耿端陽(yáng),何 珂,印 祥,李玉環(huán),姜 萌,解春季,徐海剛
?
玉米花生間作播種施肥一體機(jī)研制與試驗(yàn)
耿端陽(yáng)1,何 珂1,印 祥1,李玉環(huán)1,姜 萌1,解春季1,徐海剛2
(1. 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,淄博255000;2. 時(shí)風(fēng)集團(tuán)農(nóng)業(yè)部農(nóng)機(jī)動(dòng)力和收獲機(jī)械重點(diǎn)實(shí)驗(yàn)室,聊城252000)
針對(duì)玉米花生間作播種經(jīng)濟(jì)效益高但缺少一體化作業(yè)機(jī)械裝備的現(xiàn)實(shí)問(wèn)題,采用農(nóng)機(jī)農(nóng)藝融合的研究方法,開(kāi)發(fā)了1種1次作業(yè)可以實(shí)現(xiàn)旋耕筑壟、混土施肥、玉米花生間作播種和對(duì)行覆土鎮(zhèn)壓等功能的玉米花生間作播種施肥一體機(jī),并對(duì)影響壟臺(tái)筑建、溝床平整的旋耕裝置和最小結(jié)構(gòu)尺寸的平行四桿機(jī)構(gòu)進(jìn)行了設(shè)計(jì);采用正交試驗(yàn)方法探究了旋耕刀軸轉(zhuǎn)速、耕深和仿形機(jī)構(gòu)拉桿長(zhǎng)度對(duì)花生壟臺(tái)高度和播深一致的影響規(guī)律,結(jié)果表明:在旋耕刀軸轉(zhuǎn)速為260 r/min,耕深15 cm及仿形機(jī)構(gòu)拉桿長(zhǎng)度為24 cm時(shí),即可為玉米花生間作創(chuàng)造良好的播種環(huán)境,且花生播深合格率達(dá)91.1%,玉米播深合格率達(dá)90.1%,其他參數(shù)完全符合相關(guān)農(nóng)藝標(biāo)準(zhǔn),為該農(nóng)藝技術(shù)的推廣應(yīng)用提供可供選擇的機(jī)械化裝備。
播種;農(nóng)業(yè)機(jī)械;試驗(yàn);玉米-花生間作;正交試驗(yàn)
玉米花生間作種植作為可以發(fā)揮高稈與矮稈、直根系與須根系、需氮多和需磷鉀多互補(bǔ)效應(yīng)的增產(chǎn)增效農(nóng)藝,受到了農(nóng)學(xué)專(zhuān)家的長(zhǎng)期關(guān)注[1-3],特別是不同地區(qū)采用不同的間作模式后,可以有效控制和緩解玉米花生種植爭(zhēng)地?fù)寱r(shí)矛盾,實(shí)現(xiàn)兩種作物高效生產(chǎn),提高農(nóng)作物生產(chǎn)的綜合效益[4-7]。據(jù)山東省農(nóng)科院連續(xù)7年的生產(chǎn)試驗(yàn),玉米花生間作種植可實(shí)現(xiàn)“玉米基本不減產(chǎn),花生多收三四百”的功效[8-9],對(duì)保障中國(guó)糧食安全,增加農(nóng)民收益,實(shí)現(xiàn)農(nóng)民增收具有重要的意義[10]。
