 905-915.DOI:10.1016/j.jfluidstructs.2004.04.012.
[56]PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-enduranceaircraft[J]. Journal of Aircraft, 2001, 38(1): 88-94. DOI:10.2514/2.2738.
[57]PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760.DOI:10.2514/2.2685.
[58]CESNIK C E S, SU Weihua. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft[C]// Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin, Texas: AIAA, 2005. DOI:10.2514/6.2005-2169.
[59]ZHAO Yonghui, HU Haiyan. Structural modeling and aeroelastic analysis of high-aspect-ratio[J]. Chinese Journal of Aeronautics, 2005, 18(1):25-30.DOI:10.1016/S1000-9361(11)60278-1.
[60]趙永輝, 胡海巖. 大展弦比夾芯翼大攻角顫振分析[J]. 振動(dòng)工程學(xué)報(bào), 2004, 17(1): 25-30. DOI:10.16385/j.cnki.issn.1004-4523.2004.01.007.
ZHAO Yonghui, HU Haiyan. Flutter analysis of a high-aspect-ratio sandwich wing under large angle of attack[J]. Journal of Vibration Engineering, 2004, 17(1): 25-30. DOI:10.16385/j.cnki.issn.1004-4523.2004.01.007.
[61]劉湘寧, 向錦武. 大展弦比復(fù)合材料機(jī)翼的非線(xiàn)性顫振分析[J]. 航空學(xué)報(bào), 2006, 27(2): 213-218.DOI:10.3321/j.issn:1000-6893.200602.009.
LIU Xiangning, Xiang Jinwu. Study of nonlinear flutter of high-aspect-ratio composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 213-218. DOI:10.3321/j.issn:1000-6893.200602.009.
[62]劉湘寧, 向錦武. 大展弦比柔性復(fù)合材料機(jī)翼的氣動(dòng)彈性剪裁[J]. 北京航空航天大學(xué)學(xué)報(bào), 2006, 32(12): 1403-1407. DOI:10.13700/j.bh.1001-5965.2006.12.003.
LIU Xiangning, Xiang Jinwu. Study of aeroelastic tailoring of high-aspect-ratio flexible composite wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1403-1407. DOI:10.13700/j.bh.1001-5965.2006.12.003.
[63]張健, 向錦武. 側(cè)向隨動(dòng)力作用下大展弦比柔性機(jī)翼的穩(wěn)定性[J]. 航空學(xué)報(bào), 2010, 31(11): 2115-2123.
ZHANG Jian, XIANG Jinwu. Stability of high-aspect-ratio flexible wings loaded by a lateral follower force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2115-2123.
[64]PATIL M J. Limit cycle oscillations of aircraft due to flutter-induced drag[C]//Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: AIAA, 2002, 41(3):571-576. DOI:10.2514/6.2002-1409.
[65]KIM K, STRGANAC T W. Nonlinear responses of a cantilever wing with an external store[C]// Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003, 241:3563-3571. DOI:10.2514/6.2003-1708.
[66]KOUCHAKZADEH M A, RASEKH M, HADDADPOUR H. Panel flutter analysis of general laminated composite plates[J]. Composite Structures, 2010, 92(12):2906-2915. DOI: 10.1016/j.compstruct.2010.05.001.
[67]KUO S Y. Flutter of rectangular composite plates with variable fiber pacing[J]. Composite Structures, 2011,93(10): 2533-2540. DOI: 10.1016/j.compstruct.2011.04.015.
[68]ATTARAN A, MAJID D L, BASRI S, et al. Structural optimization of anaeroelastically tailored composite flat plate made of woven fiberglass/epoxy[J]. Aerospace Science and Technology, 2011,15(5): 393-401. DOI: 10.1016/j.ast.2010.09.005.
[69]KAMEYAMA M, FUKUNAGA H. Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters[J]. Computers and Structures, 2007, 85(3/4):213-224. DOI: 10.1016/j.compstruc.2006.08.051.
[70]謝亮, 徐敏, 安效民, 等. 基于徑向基函數(shù)的網(wǎng)格變形及非線(xiàn)性氣動(dòng)彈性時(shí)域仿真研究[J]. 航空學(xué)報(bào),2013, 34(7): 1501-1511.DOI:10.7527/S1000-6893.2013.0122.
XIE Liang, XU Min, AN Xiaomin, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511. DOI:10.7527/S1000-6893.2013.0122.
[71]趙振軍. 非線(xiàn)性氣動(dòng)彈性與飛行力學(xué)耦合分析的多體動(dòng)力學(xué)方法[D]. 北京:清華大學(xué), 2009.
