亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

        2017-11-06 09:36:38MATianshuiWANGYongzhongLIULinlin
        數(shù)學(xué)雜志 2017年6期
        關(guān)鍵詞:河南師范大學(xué)信息科學(xué)新鄉(xiāng)

        MA Tian-shuiWANG Yong-zhongLIU Lin-lin

        (1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        (2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        (3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

        GENERALIZED RADFORD BIPRODUCT HOM-HOPF ALGEBRAS AND RELATED BRAIDED TENSOR CATEGORIES

        MA Tian-shui1,2,WANG Yong-zhong3,LIU Lin-lin1

        (1.Department of Mathematics,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        (2.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,School of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        (3.School of Mathematics and Information Science,Xinxiang University,Xinxiang 453003,China)

        In this paper,the Hom-type of Radford biproduct is introduced.By combining generalized smash product Hom-algebra and generalized smash coproduct Hom-coalgebra,we derive necessary and su ff cient conditions for them to be a Hom-bialgebra,which includes the well-known Radford biproduct.

        Radford biproduct;quantum Yang-Baxter equation;Yetter-Drinfeld category

        In this paper,we unify the Makhlouf-Panaite’s smash product in[10]and Ma-Li-Yang’s in[6],and then extend the Radford biproduct to a more general case.We also construct a class of braided tensor categories(extending the Yetter-Drinfeld category to the Hom-case),and provide a solution to the Hom-quantum Yang-Baxter equation.

        2 Preliminaries

        Throughout this paper,Kwill be a field,and all vector spaces,tensor products,and homomorphisms are overK.We use Sweedler’s notation for terminologies on coalgebras.For a coalgebraC,we write comultiplication Δ(c)=c1?c2for anyc∈C.And we denoteIdMfor the identity map fromMtoM.Any unexplained de finitions and notations can be found in[4–6,14].We now recall some useful de finitions.

        De finition 2.1A Hom-algebra is a quadruple(A,μ,1A,α)(abbr.(A,α)),whereAis a linear space,μ:A?A?→Ais a linear map,1A∈Aandαis an automorphism ofA,such that

        are satisfied fora,a′,a′′∈A.Here we use the notationμ(a?a′)=aa′.

        Let(A,α)and(B,β)be two Hom-algebras.Then(A?B,α ? β)is a Hom-algebra(called tensor product Hom-algebra)with the multiplication(a?b)(a′?b′)=aa′?bb′and unit 1A?1B.

        De finition 2.2A Hom-coalgebra is a quadruple(C,Δ,εC,β)(abbr.(C,β)),whereCis a linear space,Δ:C?→C?C,εC:C?→Kare linear maps,andβis an automorphism ofC,such that

        are satisfied forc∈A.Here we use the notation Δ(c)=c1?c2(summation implicitly understood).

        Let(C,α)and(D,β)be two Hom-coalgebras.Then(C?D,α?β)is a Hom-coalgebra(called tensor product Hom-coalgebra)with the comultiplication Δ(c?d)=c1?d1?c2?d2and counitεC? εD.

        De finition 2.3A Hom-bialgebra is a sextuple(H,μ,1H,Δ,ε,γ)(abbr.(H,γ)),where(H,μ,1H,γ)is a Hom-algebra and(H,Δ,ε,γ)is a Hom-coalgebra,such that Δ andεare morphisms of Hom-algebras,i.e.,Δ(hh′)=Δ(h)Δ(h′);Δ(1H)=1H?1H,ε(hh′)=ε(h)ε(h′);ε(1H)=1.Furthermore,if there exists a linear mapS:H?→Hsuch that

        then we call(H,μ,1H,Δ,ε,γ,S)(abbr.(H,γ,S))a Hom-Hopf algebra.

        Let(H,γ)and(H′,γ′)be two Hom-bialgebras.The linear mapf:H?→H′is called a Hom-bialgebra map iff?γ=γ′?fand at the same timefis a bialgebra map in the usual sense.

        De finition 2.4Let(A,β)be a Hom-algebra.A left(A,β)-Hom-module is a triple(M,?,α),whereMis a linear space,?:A?M?→Mis a linear map,andαis an automorphism ofM,such that

        are satisfied fora,a′∈Aandm∈M.

        Let(M,?M,αM)and(N,?N,αN)be two left(A,β)-Hom-modules.Then a linear morphismf:M?→Nis called a morphism of left(A,β)-Hom-modules iff(h?Mm)=h?Nf(m)andαN?f=f?αM.