青島農(nóng)業(yè)大學(xué)尚書(shū)旗教授等人按照中國(guó)北方花生播種的特點(diǎn),研制的2BF4-4型花生覆膜播種機(jī)可一次性完成花生筑壟、播種和覆膜[11];中國(guó)農(nóng)業(yè)大學(xué)李洪文教授研制的凹形圓盤(pán)式玉米播種機(jī)、水平撥草輪式玉米播種機(jī)等機(jī)型均已實(shí)現(xiàn)免耕條件下玉米播種,且其試驗(yàn)指標(biāo)均達(dá)到國(guó)家標(biāo)準(zhǔn)[12-13]。就玉米花生間作播種而言,目前國(guó)內(nèi)尚未見(jiàn)相關(guān)機(jī)型研究。故長(zhǎng)期以來(lái)玉米花生間作技術(shù)一直處于手工作業(yè)或者分時(shí)獨(dú)立種植模式[14-17]。本文以目前山東地區(qū)玉米花生種植農(nóng)藝為基礎(chǔ)開(kāi)發(fā)了玉米花生間作播種機(jī),可一次作業(yè)完成旋耕筑壟、混土施肥、玉米花生間作播種和對(duì)行鎮(zhèn)壓的功能。
通過(guò)長(zhǎng)期的研究發(fā)現(xiàn),玉米花生間作種植雖然可以增加農(nóng)民收益,提高土地利用效率,均衡土壤肥力的綜合利用[18-19],但是由于各地的種植習(xí)慣、土壤狀況、作物品種等差異,導(dǎo)致該農(nóng)藝在實(shí)施過(guò)程中復(fù)雜多樣[20],后經(jīng)山東省農(nóng)科院萬(wàn)書(shū)波院長(zhǎng)的長(zhǎng)期研究,結(jié)果表明以玉米花生3:4(即玉米3行、花生4壟)的播種模式優(yōu)勢(shì)最為明顯[21],如圖1所示。
圖1 玉米花生間作種植模式
該模式可有效改善玉米花生生長(zhǎng)過(guò)程的通風(fēng)、采光、防爛種、便排水等生長(zhǎng)條件與問(wèn)題,實(shí)現(xiàn)玉米花生的高效穩(wěn)產(chǎn)。
針對(duì)上述播種農(nóng)藝要求,可將整機(jī)設(shè)計(jì)為非對(duì)稱分布的4-3(一側(cè)播種2壟4行花生,另一側(cè)播種3行玉米)結(jié)構(gòu)和對(duì)稱分布2-3-2(中間播種3行玉米,兩邊各播種1壟2行花生)結(jié)構(gòu)。對(duì)于第1種結(jié)構(gòu),為了滿足花生起壟播種的要求,需要將玉米種床耕層土壤進(jìn)行遠(yuǎn)距離輸送,完成花生播種壟臺(tái)的筑建,難度較大;采用第2種結(jié)構(gòu),將耕層土壤進(jìn)行雙邊反向輸送,當(dāng)土壤輸送至花生播種帶后,分別起壟筑臺(tái),不僅縮短了土壤輸送距離,而且起壟規(guī)整,玉米播種行地表平整,所以本機(jī)采用了第2種結(jié)構(gòu)。整機(jī)具體結(jié)構(gòu)如圖2所示。
1.仿形架 2.施肥裝置 3.劃行器 4.連接板 5.機(jī)架 6.限深輪 7.翻土犁 8.旋耕起壟裝置 9.玉米播種裝置 10.花生播種裝置
玉米花生間作播種施肥一體機(jī)主要由機(jī)架、限深輪、旋耕起壟裝置、施肥裝置、仿形架、花生播種裝置、玉米播種裝置及傳動(dòng)部分等組成。其中限深輪安裝在機(jī)架橫梁上;旋耕起壟裝置安裝在機(jī)架兩側(cè)板上,采用中間變速箱傳動(dòng);施肥裝置安裝在旋耕裝置上方,采用側(cè)面鏈傳動(dòng),外槽輪式排肥器排肥;仿形架安裝在機(jī)架后方,采用四連桿仿形方式進(jìn)行仿形;花生播種裝置與玉米播種裝置位于仿形架后方,播種裝置由開(kāi)溝器、種箱、排種器、鎮(zhèn)壓輪組成,如圖3所示。該機(jī)能一次完成旋耕、混土施肥、玉米花生間作播種和覆土鎮(zhèn)壓,其技術(shù)參數(shù)如表1所示。