ZHAO Zhenjun. Multibody dynamic approach for coupling analysis of nonlinear aeroelasticity and flight dynamics[D]. Beijng: Tsinghua University, 2009.
[72]肖艷平,楊翊仁. 大展弦比機(jī)翼的非線(xiàn)性氣動(dòng)彈性響應(yīng)研究[D]. 成都:西南交通大學(xué), 2016.
XIAO Yanping, YANG Yiren. Research on nonlinear eodynamic elastic response of high-aspect-ratio wings[D]. Chengdu: Southwest Jiaotong University, 2016.
[73]肖志鵬, 萬(wàn)志強(qiáng), 楊超. 復(fù)合材料機(jī)翼魯棒氣動(dòng)彈性?xún)?yōu)化設(shè)計(jì)[J]. 復(fù)合材料學(xué)報(bào), 2010, 27(2):127-132. DOI:10.13801/j.cnki.fhclxb.2010.02.027.
XIAO Zhipeng, WAN Zhiqiang, YANG Chao. Robust aeroelastic optimization design of a composite wing[J]. Acta Materiae Compositae Sinica, 2010, 27(2):127-132. DOI: 10.13801/j.cnki.fhclxb.2010.02.027.
[74]張偉, 高惠, 姚明輝, 等. 復(fù)合材料層合懸臂板的非線(xiàn)性動(dòng)力學(xué)研究[J]. 科技導(dǎo)報(bào), 2010, 28(4):59-63.
ZHANG Wei, GAO Hui, YAO Minghui, et al. Nonlinear dynamics of a composite laminated cantilever plate[J]. Science & Technology Review, 2010, 28(4): 59-63.
[75]QIAO Shengjun, GAO Hangshan, ZHANG Junran, et al. The study of nonlinear flutter analysis method for an aircraft full composite wing with high-aspect-ratio[C]//Proceedings of the 2nd Annual International Conference on Advanced Material Engineering.[S.L.]: AME-16,2016:818-824.DOI:10.2991/AME-16.2016.135.
[76]LOVE M H, ZINK P S, WIESELMANN P A, et al. Body freedom flutter of high aspect ratio flying wings[C]// Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials Conference. Austin, Texas: AIAA, 2005. DOI:10.2514/6.2005-1947.
[78]CESNIK C E S, BROWN E L. Modeling of high aspect ratio active flexible wings for roll control[C]//Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colored: AIAA, 2002:1-15.DOI:10.2514/6.2002-1719.
[79]CESNIK C E S, BROWN E L. Active warping control of a joined wing-tail airplane configuration[C]// Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia: AIAA, 2003:1-15.DOI:10.2514/6.2003-1715.
[80]BROWN E L. Integrated strain actuation in aircraft with highly flexible composite wings[D]. Cambridge: Massachusetts Institute of Technology, 2003.
[81]SU Weihua, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011,49(2):324-339.DOI:10.2514/1.J050496.
[82]SU Weihua. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft[D]. Michigan: The University of Michigan, 2008.
[83]SU Weihua, CESNIK C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J].Journal of Aircraft, 2010, 47(5):1539-1553.DOI:10.2514/1.47317.
[84]ZHAO Zhenjun, REN Gexue. Multibody dynamic approach ofight dynamics and nonlinear aeroelasticity ofexible aircraft[J]. AIAA Journal, 2011, 49(1): 41-54. DOI: 10.2514/1.45334.
[85]張健. 柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行動(dòng)力學(xué)耦合建模與仿真[D]. 北京: 北京航空航天大學(xué), 2010.
ZHANG Jian. Modeling and simulation of coupled nonlinear aeroelasticity and flight dynamics for flexible aircraft[D]. Beijing: Beihang University, 2010.
[86]張健, 向錦武. 柔性飛機(jī)非線(xiàn)性氣動(dòng)彈性與飛行動(dòng)力學(xué)耦合靜、動(dòng)態(tài)特性[J]. 航空學(xué)報(bào), 2011, 32(9): 1569-1582. DOI:CNKI:11-1929/V.20110509.1158.006.
ZHANG Jian, XIANG Jinwu. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1569-1582. DOI:CNKI:11-1929/V.20110509.1158.006.
[87]PATIL M J, HODGES D H. Output feedback control of nonlinear aeroelastic response of a slender wing[J]. Journal of Guidance Control and Dynamics, 2002, 25 (2): 302-308. DOI:10.2514/2.4882.
