謝曉東 王冬青 張磊 宋廉 李丹 沈文榮
HIF-1α@Fe3O4納米顆粒標記缺氧條件下胰腺癌PANC1細胞及其MRI表現(xiàn)
謝曉東 王冬青 張磊 宋廉 李丹 沈文榮
目的探討新型納米顆粒缺氧誘導因子-1α(HIF-1α)螯合四氧化三鐵探針(HIF-1α@Fe3O4)標記胰腺癌PANC1細胞的可行性及其3.0T MRI掃描時T2WI信號的改變。方法在缺氧條件下培養(yǎng)胰腺癌PANC1細胞,采用蛋白質(zhì)印跡法檢測細胞HIF-1α及干細胞標志蛋白CD133、Oct-4、Sox-2的表達。收集缺氧培養(yǎng)24 h的PANC1細胞,并分別與5、15、45 μg/ml的HIF-1α@Fe3O4納米顆粒共孵育24 h,檢測HIF-1α@Fe3O4標記的PANC1細胞數(shù)及細胞存活率,采用3.0T MRI掃描記錄細胞在T2WI圖上的信號強度。結(jié)果在缺氧培養(yǎng)下PANC1細胞HIF-1α表達量較常氧培養(yǎng)組明顯增加,且隨著缺氧時間的延長進一步增加(P值均<0.05),干細胞標志蛋白CD133、Oct-4、Sox-2的表達與HIF-1α表達呈正相關(guān)。PANC1細胞與不同濃度HIF-1α@Fe3O4共孵育24 h后,胞質(zhì)內(nèi)藍色鐵染顆粒細胞呈濃度依賴性增多,45 μg/ml濃度時最高,達100%。常氧培養(yǎng)組、缺氧培養(yǎng)未標記組及缺氧培養(yǎng)45 μg/ml HIF-1α@Fe3O4標記組的細胞存活率分別為(87.0±2.1)%、(84.7±2.7)%、(85.0±3.8)%,差異無統(tǒng)計學意義(P>0.05)。通過3.0T MRI掃描,未標記組及5、15、45 μg/ml HIF-1α@Fe3O4標記組細胞T2WI的信號強度比分別為1.017±0.046、0.793±0.041、0.447±0.032、0.240±0.031,各組間差異有統(tǒng)計學意義(F=80.0,P<0.05)。結(jié)論缺氧有利于胰腺癌PANC1細胞干細胞特性的維持。 HIF-1α@Fe3O4探針可成功標記缺氧培養(yǎng)下高表達HIF-1α的PANC1細胞,且標記細胞在3.0T MRI掃描的T2WI圖上的信號強度減弱。
胰腺腫瘤; 缺氧誘導因子-1α; 腫瘤干細胞 ; 磁共振成像
【Fundprogram】 Jiangsu Cancer Hospital Project (ZN201611); Social Development Foundation of Jiangsu Province(BE2015668)
腫瘤干細胞目前被認為是腫瘤生長、復發(fā)、遠處轉(zhuǎn)移及放化療抵抗的根源所在[1-2]。新的研究表明,腫瘤微環(huán)境對于干細胞作用的發(fā)揮及維持有著重要作用[3-4],缺氧誘導因子-1α(hypoxia inducible factor-1α,HIF-1α)作為微環(huán)境中缺氧條件下的核心轉(zhuǎn)錄因子,參與調(diào)節(jié)腫瘤細胞凋亡、增殖和遷移能力等生物學行為,是胰腺癌侵襲和轉(zhuǎn)移的重要分子機制之一。納米磁粒子四氧化三鐵(Fe3O4)因具有良好的生物相容性和MRI信號敏感性而常用于離體和活體生物學研究。為此,本研究構(gòu)建納米磁粒子Fe3O4標記的特異性HIF-1α探針(HIF-1α@Fe3O4),觀察缺氧培養(yǎng)條件下胰腺癌PANC1細胞 HIF-1α表達的變化以及對于腫瘤干細胞特性的維持作用,為后期MRI靶向監(jiān)測及靶向治療胰腺癌奠定實驗基礎(chǔ)。
一、細胞株與試劑
人胰腺癌細胞株P(guān)ANC1購于中國科學院上海生物科學研究所;胎牛血清(FBS)、細胞培養(yǎng)基DMEM-F12購自美國Gibco公司;二甲亞砜(DMSO)、四甲基偶氮唑藍(MTT)購自Sigma公司;CD133、Oct-4、Sox-2、HIF-1α抗體均購自美國CST公司。
二、方法
1.PANC1細胞分組:PANC1細胞分為常氧培養(yǎng)及缺氧培養(yǎng)兩組。常氧培養(yǎng)為PANC1細胞在20% O2、5% CO2、75% N2環(huán)境下培養(yǎng)。缺氧培養(yǎng)為PANC1細胞在1% O2、5% CO2、94% N2的厭氧培養(yǎng)盒中培養(yǎng)12 h,再在常氧條件下培養(yǎng)12 h,取循環(huán)1~2次培養(yǎng)的細胞進行實驗。