1.玉米行開(kāi)溝器 2.玉米排種器 3.玉米行鎮(zhèn)壓輪 4.玉米種箱 5.花生種箱 6.花生排種器 7.花生行開(kāi)溝器 8.花生行鎮(zhèn)壓輪
玉米花生間作播種施肥一體機(jī)工作原理如下:工作時(shí),由拖拉機(jī)動(dòng)力輸出軸驅(qū)動(dòng)旋耕裝置,對(duì)播前農(nóng)田的秸稈、雜草等物進(jìn)行粉碎混土,同時(shí)完成土壤的雙邊反向輸送,構(gòu)建適合花生播種的壟臺(tái)、形成玉米播種種床。在此過(guò)程,肥料通過(guò)施肥裝置施于旋耕裝置前方,以便旋耕過(guò)程肥料與土壤的均勻混合,為播種創(chuàng)造良好的條件;仿形架后的玉米播種裝置與花生播種裝置完成玉米和花生的開(kāi)溝播種;最后,覆土鎮(zhèn)壓裝置對(duì)播種在壟溝內(nèi)的玉米以及播種在壟臺(tái)上的花生進(jìn)行覆土鎮(zhèn)壓。
表1 玉米花生間作播種施肥一體機(jī)技術(shù)參數(shù)
3.1.1 旋耕深度確定
根據(jù)玉米花生的播種行寬,確定旋耕起壟裝置的旋耕深度,實(shí)現(xiàn)玉米播種行的土壤向花生播種行的輸送,形成花生播種所需要的壟臺(tái)和玉米播種所需的平整床面,如圖4所示。
注:h1為花生壟臺(tái)高度,cm;h2為旋耕深度,cm;a為花生壟臺(tái)上邊長(zhǎng),cm;b為花生壟臺(tái)下邊長(zhǎng),cm;L表示2壟4行花生與3行玉米總幅寬,cm;α表示理論花生壟臺(tái)斜面與地面間夾角,(°)。
由圖4所示幾何關(guān)系可得方程組
式中1為花生播種行斷面面積,cm2;2為玉米播種行斷面面積。
為了實(shí)現(xiàn)花生壟臺(tái)規(guī)整筑建,使1=2,則有
簡(jiǎn)化計(jì)算可得式(3)
以山東地區(qū)玉米花生種植農(nóng)藝為例,分別為50,85,330 cm,1一般為5~8 cm,代入式(3)得:12 cm<2<18 cm。
由于旋耕深度超過(guò)10 cm,選擇旱地作業(yè)深耕的I型刀,其回轉(zhuǎn)半徑為245 mm。
3.1.2 旋耕刀軸轉(zhuǎn)速確定
考慮旋耕作業(yè)主要是隨著機(jī)組的前行,由旋耕刀對(duì)作業(yè)行土壤進(jìn)行反復(fù)切削,所以耕層底部會(huì)形成一個(gè)接一個(gè)的凸起;而為了避免漏耕,必須嚴(yán)格控制該凸起的高度,設(shè)旋耕刀在0時(shí)刻的位置為1,在時(shí)刻旋耕刀的位置為2,則相鄰兩把刀走過(guò)的軌跡相交于點(diǎn),從而3為耕層底部凸起的最大高度,如圖5所示。旋耕裝置的耕作深度為2,參照文獻(xiàn)[22-24]可知,避免漏耕的條件為3≤0.22。
注:R0為I型旋耕刀半徑,mm;ω為旋耕刀旋轉(zhuǎn)角速度,r·min-1;l為0-t時(shí)刻機(jī)具前進(jìn)距離,mm;B為相鄰兩刀切削土壤時(shí)交點(diǎn);h3為旋耕刀形成凸起高度,cm;v為機(jī)器前進(jìn)速度,m·s-1, A為輔助點(diǎn)。
式中0為I型旋耕刀半徑,mm。
設(shè)旋耕起壟裝置刀軸轉(zhuǎn)速為,每個(gè)圓周方向安裝2把刀,則旋耕刀每轉(zhuǎn)一周完成2次土壤切削,形成一個(gè)耕層底部的凸起,所用的時(shí)間為