[88]DILLSAVER M J, CESNIK C E S, KOLMANOVSKY I V K. Gust load alleviation control for veryexible aircraft[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference. Portland, Oregon: AIAA, 2011.DOI:10.2514/6.2011-6368.
[89]COOK R G, PALACIOS R, GOULART P. Robust gust alleviation and stabilization of veryexible aircraft[J]. AIAA Journal, 2013, 51 (2): 330-340. DOI: 10.2514/1.J051697.
[90]DILLSAVER M J, CESNIK C E S, KOLMANOVSKY I V. Gust response sensitivity characteristics of very flexible aircraft[C]// Proceedings of AIAA Atmospheric Flight Mechanics Conference. Minneapolis, Minnesota: AIAA, 2012:1-20. DOI: 10.2514/6.2012-4576.
[91]AFONSO F, VALE J, OLIVEIRA E, et al. Active flutter suppression of a high aspect-ratio wing using aileron control[C]// Proceedings of the 6th EASN International Conference on Innovation in European Aeronautics Research, Porto, Portugal:[s.n.]. 2016.
[92]MILLER S, COOPER J E, VIO G A. Adaptive wing tip devices for gust alleviation, trim and roll control[C]// Proceedings of the AVT-168 Morphing Aircraft Symposium. Lisbon. Portugal: [s.n.], 2009.
[93]SHEARER C M, CESNIK C E S. Nonlinear flight dynamics of very flexible aircraft[J]. Journal of Aircraft, 2007, 44(5): 1528-1545. DOI:10.2514/1.27606.
[94]SHEARER C M. Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft[D]. Michigan: The University of Michigan, 2006.
[95]SHEARER C M, CESNIK C E S. Modified generalized-α method for integrating governing equations of very flexible aircraft[C]// Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island: AIAA, 2006. DOI:10.2514/6.2006-1747.
[96]SHEARER C M, CESNIK C E S. Trajectory control for very flexible aircraft[J]. Journal of Guidance Control and Dynamics, 2008, 31(2): 340-357. DOI: 10.2514/1.29335.
[97]BI Ying, XIE Changchuan, YANG Chao. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control[J]. Chinese Journal of Aeronautics, 2017, 30(1): 292-309. DOI: 10.1016/j.cja.2016.12.028.
[98]楊俊斌, 吳志剛, 戴玉婷,等. 飛翼布局飛機(jī)陣風(fēng)減緩主動(dòng)控制風(fēng)洞試驗(yàn)[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017, 43(1):184-192. DOI:10.13700/j.bh.1001-5965.2016.0079.
YANG Junbin, WU Zhigang, DAI Yuting, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(1):184-192. DOI:10.13700/j.bh.1001-5965.2016.0079.
[99]REGAN C D, JUTTE C V. Survey of application of active control technology for gust alleviation and new challenges for lighter-weight aircraft: NASA/TM-2012-216008[R]. Edwards, California: Dryden Flight Research Center, 2012.
[100]BRAY R. Supersize wings-the challenges of designing the wings for the world’s largest passenger aircraft, the airbus A380[J].Ingenia Online, 2007(31): 18-23.
[101]PERRON S G. Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[102]PERRON S G, DRELA M. Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings[C]// Proceedings of the 54th AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, Massachusetts: AIAA, 2013:1-20.DOI:10.2514/6.2013-1490.
[103]VIO G A, COOPER J E. Optimization of the compositesensorcraft structure for gust alleviation[C]// Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia Canada: AIAA, 2008:1-10.
[104]MILLER S, VIO G A, COOPER J E, et al. Optimization of a scaledsensorcraft model with passive gust alleviation[C]// Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia Canada: AIAA, 2008:1-18. DOI:10.2514/6.2008-5875.
[105]GUO S, FU Q, SENSBURG O K. Optimal design of a passive gust alleviation device for a flying wing aircraft[C]// Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM. Indianapolis Indiana:AIAA, 2012:1-12. DOI: 10.2514/6.2012-5625.
[106]DILLSAVER M J, CESNIK C E S, KOLMANOVSKY I V. Trajectory control of veryexible aircraft with gust disturbance[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference. Boston, Massachusetts: AIAA, 2013.
[107]WANG Y, WYNN A, PALACIOS R. Nonlinear modalaeroservoelastic analysis framework forexible aircraft[J]. AIAA Journal, 2016, 54 (10): 3075-3090. DOI: 10.2514/1.J054537.
[108]史旭東, 陳亮, 張碧輝, 等. 基于遺傳算法的大展弦比復(fù)合材料機(jī)翼結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 航空工程進(jìn)展, 2015, 6(1): 110-115.DOI:10.3969/j.issn.1674-8190.2015.01.018.