        De finition 2.5Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,?,α)is a left(H,β)-Hom-module and for allh∈Handa,a′∈A,

        then(A,?,α)is called an(H,β)-module Hom-algebra.

        De finition 2.6Let(C,β)be a Hom-coalgebra.A left(C,β)-Hom-comodule is a triple(M,ρ,α),whereMis a linear space,ρ:M?→C?M(writeρ(m)=m?1?m0,?m∈M)is a linear map,andαis an automorphism ofM,such that

        are satisfied for allm∈M.

        Let(M,ρM,αM)and(N,ρN,αN)be two left(C,β)-Hom-comodules.Then a linear mapf:M?→Nis called a map of left(C,β)-Hom-comodules iff(m)?1?f(m)0=m?1?f(m0)andαN?f=f?αM.

        De finition 2.7Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,ρ,α)is a left(H,β)-Hom-comodule and for allc∈C,

        then(C,ρ,α)is called an(H,β)-comodule Hom-coalgebra.

        De finition 2.8Let(H,β)be a Hom-bialgebra and(C,α)a Hom-coalgebra.If(C,?,α)is a left(H,β)-Hom-module and for allh∈Handc∈A,

        then(C,?,α)is called an(H,β)-module Hom-coalgebra.

        De finition 2.9Let(H,β)be a Hom-bialgebra and(A,α)a Hom-algebra.If(A,ρ,α)is a left(H,β)-Hom-comodule and for alla,a′∈A,

        then(A,ρ,α)is called an(H,β)-comodule Hom-algebra.

        3 Generalized Radford Biproduct Hom-Hopf Algebra

        In this section,we first introduce the notions of generalized smash product Hom-algebraA#mHand generalized Hom-smash coproduct Hom-coalgebra.Then the necessary and sufficient conditions forA#mHandonA?Hto be a Hom-bialgebra structure are derived.

        Proposition 3.1Let(H,β)be a Hom-bialgebra,(A,?,α)an(H,β)-module Homalgebra andm∈Z.Then(A#mH,α?β)(A#mH=A?Has a linear space)with the multiplication(a?h)(a′?h′)=a(βm(h1)?α?1(a′))?β?1(h2)h′,wherea,a′∈A,h,h′∈H,and unit 1A?1His a Hom-algebra.In this case,we call(A#mH,α?β)generalized smash product Hom-algebra.

        ProofIt is straightforward by the de finition of Hom-algebra.

        Remarks(1)Noting that(A#0H,α ? β)is exactly the Ma-Li-Yang’s Hom-smash product in[5,6]and(A#?2H,α ? β)is exactly the Makhlouf-Panaite’s Hom-smash product in[10].

        (2)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash productA#Hin[13].

        (3)Let(H,μH,ΔH)be a bialgebra and(A,α)a leftH-module algebra in the usual sense with action denoted byH?A→A,h?ah·a.Letβ:H→Hbe a bialgebra endomorphism andα:A→Aan algebra endomorphism,such thatα(h·a)=β(h)·α(a)for allh∈Handa∈A.If we consider the Hom-bialgebraHβ=(H,β ?μH,ΔH?β,β)and the Hom-associative algebraAα=(A,α?μH,α),then(Aα,α)is a left(Hβ,β)-module Hom-algebra with actionHβ?Aα→Aα,h?ah?a:=α(h·a)=β(h)·α(a).

        ProofStraightforward.

        Proposition 3.2Let(H,β)be a Hom-bialgebra,(C,ρ,α)an(H,β)-comodule Homcoalgebra andn∈Z.Then()(=C?Has a linear space)with the comultiplication ΔCH(c?h)=c1?βn(c2(?1))β?1(h1)?α?1(c2(0))?h2,wherec∈C,h∈H,and counitεC?εHis a Hom-coalgebra.In this case,we call()generalized smash coproduct Hom-coalgebra.

        ProofStraightforward.

        Remarks(1)()is exactly the Li-Ma’s Hom-smash coproduct in[5].

        (2)(2H,α ? β)is exactly the dual version of the Makhlouf-Panaite’s Hom-smash product in[10].

        (3)Ifα=IdAandβ=IdHin(A#mH,α ? β),then one can obtain the usual smash coproductA×Hin[13].

        Theorem 3.3Let(H,β)be a Hom-bialgebra,(A,α)a left(H,β)-module Hom-algebra with module structure?:H?A?→Aand a left(H,β)-comodule Hom-coalgebra with comodule structureρ:A?→H?A.Then the following are equivalent:

        (i)(A◇mnH,μA#H,1A?1H,ΔAH,εA?εH,α?β)is a Hom-bialgebra,where(A#mH,α?β)is a generalized smash product Hom-algebra and()is a generalized smash coproduct Hom-coalgebra.