所以機(jī)器前進(jìn)速度為
進(jìn)而旋耕刀的轉(zhuǎn)速為
考慮到旋耕刀轉(zhuǎn)速過(guò)低很難滿足作業(yè)要求,旋耕刀轉(zhuǎn)速過(guò)高,導(dǎo)致功率消耗大幅增加,因此旋耕刀轉(zhuǎn)速在滿足旋耕要求時(shí),取較小值。
3.1.3 旋耕刀排列設(shè)計(jì)
用于普通整地的旋耕機(jī)為了滿足工作后耕面平整,旋耕刀均為螺旋線方向布置,且同一螺旋線上刀的旋向一致。由于本機(jī)旋耕裝置需要滿足“調(diào)土”功能,因此旋耕刀排列在遵循螺旋線規(guī)則時(shí),需要改變旋耕刀旋向,以此對(duì)切碎的土壤產(chǎn)生側(cè)向力,將切下的土壤向一邊拋送,最終實(shí)現(xiàn)旋耕筑壟的功能。
為更好地實(shí)現(xiàn)旋耕和起壟,旋耕起壟裝置采用全幅旋耕,旋耕刀共計(jì)96把,左右半軸各48把。旋耕刀旋向安排如下:在玉米播種行安裝2對(duì)對(duì)稱的旋刀,實(shí)現(xiàn)該區(qū)土壤的疏松、平整;在花生播種行,兩邊各設(shè)置一組7對(duì)對(duì)稱的旋刀,實(shí)現(xiàn)花生播種區(qū)域土質(zhì)的疏松和聚中;為了防止土壤外甩,最左側(cè)布置2對(duì)左旋刀,最右側(cè)布置2對(duì)右旋刀,實(shí)現(xiàn)土壤的向內(nèi)輸送;其他區(qū)域內(nèi)布置能夠?qū)崿F(xiàn)土壤向花生種植區(qū)域輸送的左旋刀或右旋刀(左側(cè)左旋,右側(cè)右旋),旋耕刀詳細(xì)排列布置如圖6所示。
注:橫坐標(biāo)2、4、6……代表第幾對(duì)刀。
3.2.1 仿形機(jī)構(gòu)正常工作的條件
依據(jù)東北農(nóng)業(yè)大學(xué)蔣恩臣教授的研究結(jié)果可知,耕層土壤對(duì)仿形輪的支反力(Q與Q)與整機(jī)重力、耕層對(duì)開(kāi)溝器的阻力(R與R)、鎮(zhèn)壓輪工作阻力(F與F)以及仿形機(jī)構(gòu)的牽引角有關(guān)[25],如圖7所示。如果整機(jī)重力不變,則耕層對(duì)開(kāi)溝器的阻力、鎮(zhèn)壓輪的工作阻力和牽引角越大,仿形輪受到的阻力越?。环粗酱?。顯然,要保證開(kāi)溝器的工作穩(wěn)定,則要求仿形輪與耕層土壤有適當(dāng)?shù)慕佑|壓力,且工作過(guò)程仿形輪所受的阻力和牽引角變化越小,則該系統(tǒng)的工作越穩(wěn)定。
3.2.2 仿形機(jī)構(gòu)牽引角的確定
播種施肥一體機(jī)開(kāi)始工作時(shí),必須保證其開(kāi)溝器具有較好的入土性能,所以其仿形機(jī)構(gòu)的起始牽引角0應(yīng)該處于水平線以上,一般取0=0~10°。本研究的玉米花生間作播種施肥一體機(jī)由于前部設(shè)有全幅旋耕裝置以及具有整機(jī)重力大的特點(diǎn),所以該機(jī)仿形機(jī)構(gòu)起始牽引角0設(shè)為0。