2.細胞CD133、Oct-4、Sox-2及HIF-1α蛋白表達的檢測:收集兩組分別培養(yǎng)0、12、24 h的對數(shù)生長期PANC1細胞,提取細胞蛋白,采用蛋白質(zhì)印跡法常規(guī)檢測細胞CD133、Oct-4、Sox-2及HIF-1α蛋白表達量。應用凝膠成像系統(tǒng)掃描條帶的灰度值,以目的條帶與內(nèi)參條帶的灰度值比作為蛋白相對表達量。
3.HIF-1α@Fe3O4標記PANC1細胞:收集缺氧培養(yǎng)的PANC1細胞,將細胞密度調(diào)整為5×105/ml,接種于6孔板,分別加入0、5、15、45 μg/ml的HIF-1α@Fe3O4,常規(guī)條件下培養(yǎng)24 h,用預冷的PBS清洗細胞3遍,然后用4%的戊二醛固定20 min,加入普魯士藍試劑(2%亞鐵氰化鉀和6%鹽酸混合溶液)孵育30 min后用1%核固紅復染5 min。在200倍鏡下隨機選取5個視野,計數(shù)胞內(nèi)有藍色鐵染顆粒的細胞數(shù)。
4.細胞增殖檢測:收集常規(guī)培養(yǎng)、缺氧培養(yǎng)未標記及缺氧培養(yǎng)45 μg/ml HIF-1α@Fe3O4標記的PANC1細胞,調(diào)整細胞密度為1×105/ml,接種于96孔板,每孔200 μl,每組5個復孔。培養(yǎng)24后,每孔加入5 mg/ml的MTT溶液20 μl,繼續(xù)培養(yǎng)4 h,棄上清,每孔加150 μl DMSO,置搖床上振蕩10 min。上酶標儀測定各孔A490值,計算細胞存活率。細胞存活率(%)=(標記細胞A490值/未標記細胞A490值)×100%。
5.標記PANC1細胞的MRI掃描:取缺氧培養(yǎng)的PANC1細胞,接種6孔板,分別加入5、15、45 μg/ml HIF-1α@Fe3O4培養(yǎng)24 h,棄上清,用PBS重復洗滌3次,消化收集、離心沉淀細胞,用30 μl PBS和20 μl 2%的瓊脂糖重懸細胞后放入EP管中,EP管置于試管架上于3.0 T MRI下行T2WI掃描,勾畫感興趣區(qū)域(ROI),面積為5 mm×5 mm。記錄ROI的信號強度,結(jié)果以各濃度標記組的信號確定與未標記組(0濃度)信號強度比值表示。
三、統(tǒng)計學處理
一、缺氧培養(yǎng)下PANC1細胞HIF-1α、CD133、Oct-4、Sox-2蛋白表達
缺氧培養(yǎng)下PANC1細胞HIF-1α的蛋白表達量較常氧培養(yǎng)組明顯增加(t值分別為4.957、9.535,P值均<0.05),且隨著缺氧時間延長,HIF-1α的表達水平增加(圖1)。干細胞標志蛋白CD133、Oct-4、Sox-2的表達量與HIF-1α的變化一致,較常氧培養(yǎng)組顯著增加,差異有統(tǒng)計學意義(t值分別為2.992、11.95;3.073、3.928;3.208、11.27;P值均<0.05,圖1)。
二、HIF-1α@Fe3O4標記的PANC1細胞及其存活率
將5、15、45 μg/ml的HIF-1α@Fe3O4分別與PANC1共孵育24 h,可見PANC1細胞胞質(zhì)內(nèi)有不同程度的藍色鐵染顆粒,且隨著納米粒子濃度的增加而增加,以45 μg/ml濃度時的標記率最高,達100%。而未標記的PANC1細胞內(nèi)未見藍色鐵染顆粒(圖2)。經(jīng)MTT法檢測,常氧培養(yǎng)組、缺氧培養(yǎng)未標記組及缺氧培養(yǎng)45 μg/ml HIF-1α@Fe3O4標記組細胞的存活率分別為(87.0±2.1)%、(84.7±2.7)%、(85.0±3.8)%,差異無統(tǒng)計學意義(F=0.1830,P>0.05)。
三、HIF-1α@Fe3O4標記的PANC1細胞的MRI表現(xiàn)
HIF-1α@Fe3O4標記的PANC1細胞在T2WI圖像上信號減低,且隨著標記物濃度的增加,信號減低更明顯(圖3),未標記組及5、15、45 μg/ml HIF-1α@Fe3O4標記組細胞的信號強度比分別為1.017±0.046、0.793±0.041、0.447±0.032、0.240±0.031,各組間差異有統(tǒng)計學意義(F=80.0,P<0.05)。