        (ii)The following conditions hold:

        (R1)(A,ρ,α)is an(H,β)-comodule Hom-algebra;(R2)(A,?,α)is an(H,β)-module Hom-coalgebra;

        (R3)εAis a Hom-algebra map and ΔA(1A)=1A?1A;

        (R4)ΔA(ab)=a1(βm+n+2(a2(?1))?α?1(b1))?α?1(a2(0))b2;

        (R5)βn+1((βm+1(h1)?b)?1)h2?(βm+1(h1)?b)0=h1βn+2(b(?1))? βm+2(h2)?b(0),wherea,b∈B,h∈Handm,n∈Z.In this case,we call(A◇mnH,α?β)generalized Radford biproduct Hom-bialgebra.

        ProofBy a tedious computation we can prove it.

        Remarks(1)Whenm=n=0 in Theorem 3.3,we can get[5,Theorem 3.3].

        (2)Whenα=IdAandβ=IdHin Theorem 3.3,then one can obtain[13,Theorem 1].

        Proposition 3.4Let(H,β,SH)be a Hom-Hopf algebra,and(A,α)ba a Hom-algebra and a Hom-coalgebra.Assume that(A◇mnH,α ? β)is a generalized Radford biproduct Hom-bialgebra de fined as above,andSA:A→Ais a linear map such thatSA(a1)a2=a1SA(a2)=εA(a)1Aandα?SA=SA?αhold.Then(A◇mnH,α?β,SA◇mnH)is a Hom-Hopf algebra,where

        ProofFor alla∈A,h∈H,we have

        and the rest is direct.

        4 Generalized Hom-Yetter-Drinfeld Category

        In this section,we construct a class of braided tensor category,which extends the Yetter-Drinfeld category to the Hom-case.Next we give the concept of Hom-Yetter-Drinfeld module via generalized Radford biproduct Hom-Hopf algebra de fined in Theorem 3.3.

        De finition 4.1Let(H,β)be a Hom-bialgebra,(U,?U,αU)a left(H,β)-module with action?U:H?U→U,h?uh?Uuand(U,ρU,αU)a left(H,β)-comodule with coactionρU:U→H?U,uu(?1)?u(0).Then we call(U,?U,ρU,αU)a(left-left)Hom-Yetter-Drinfeld module over(H,β)if the following condition holds:

        for allh∈Handu∈U.

        Proposition 4.2When(H,β)is a Hom-Hopf algebra,(HY D)is equivalent to

        for allh∈H,u∈U.

        Proof(HY D)(HY D)′.We have

        (HY D)′=?(HY D)is proved as follows:

        finishing the proof.

        De finition 4.3Let(H,β)be a Hom-bialgebra.We denote byHHYD the category whose objects are Hom-Yetter-Drinfeld modules(U,?U,ρU,αU)over(H,β);the morphisms in the category are morphisms of left(H,β)-modules and left(H,β)-comodules.

        In the following,we give a solution to the Hom-quantum Yang-Baxter equation introduced and studied by Yau in[16].

        Proposition 4.4Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

        whereu∈Uandv∈V. Then we haveτU,V?(αU? αV)=(αV? αU)? τU,V,if(W,?W,ρW,αW)∈HHYD,the mapsatisfy the Hom-Yang-Baxter equation

        ProofIt is easy to prove the first equality,so we only check the second one.For allu∈U,v∈Vandw∈W,we have

        The proof is completed.

        Lemma 4.5Let(H,β)be a Hom-bialgebra,if(U,?U,ρU,αU),(V,?V,ρV,αV)are(leftleft)Hom-Yetter-Drinfeld modules,then(U?V,?U?V,ρU?V,αU? αV)is a Hom-Yetter-Drinfeld module with structures

        and

        for allh∈H,u∈U,v∈V.

        ProofIt is easy to check that(U?V,?U?V,αU? αV)is an(H,β)-Hom module and(U?V,ρU?V,αU? αV)is an(H,β)-Hom comodule.Now we check the condition(HY D).For allh∈H,u∈U,v∈V,we have

        finishing the proof.

        Lemma 4.6Let(H,β)be a Hom-bialgebra,and

        With notation as above,de fine the linear map

        whereu∈U,v∈Vandw∈W.ThenaU,V,Wis an ismorphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

        ProofSame to the proof of[9,Proposition 3.2].