為了保證播種施肥一體機(jī)穩(wěn)定工作,則要盡量減少播種施肥一體機(jī)作業(yè)過(guò)程仿形機(jī)構(gòu)牽引角的變化范圍,即要么加長(zhǎng)仿形機(jī)構(gòu)的上下拉桿,要么選取合適的仿形機(jī)構(gòu)牽引角。對(duì)于加長(zhǎng)仿形機(jī)構(gòu)的拉桿長(zhǎng)度來(lái)說(shuō),必然出現(xiàn)機(jī)具縱向尺寸加大和整機(jī)重心的后移,雖然有利于保證播種施肥一體機(jī)工作的穩(wěn)定性,但不利于本播種施肥一體機(jī)的縱向懸掛穩(wěn)定性;對(duì)于仿形機(jī)構(gòu)牽引角的選取,首先必須保證在起伏地表開(kāi)溝深度的一致性,所以仿形機(jī)構(gòu)牽引角變化范圍最好處于對(duì)開(kāi)溝深度變化較為敏感范圍之內(nèi),一般≤45°[26-27],如圖7所示。
注:Px,Py為牽引力;M為牽引力對(duì)機(jī)具上平行四桿機(jī)構(gòu)在xy面上力矩;mg為機(jī)具的重力;Qx,Qy為耕層土壤對(duì)仿形輪的支反力;Rx,Ry為耕層對(duì)開(kāi)溝器的阻力;Fx,F(xiàn)y為鎮(zhèn)壓輪工作阻力;β為仿形機(jī)構(gòu)的牽引角;β0為仿形機(jī)構(gòu)起始牽引角;γ為仿形機(jī)構(gòu)理論上擺動(dòng)的最佳角度范圍;O1,O2為仿形機(jī)構(gòu)與機(jī)具連接點(diǎn);B1,B2為仿形機(jī)構(gòu)在初始位置時(shí)兩點(diǎn);A1,A2為仿形機(jī)構(gòu)向上浮動(dòng)最大時(shí)B1,B2所處的位置;C1,C2為仿形機(jī)構(gòu)向下浮動(dòng)最大時(shí)B1,B2所處的位置。
考慮播種施肥一體機(jī)工作過(guò)程的穩(wěn)定性,最好將播種施肥一體機(jī)工作時(shí)的上下拉桿位置控制在水平位置附近。又考慮地表部平整度是雙向的,有可能上凸、下凹,即仿形機(jī)構(gòu)可能出現(xiàn)上、下仿形。參照國(guó)內(nèi)外播種施肥一體機(jī)機(jī)型,依據(jù)本論文播種施肥一體機(jī)特點(diǎn),設(shè)計(jì)上下仿形角各為22.5°,又因?yàn)槠鹗挤滦谓?設(shè)計(jì)為0°,故本機(jī)仿形機(jī)構(gòu)牽引角為?22.5°~22.5°。
3.2.3 拉桿長(zhǎng)度的確定
如前文所述確定仿形機(jī)構(gòu)的起始牽引角和牽引角,由于0=0°,上下仿形量又相等,故通過(guò)一側(cè)仿形量即可計(jì)算拉桿長(zhǎng)度′,如圖8所示。
式中4是單向仿形時(shí)仿形深度,mm;′是單向仿形時(shí)牽引角,即22.5°。
一般播種施肥一體機(jī)的單向仿形量為80~100 mm,而本機(jī)單向牽引角為22.5°,故拉桿的長(zhǎng)度為209~261 mm。
注:h4是單向仿形時(shí)仿形深度,cm;β′是單向仿形時(shí)牽引角,22.5°;DF為輔助水平線,E為仿形機(jī)構(gòu)向下浮動(dòng)最大時(shí),拉桿與水平線交點(diǎn),此時(shí)O1E即為所求拉桿長(zhǎng)度。
為了驗(yàn)證前文理論分析的正確性,進(jìn)行了其主要結(jié)構(gòu)參數(shù)對(duì)該型播種施肥一體機(jī)作業(yè)性能的影響試驗(yàn)。選擇旋耕刀轉(zhuǎn)速、耕深2和拉桿長(zhǎng)度為試驗(yàn)因素,選擇播種深度和花生壟高的合格率為試驗(yàn)指標(biāo),進(jìn)行了三因素四水平的正交試驗(yàn),尋求試驗(yàn)因素影響播種深度和花生壟高因素的主次關(guān)系,確定較優(yōu)組合。