SHI Xudong, CHEN Liang, ZHANG Bihui, et al. Structural optimization design of high aspect ratio composite wing based on genetic algorithm[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1):110-115. DOI:10.3969/j.issn.1674-8190.2015.01.018.
[109]萬(wàn)志強(qiáng), 楊超. 大展弦比復(fù)合材料機(jī)翼氣動(dòng)彈性?xún)?yōu)化[J]. 復(fù)合材料學(xué)報(bào), 2005, 22 (3):145-149. DOI:10.3321/j.issn:1000-3851.2005.03.028.
WAN Zhiqiang,YANG Chao. Aeroelastic optimization of a high-aspect ratio composite wing[J]. Acta Materiae Compositae Sinica, 2005,22 (3):145-149. DOI:10.3321/j.issn:1000-3851.2005.03.028.
[110]MACQUART T,WERTER N,BREUKER RD. Aeroelastic tailoring of blended composite structures using lamination parameters[C]// Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference. San Diego, California: AIAA, 2016. DOI:10.2514/6.2016-1966.
[111]LIU Qiang, JRAD M, MULANI S, et al. Global/Local optimization of aircraft wing using parallel processing[J].AIAA Journal, 2016, 54(11):3338-3348. DOI: 10.2514/1.J054499.
[112]GUO Shijun, LI Daochun, LIU Y. Multi-objective optimization of a composite wing subject to strength and aeroelastic constraints[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2012, 226(9):1095-1106. DOI: 10.1177/09544100114177.
[113]白俊強(qiáng),辛亮,劉艷,等. 復(fù)合材料后掠機(jī)翼的氣動(dòng)彈性剪裁方法研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào), 2014,32(6):843-848. DOI: 10.3969/j.issn.1000-2758.2014.06.001.
BAI Junqiang, XIN Liang, LIU Yan, et al. Exploring an aeroelastic tailoring design method for composite backswept wing[J]. Journal of Northwestern Polytechnical University, 2014,32(6)::843-848. DOI: 10.3969/j.issn.1000-2758.2014.06.001.
[114]YANG Guowei, CHEN Dawei, CUI Kai. Response surface technique for static aeroelastic optimization on a high-aspect-ratio wing[J]. Journal of Aircraft, 2009, 46(4): 1444-1450. DOI: 10.2514/1.42370.
[115]WAN Zhiqiang, WANG Xiaozhe, YANG Chao. A highly efficient aeroelastic optimization method based on a surrogate model[J]. International Journal of Aeronautical & Space Sciences, 2016, 17(4):491-500. DOI:10.5139/IJASS.2016.17.4.491.
[116]ALYANAK E, PENDLETON E. Aeroelastic tailoring and active aeroelastic wing impact on a lambda wing configuration[J]. Journal of Aircraft, 2017, 54(1):561-571. DOI: 10.2514/1.C033040.
[117]TANG D, DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8):1430-1441. DOI:10.2514/2.1484.
[118]TANG D M, DOWELL E H. Limit-cycle hysteresis response for a high-aspect-ratio wing model[J]. Journal of Aircraft, 2002, 39(5): 885-888. DOI:10.2514/2.3009.
[119]TANG Deman, DOWELL E H. Gust response for flexibly suspended high-aspect-ratio wings[J]. AIAA Journal, 2010,48 (10): 2430-2444. DOI:10.2514/1.J050309.
[120]LIU Yi, XIE Changchuan, YANG Chao, et al. Gust response analysis and wind tunnel test for a high-aspect-ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29 (1):91-103. DOI:10.1016/j.cja.2015.12.013.
[121]KAMPCHEN M, DAFNIS A, REIMERDES H G, et al. Dynamic aero-structural response of an elastic wing model[J]. Journal of Fluids and Structures, 2003, 18(1):63-77. DOI: 10.1016/S0889-9746(03)00090-2.
[122]SU Weihua, CESNIK C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5):1539-1553. DOI:10.2514/1.47317.
[123]TANG D M, DOWELL E H. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2004, 19(3): 291-306. DOI: 10.1016/j.jfluidstructs.2003.10.007.
[124]DOWELL E, EDWARDS J, STRGANAC T. Nonlinear aeroelasticity[J]. Journal of Aircraft, 2003, 40(5): 857-974. DOI:10.2514/2.6876.
[125]DIETZ G, SCHEWE G, KIESSLING F, et al. Limit-cycle oscillation experiments at a transport aircraft wing model[C]// Proceedings of the International Forum on Structural Dynamics and Aeroelasticity. Amsterdam: IFASD, 2003.