        Lemma 4.7Let(H,β)be a Hom-bialgebra and(U,?U,ρU,αU),(V,?V,ρV,αV)∈HHYD.De fine the linear map

        whereu∈Uandv∈V.ThencU,Vis a morphism of left(H,β)-Hom-modules and left(H,β)-Hom-comodules.

        ProofFor allh∈H,u∈Uandv∈V,we have

        and

        finishing the proof.

        Theorem 4.8Let(H,β)be a Hom-bialgebra.Then the Hom-Yetter-Drinfeld categoryHHYD is a pre-braided tensor category,with tensor product,associativity constraints,and pre-braiding in Lemmas 4.5,4.6 and 4.7,respectively,and the unitI=(K,IdK).

        ProofThe proof of the pentagon axiom foraU,V,Wis same to the proof of[9,Theorem 3.4].Next we prove that the hexagonal relation forcU,V.Let(U,?U,ρU,αU),(V,?V,ρV,αV),(W,?W,ρW,αW)∈HHYD.Then for allu∈U,v∈Vandw∈W,we have

        and and the rest is obvious.These complete the proof.

        [1]Andruskiewitsch N,Schneider H-J.On the classi fication of finite-dimensional pointed Hopf algebras[J].Ann.Math.,2010,171(1):375–417.

        [2]Hartwig J T,Larsson D,Silvestrov S D.Deformations of Lie algebras usingσ-derivations[J].J.Alg.,2006,295:314–361.

        [3]Hu Naihong.q-Witt algebras,q-Lie algebras,q-holomorph structure and representations[J].Alg.Colloq.,1999,6(1):51–70.

        [4]Kassel C.Quantum groups[M].Graduate Texts in Mathematics 155,Berlin:Springer Verlag,1995.

        [5]Li Haiying,Ma Tianshui.A construction of Hom-Yetter-Drinfeld category[J].Colloq.Math.,2014,137(1):43–65.

        [6]Ma Tianshui,Li Haiying,Yang Tao.Cobraided smash product Hom-Hopf algebras[J].Colloq.Math.,2014,134(1):75–92.

        [7]Ma Tianshui,Li Haiying,Zhao Wenzheng.On the braided structures of Radford’s biproduct[J].Acta Math.Sci.Ser.B Engl.Ed.,2011,31(2):701–715.

        [8]Majid S.Double-bosonization of braided groups and the construction ofUq(g)[J].Math.Proc.Cambridge Philos.Soc.,1999,125(1):151–192.

        [9]Makhlouf A,Panaite F.Yetter-Drinfeld modules for Hom-bialgebras[J].J.Math.Phys.,2014,55:013501.

        [10]Makhlouf A,Panaite F.Twisting operators,twisted tensor products and smash products for Homassociative algebras[J].Glasg.Math.J.,arXiv:1402.1893.

        [11]Makhlouf A,Silvestrov S D.Hom-algebra stuctures[J].J.Gen.Lie The.Appl.,2008,2:51–64.

        [12]Makhlouf A,Silvestrov S D.Hom-algebras and hom-coalgebras[J].J.Alg.Appl.,2010,9:553–589.

        [13]Radford D E.The structure of Hopf algebra with a projection[J].J.Alg.,1985,92:322–347.

        [14]Radford D E.Hopf algebras[M].KE Series on Knots and Everything,Vol.49,New Jersey:World Scientic,2012.

        [15]Yau D.Module Hom-algebras[J].arXiv:0812.4695v1.

        [16]Yau D.Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum geometry[J].arXiv:0907.1880.

        廣義Radford雙積Hom-Hopf代數(shù)和相關(guān)辮子張量范疇

        馬天水1,2,王永忠3,劉琳琳1
        (1.河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院數(shù)學(xué)系,河南新鄉(xiāng) 453007)
        (2.河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院大數(shù)據(jù)統(tǒng)計分析與優(yōu)化控制河南省工程實驗室,河南新鄉(xiāng) 453007)
        (3.新鄉(xiāng)學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng) 453003)

        本文研究了Radford雙積的Hom-型.通過把廣義smash積Hom-代數(shù)和廣義smash余積Hom-余代數(shù)相結(jié)合,得到了他們成為Hom-雙代數(shù)的充分必要條件,這一結(jié)果推廣了著名的Radford雙積.