試驗(yàn)時(shí),旋耕刀轉(zhuǎn)速通過(guò)改變變速箱推桿位置來(lái)實(shí)現(xiàn)傳動(dòng)比的調(diào)控,旋耕深度通過(guò)調(diào)節(jié)限深輪位置改變,拉桿長(zhǎng)度通過(guò)改變拉桿上銷(xiāo)位置調(diào)節(jié)。
4.1.1 試驗(yàn)條件和試驗(yàn)裝置
試驗(yàn)時(shí)間:2016年5月
試驗(yàn)地點(diǎn):德州市慶云縣慶云頤園農(nóng)機(jī)制造有限公司試驗(yàn)田
試驗(yàn)對(duì)象:魯單818與花育22號(hào)
試驗(yàn)指標(biāo):選取播種深度合格率和花生壟臺(tái)高度合格率為試驗(yàn)考察指標(biāo)。
試驗(yàn)裝置:玉米-花生間作播種施肥一體機(jī)
圖9 玉米-花生間作播種施肥一體機(jī)
試驗(yàn)方法:在玉米-花生間作播種施肥一體機(jī)速度為3 km/h的作業(yè)條件下進(jìn)行試驗(yàn),隨機(jī)選取3段作業(yè)長(zhǎng)度作為測(cè)試小區(qū),小區(qū)長(zhǎng)度為30 m,以小區(qū)播種行內(nèi)花生、玉米播種處作為測(cè)點(diǎn),測(cè)量花生測(cè)點(diǎn)處壟臺(tái)高度,壟臺(tái)高度介于5~8 cm內(nèi),標(biāo)記為合格點(diǎn)。然后按式(9)計(jì)算花生壟臺(tái)高度合格率;在花生、玉米測(cè)點(diǎn)上,垂直切開(kāi)土層,測(cè)定種子的覆土層厚度,花生覆土層厚度介于2.5~3.5 cm內(nèi),標(biāo)記為花生播深合格點(diǎn),玉米覆土層厚度介于2~4 cm內(nèi),標(biāo)記為玉米播深合格點(diǎn),隨后按式(10)分別計(jì)算播種深度合格率。
1)壟臺(tái)高度合格率
式中1為壟臺(tái)高度合格率,%;d為測(cè)點(diǎn)高度合格點(diǎn)數(shù);0為測(cè)點(diǎn)總點(diǎn)數(shù),取值為20。
2)播種深度合格率
4.1.2 試驗(yàn)方案與結(jié)果
為了驗(yàn)證上述理論分析,尋求較優(yōu)的參數(shù)組合,對(duì)所選3個(gè)參數(shù)進(jìn)行了三因素四水平的正交試驗(yàn),參數(shù)水平如下表2所示,其結(jié)果如表3所示。
表2 試驗(yàn)因素與水平
4.2.1 極差分析
由表3可知,各考察因子的極差越大,說(shuō)明該因子對(duì)試驗(yàn)指標(biāo)的影響越大。這樣確定了壟臺(tái)高度合格率、花生播深合格率和玉米播深合格率影響因素的主次關(guān)系如表4所示。
表3 試驗(yàn)方案與結(jié)果
表4 試驗(yàn)指標(biāo)分析
4.2.2 方差分析
根據(jù)表3可以得出試驗(yàn)指標(biāo)的方差分析、值及其顯著性,結(jié)果如表5所示。
表5 試驗(yàn)指標(biāo)方差分析
注:F為檢驗(yàn)統(tǒng)計(jì)量,**代表試驗(yàn)因素在0.01顯著性水平下顯著。
Note: F is test statistics, ** represents test factor is outstanding under the 0.01 significance level.