腫瘤干細胞是存在于腫瘤組織中很少量的具有干細胞特性的細胞群體,其在腫瘤的增殖、侵襲、轉(zhuǎn)移、耐藥及復發(fā)方面起著根本性的作用。腫瘤干細胞的表面特異性蛋白主要有CD133、CD44、CD24、Oct-4、Sox-2及c-myc[5-7]。HIF-1α作為一種缺氧條件下的核心轉(zhuǎn)錄因子,參與腫瘤細胞的轉(zhuǎn)錄、新生血管形成及腫瘤轉(zhuǎn)移等過程[8-9],而瘤旁及正常組織中無HIF-1α表達。Akakurat等[10]報道,20株胰腺癌細胞均有HIF-1α表達。本研究結(jié)果顯示,缺氧培養(yǎng)條件下PANC1細胞的HIF-1α表達較常氧培養(yǎng)細胞顯著增加,并隨著缺氧時間的延長表達量逐漸增加,同時干細胞標志蛋白CD133、Oct-4、Sox-2的表達也呈時間依賴性地顯著升高,提示缺氧環(huán)境有利于腫瘤干細胞特性的維持,其機制可能是通過上調(diào)HIF-1α蛋白的表達而發(fā)揮作用,與本課題組前期研究的結(jié)果[11]以及Zhu等[12]、Hashimoto等[13]的研究結(jié)果一致。
圖1 缺氧培養(yǎng)0(1)、12(2)、24(3)h的PANC1細胞HIF-1α、CD133、Oct-4、Sox-2蛋白表達
圖2 未標記(2A)及5(2B)、15(2C)、45(2D) μg/ml HIF-1α@Fe3O4標記的PANC1細胞(普魯士藍染色 ×200)
圖3 缺氧培養(yǎng)下未標記組(3A)及5(3B)、15(3C)、45(3D) μg/ml HIF-1α@Fe3O4標記組PANC1細胞的T2WI信號
Fe3O4作為一種順磁性物質(zhì),易在T2WI上引起信號的改變。為更深入研究HIF-1α的生物學作用,本研究構(gòu)建了HIF-1α@Fe3O4納米探針,通過與PANC1細胞在缺氧條件下共培養(yǎng),HIF-1α可進入細胞與HIF-1α的結(jié)合位點競爭性結(jié)合,且不影響細胞的活力。結(jié)果顯示,HIF-1α@Fe3O4探針可成功標記缺氧培養(yǎng)下高表達HIF-1α的PANC1細胞,且標記細胞在T2WI圖像的信號顯著降低,為通過MRI檢查實現(xiàn)靶向監(jiān)測及后期靶向治療打下實驗基礎(chǔ)。
[1] Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid[J]. Pharmacol Ther,2016,160:145-158. DOI:10.1016/j.pharmthera.2016.02.008.
[2] Yang M, Liu P, Peng H. Cancer stem cells, metabolism, and therapeutic significance[J]. Tumor Biol,2016,37(5):5735-5742.DOI:10.1007/s13277-016-4945-x.
[3] Mora-Blanco LE, Lorens JB, Labarge MA. The tumor microenvironment as a transient niche: a modulator of epigenetic states and stem cell functions[M]//Trends in Stem Cell Proliferation and Cancer Research. Springer Netherlands, 2013:463-478. DOI:10.1007/978-94-007-6211-4_17.
[4] Burness ML, Sipkins DA. The stem cell niche in health and malignancy[J]. Semin Cancer Biol,2010,20(2):107-115.DOI:10.1016/j.semcancer.2010.05.006.
[5] Natarajan TG, Ganesan N, Fitzgerald KT. Cancer stem cells and markers: new model of tumorigenesis with therapeutic implications[J]. Cancer Biomark, 2010, 9(1-6):65-99.DOI:10.3233/CBM-2011-0173.
[6] Murar M, Vaidya A. Cancer stem cell markers: premises and prospects[J]. Biomark Med, 2015, 9(12):1331-1342.DOI:10.2217/bmm.15.85.