        Radford雙積;量子Yang-Baxter方程;Yetter-Drinfeld范疇

        O153.3

        16T05;81R50

        A

        0255-7797(2017)06-1161-12

        1 Introduction

        LetHbe a bialgebra,A#Ha smash product algebra andA×Ha smash coproduct coalgebra.Radford(see[13])gave a bialgebra structure onA?H(named Radford biproduct by other researchers)viaA#HandA×H.Later,Majid made the following conclusion:to any Hopf algebraAin the braided category of Yetter-Drinfeld modulesHHYD,one can associate an ordinary Hopf algebraA★H,there called the bosonization ofA(i.e.,Radford biproduct)(see[8]).While Radford biproduct is one of the celebrated objects in the theory of Hopf algebras,which plays a fundamental role in the classi fication of finite-dimensional pointed Hopf algebras(see[1]).Other references related to Radford biproduct see[1,6–8,13,14].

        The algebra of Hom-type can be found in[2]by Hartwig,Larsson and Silvestrov,where a notion of Hom-Lie algebra in the context ofq-deformation theory of Witt and Virasoro algebras(see[3])was introduced.There are various settings of Hom-structures such asalgebras,coalgebras,Hopf algebras,see[6,10–12]and so on.In[15],Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras.Based on Yau’s de finition of module Hom-algebras,Ma,Li and Yang[6]constructed smash product Hom-Hopf algebra()generalizing the Molnar’s smash product(see[13]),and gave the cobraided structure(in the sense of Yau’s de finition in[16])on().Makhlouf and Panaite de fined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras in[9]and derived the constructions of twistors,pseudotwistors,twisted tensor product and smash product in the setting of Hom-case(see[10]).Li and Ma studied the Yetter-Drinfeld category of Hom-type via Radford biproduct(see[5]).Recently,Ma,Liu and Li extend the above results in the monoidal Hom-case.

        date:2015-07-16Accepted date:2015-11-25

        Supported by China Postdoctoral Science Foundation(2017M611291);Foundation for Young Key Teacher by Henan Province(2015GGJS-088);Natural Science Foundation of Henan Province(17A110007).

        Biography:Ma Tianshui(1977–),male,born at Tanghe,Henan,associate professor,major in Hopf algebra and its application.

        猜你喜歡
        河南師范大學(xué)信息科學(xué)新鄉(xiāng)
        河南師范大學(xué)作品精選
        聲屏世界(2024年1期)2024-04-11 07:51:08
        新鄉(xiāng)作品精選
        聲屏世界(2023年15期)2023-10-31 13:41:58
        河南師范大學(xué)作品精選
        聲屏世界(2023年23期)2023-03-10 04:49:28
        新鄉(xiāng)醫(yī)學(xué)院
        裳作
        炎黃地理(2022年5期)2022-06-07 03:35:41
        山西大同大學(xué)量子信息科學(xué)研究所簡介
        出征新鄉(xiāng),武漢石化拼了
        河南師范大學(xué)美術(shù)學(xué)院作品選登
        三元重要不等式的推廣及應(yīng)用
        光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
        国产亚洲成人精品久久| 国产精品18久久久久久不卡中国| 久久国产成人免费网站| 亚洲国产精品免费一区| 青青草在线免费观看在线| 色二av手机版在线| 国产亚洲精品一区二区在线播放| 国产精品国产自产自拍高清av| 久久精品国产亚洲av果冻传媒| 少妇久久久久久被弄到高潮| 狠狠爱无码一区二区三区| 果冻蜜桃传媒在线观看| 国产夫妻自偷自拍第一页| 最新中文字幕一区二区| 亚洲国产精品一区二区www| 国产精品污www一区二区三区| 高清一级淫片a级中文字幕| 亚洲熟女av一区少妇| 日韩乱码中文字幕在线| 久久成人国产精品免费软件| 亚洲人成网站在线观看播放| 国产精品性一区二区三区| 成av人片一区二区久久| 小说区激情另类春色| 伊人久久五月丁香综合中文亚洲 | 青草网在线观看| 亚洲精品国产一区av| 少妇太爽了在线观看免费| 欧美大片aaaaa免费观看| 18禁美女裸身无遮挡免费网站| 自慰高潮网站在线观看| 白色白色白色在线观看视频| 成人自慰女黄网站免费大全| 亚洲午夜福利在线视频| 久久精品国产亚洲不av麻豆| 日本在线播放不卡免费一区二区| 偷拍色图一区二区三区| 中文字幕亚洲综合久久天堂av| 免费无码中文字幕a级毛片| 久久人妻公开中文字幕| 久久99热精品免费观看麻豆|