綜合極差和方差分析可知,旋耕刀軸轉(zhuǎn)速、耕深、拉桿長(zhǎng)度對(duì)壟臺(tái)高度合格率、花生播深合格率、玉米播深合格率的影響顯著性不同,如表5所示。由方差分析結(jié)果可知,旋耕刀軸轉(zhuǎn)速對(duì)壟臺(tái)高度合格率有極顯著影響,拉桿長(zhǎng)度對(duì)花生播深合格率與玉米播深合格率有極顯著影響。
旋耕刀軸轉(zhuǎn)速對(duì)壟臺(tái)高度合格率有極顯著影響。旋耕刀轉(zhuǎn)速越快,旋耕刀的土壤轉(zhuǎn)移量會(huì)增加,但是當(dāng)轉(zhuǎn)速過(guò)快時(shí),旋耕刀對(duì)土壤的甩動(dòng)作用過(guò)強(qiáng),土壤不能有效集中在花生起壟區(qū),從而導(dǎo)致壟臺(tái)高度合格率降低;而當(dāng)旋耕刀轉(zhuǎn)速過(guò)低時(shí),由于沒(méi)有足夠的土壤構(gòu)建壟臺(tái),所以壟臺(tái)高度合格率也會(huì)偏低;試驗(yàn)結(jié)果可知,在旋耕刀轉(zhuǎn)速為260 r/min時(shí),壟臺(tái)高度最為穩(wěn)定,壟臺(tái)高度合格率最佳,滿足花生壟播的農(nóng)藝要求。
耕深對(duì)壟臺(tái)高度合格率有一定影響,當(dāng)耕深過(guò)淺時(shí),土壤轉(zhuǎn)移量不能有效筑建壟臺(tái);當(dāng)耕深過(guò)深時(shí),土壤轉(zhuǎn)移量增加,壟臺(tái)平均高度增高,壟臺(tái)高度合格率降低。
拉桿長(zhǎng)度對(duì)花生播深和玉米播深有極顯著影響。在仿形量一致的前提下,拉桿越長(zhǎng)仿形機(jī)構(gòu)牽引角越小,縱向穩(wěn)定性越差,此時(shí)土地對(duì)機(jī)器的支反力越大,仿形機(jī)構(gòu)下陷導(dǎo)致開(kāi)溝過(guò)深;拉桿越短,土地對(duì)機(jī)器的支反力越小,此時(shí)開(kāi)溝器開(kāi)溝入土性能不佳,工作不穩(wěn)定。試驗(yàn)發(fā)現(xiàn)拉桿過(guò)長(zhǎng)或者過(guò)短都將影響花生和玉米播種合格率。
通過(guò)極差與方差試驗(yàn)數(shù)據(jù)分析,綜合各試驗(yàn)因素對(duì)試驗(yàn)指標(biāo)的影響主次關(guān)系及其優(yōu)化組合,按照壟臺(tái)高度合格率、花生播深合格率和玉米播深合格率較高的原則選取較優(yōu)試驗(yàn)因素,最終確定較優(yōu)組合為233,此時(shí)旋耕刀軸轉(zhuǎn)速260 r/min,耕深15 cm,拉桿長(zhǎng)度24 cm,在該條件下壟臺(tái)高度合格率為92.0%,花生播深合格率為91.1%,玉米播深合格率為90.1%。
1)依據(jù)玉米花生間作播種農(nóng)藝,開(kāi)發(fā)了與其適應(yīng)的玉米花生間作播種施肥一體機(jī),實(shí)現(xiàn)了農(nóng)機(jī)農(nóng)藝的有效融合,為玉米花生間作播種施肥一體機(jī)械化水平的提高奠定了基礎(chǔ)。
2)該機(jī)一次作業(yè)可以實(shí)現(xiàn)旋耕、花生壟臺(tái)筑建、玉米播種溝床平整、施肥、開(kāi)溝、播種、覆土和鎮(zhèn)壓的復(fù)合性功能,有效提高了作業(yè)效率。
3)通過(guò)正交試驗(yàn)驗(yàn)證了研究結(jié)果的正確性,確定了主要參數(shù)的較優(yōu)組合,且在旋耕刀軸轉(zhuǎn)速260 r/min,耕深15 cm及仿形機(jī)構(gòu)上拉桿長(zhǎng)度為24 cm時(shí),即可為玉米花生間作創(chuàng)造良好的播種環(huán)境,且花生播深合格率達(dá)91.1%,玉米播深合格率達(dá)90.1%,完全滿足玉米花生間作播種的農(nóng)藝要求。
[1] 萬(wàn)書(shū)波. 我國(guó)花生產(chǎn)業(yè)面臨的機(jī)遇與科技發(fā)展戰(zhàn)略[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2009(1):7-12.