[126]BENDIKSEN O O. Transonic limit cycle flutter of high-aspect-ratio swept wings[J]. Journal of Aircraft, 2008, 45(5): 1522-1533. DOI: 10.2514/1.29547.
[127]CESNIK C E S, SENATORE P J, SU Weihua, et al. X-HALE: a very flexible UAV for nonlinear aeroelastic tests[C]// Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando, Florida: AIAA, 2010:1-23. DOI: 10.2514/6.2010-2715.
[128]CESNIK C E S, SU Weihua. Nonlinear aeroelastic simulation of X-HALE: a very flexible UAV[C]// Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2011:1-13.DOI:10.2514/6.2011-1226.
[129]LIU Yi, XIE Changchuan, YANG Chao. Gust response analysis for a high-aspect ratio wing[C]// International Forum on Aeroelasticity and Structural Dynamics. Saint Petersburg, Russia: IFASD, 2015:1-19.
[130]謝長(zhǎng)川, 楊超. 大展弦比飛機(jī)幾何非線(xiàn)性氣動(dòng)彈性穩(wěn)定性的線(xiàn)性化方法[J]. 中國(guó)科學(xué):技術(shù)科學(xué), 2011(3): 385-393. DOI: 10.1007/s11431-010-4252-5.
XIE Changchuan, YANG Chao. Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings[J]. Scientia Sinica(Technologica), 2011, 41(3): 385-393. DOI: 10.1007/s11431-010-4252-5.
[131]謝長(zhǎng)川, 張欣, 陳桂彬. 復(fù)合材料大展弦比機(jī)翼動(dòng)力學(xué)建模與顫振分析[J]. 飛機(jī)設(shè)計(jì), 2004(2): 6-10.DOI:10.3969/j.issn: 1673-4599.2004.02.002.
XIE Changchuan, ZHANG Xin, CHEN Jiabin. Dynamic modeling and flutter analysis for high-aspect-ratio composite wing[J]. Aircraft Design, 2004(2): 6-10. DOI:10.3969/j.issn: 1673-4599.2004.02.002.
Recentadvanceinhigh-aspect-ratiocompositewing
XIANG Jinwu, ZHANG Xuejiao, ZHAO Shiwei, CHENG Yun, ZHANG Zhifei, LI Daochun
(School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)
The high-aspect-ratio composite wing is generally used in long-endurance Unmanned Aerial Vehicle (UAV), which uses lightweight and high-specific-strength composite structure. This type of wing has significant geometric nonlinearity and aerodynamic nonlinearity during the flight,which further leads to the aeroelastic nonlinearity of the wing. There is a huge difference for design analysis method between the high-aspect-ratio composite wing and the conventional wing. In order to summarize the research status and forecast the future research direction of the high-aspect-ratio composite wing, this paper analyzes and summarizes the design, analysis and experiment methods of the existing high-aspect-ratio composite wing. The aeroelastic characteristics of wing would be affected by the geometric and aerodynamic nonlinearities. The structural design and structural analysis methods of high-aspect-ratio composite wing are introduced. Two kinds of aerodynamic analysis methods are introduced: the aerodynamic analysis method based on the strip theory and binary unsteady aerodynamic method and three dimensional aerodynamic analysis method considering spanwise flow effect. Static aeroelasticity method, dynamic aeroelastic analysis method and active control technology applied in the high-aspect-ratio wing are introduced. The recent advance in aeroelastic tailoring of high-aspect-ratio composite wing is analyzed. Finally, the experimental research progress of high-aspect-ratio composite wing is introduced. Based on the literature analysis, it can be seen that the structural model of the existing high-aspect-ratio composite wing adopts the equivalent beam plate model, while the aerodynamic model adopts the combination of the strip theory and the binary unsteady aerodynamics considering the dynamic stall. The flight test,as well as the research based on the coupling of aerodynamic reduced-order model and the structural model of the high-aspect-ratio composite wing may be the research and development directions of the high-aspect-ratio composite wing in the future.
high-aspect-ratio; geometric nonlinearity; aerodynamic nonlinearity; aeroelastic;active control
10.11918/j.issn.0367-6234.201705036
V271.4
A
0367-6234(2017)10-0001-14
2017-05-07
國(guó)家自然科學(xué)基金(11402014,11572023)
向錦武(1964—),男,博士生導(dǎo)師,“長(zhǎng)江學(xué)者”特聘教授
李道春,lidc@buaa.edu.cn
(編輯張 紅)