[7] Feng D, Peng G, Li W, et al. Identification and characterization of tumorigenic liver cancer stem cells by CD133 and CD24[J]. J Biomaterials Tissue Engineering, 2015, 5(8):635-646.DOI: 10.1166/jbt.2015.1363.
[8] Matsuo Y, Ding Q, Desaki R, et al. Hypoxia inducible factor-1 alpha plays a pivotal role in hepatic metastasis of pancreatic cancer: an immunohistochemical study[J]. J Hepatobiliary Pancreat Sci, 2014, 21(2):105-112.DOI: 10.1002/jhbp.6.
[9] Chang Q, Qin R, Huang T, et al. Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer[J]. Pancreas, 2006, 32(3):297-305.
[10] Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer Res, 2001, 61(17):6548-6554.
[11] 謝曉東, 朱海濤, 吳熒熒,等. HIF-1α@Fe3O4納米顆粒標記對胰腺癌干細胞增殖及凋亡的影響[J]. 中華胰腺病雜志, 2015, 15(1):22-25. DOI:10.3760/cma.j.issn.1674-1935.2015.01.006.
[12] Zhu H, Wang D, Liu Y, et al. Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+, pancreatic cancer stem-like cells[J]. Cancer Cell Int, 2013, 13(1):119.DOI: 10.1186/1475-2867-13-119.
[13] Hashimoto O, Shimizu K, Semba S, et al. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1α dependent manner in pancreatic cancer cells.[J]. Pathobiology, 2011, 78(4):181-192.DOI: 10.1159/000325538.
(本文編輯:呂芳萍)
HIF-1α@Fe3O4labeledpancreaticcancerPANC1cellsunderhypoxiaanditsMRIdetection
XieXiaodong,WangDongqing,ZhangLei,SongLian,LiDan,ShenWenrong.
DepartmentofRadiology,JiangsuCancerHospital,Nanjing210009,China
Correspondinauthor:ShenWenrong,Email:jszlyyct@sohu.com
ObjectiveTo explore the feasibility of novel nano-particle HIF-1α@Fe3O4labeled pancreatic cancer PANC1 cells as well as the changes of signal intensity in 3.0T MRI scan.MethodsPancreatic cancer PANC1 cells were cultured in hypoxia condition, and hypoxia-inducible-factor-1α(HIF-1α) and stem cell markers CD133, Oct-4, Sox-2 were detected by Western blot assay. Cells cultured under hypoxia for 24 h were collected and then co-incubated with 5, 15 and 45 μg/ml HIF-1α@Fe3O4for 24 h. The number of HIF-1α@Fe3O4labeled PANC1 cells and cell survival rate were detected, and the signal intensity of T2WI image for PANC1 cells was measured by a 3.0T MRI system.ResultsIn hypoxia condition, HIF-1α level was obviously increased compared with that of normoxic culture, which was further increased with the increase of hypoxia time(allP<0.05) . Stem-cell markers CD133, Oct-4 and Sox-2 was positively correlated with HIF-1α level. Co-cultured with different concentrations of HIF-1α@Fe3O4for 24 h, blue-stained iron particles in cytoplasm of PANC1 cells was dosage-dependently increased, and the peak was at the concentration of 45 μg/ml, which could reach 100%. The survival rate of the PANC1 cells cultured in normoxic condition, the unlabeled and labeled in hypoxic condition group were(87.0±2.1)%, (84.7±2.7)% and (85±3.8)%, respectively, and the difference was not statistically significant(P>0.05). In 3.0T MRI scan, T2WI signal intensity in unlabeled group and 5, 15 and 45 μg/ml labeled group was 1.017±0.046, 0.793±0.041, 0.447±0.032 and 0.240±0.031, and the difference was not statistically significant(F=80.0,P>0.05).ConclusionsHypoxia condition could promote and maintain the stemness in PANC1 cells. HIF-1α@Fe3O4probe could successfully label HIF-1α highly expressed PANC1 cells during hypoxia condition, and a significant decrease in T2WI signal intensity can be detected by a 3.0T MRI system.
Pancreatic neoplasms; Hypoxia-inducible factor1, aipha submit; Neoplastic stem cell; Magnetic resonance imaging
10.3760/cma.j.issn.1674-1935.2017.05.009
210009 南京,江蘇省腫瘤醫(yī)院影像科(謝曉東、張磊、李丹、沈文榮);江蘇大學附屬醫(yī)院影像科(王冬青、宋廉)
沈文榮,Email: jszlyyct@sohu.com
江蘇省腫瘤醫(yī)院院級課題(ZN201611);江蘇省社會發(fā)展項目(BE2015668)
2017-03-12)