Wan Shubo. Opportunities facing peanut industry in China and strategies for its science and technology development[J]. Journal of Agricultural Science and Technology, 2009(1): 7-12. (in Chinese with English abstract)
[2] 焦念元. 玉米花生間作復(fù)合群體中氮磷吸收利用特征與種間效應(yīng)的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2006.
Jiao Nianyuan. Studies on the Characters of N&P Utilization and Interspecific Interaction in the Maize//Peanut Inthercropping[D]. Taian: Shandong University of Science and Technology, 2006. (in Chinese with English abstract)
[3] Tran-Dinh N, Kennedy I, Bui T, et al. Survey of vietnamese peanuts, corn and soil for the presence of aspergillus flavus and aspergillus parasiticus[J]. Mycopathologia, 2009, 1685(5): 257-268.
[4] 郭笑彤. 玉米/花生間作改善花生鐵營(yíng)養(yǎng)的分子生態(tài)調(diào)控機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014.
Guo Xiaotong. The Molecular and Ecological Regulation Mechanism in Improving Peanut Iron Nutrition by Maize/Peanut Inthercropping System[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[5] Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean[J]. Soil and Tillage Research, 2009, 104(1): 121-125.
[6] Anan Polthanee, Vidhaya Trelo-ges. Growth, yield and land use efficiency of corn and legumes grown under intercropping systems[J]. Plant Production Science, 2004, 6(2): 139-146.
[7] Fonseca Homero. Sampling plan for the analysis of aflatoxin in peanuts and corn: an update[J]. Brazilian Journal of Microbiology, 2002, 33(2): 97-105.
[8] 李美,孫智明,李朦朦,等. 不同比例玉米花生間作對(duì)花生生長(zhǎng)及產(chǎn)量品質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào),2013(3):391-397.
Li Mei, Sun Zhiming, Li Mengmeng, et al. Effect of maize-peanut intercropping on peanut growth, yield and quality[J]. Journal of Nuclear Agriculyural Sciences, 2013(3): 391-397. (in Chinese with English abstract)
[9] 夏海勇,孟維偉,于麗敏,等. 玉米花生間作在山東地區(qū)推廣的現(xiàn)狀與對(duì)策[J]. 山東農(nóng)業(yè)科學(xué),2015(3):121-124.
Xia Haiyong, Meng Weiwei, Yu Minli, et al. Present status and countermeasures for popularization of peanut-maize intercropping in shandong province[J]. Shandong Agricultural Sciences, 2015(3): 121-124. (in Chinese with English abstract)
[10] 原小燕,李根澤,林安松,等. 間作模式及氮、磷肥對(duì)玉米:花生間作體系產(chǎn)量和經(jīng)濟(jì)效益的影響[J]. 花生學(xué)報(bào),2015(4):13-20.
Yuan Xiaoyan, Li Genze, Lin Ansong, et al. Effect of intercropping pattern, nitrogen and phosphorous on population yield and economic output under maize-peanut intercropping system[J]. Journal of Peanut Science, 2015(4): 13-20. (in Chinese with English abstract)
[11] 徐祝欣,田立忠,尚書(shū)旗,等. 2BFD-4型花生覆膜播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊2):13-17.
Xu Zhuxin, Tian Lizhong, Shang Shuqi, et al. Design and experiment of 2BFD-4 type peanut membrane planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.2): 13-17. (in English with Chinese abstract)
[12] 王慶杰,李洪文,何進(jìn),等. 凹形圓盤(pán)式玉米壟作免耕播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):117-122.
Wang Qingjie, Li Hongwen, He Jin, et al. Design and experiment on concave disc type maize ridge-till and no-till planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 117-122. (in English with Chinese abstract)
[13] 張喜瑞,何進(jìn),李洪文,等. 水平撥草輪式玉米免耕播種機(jī)設(shè)計(jì)和試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(12):39-43.
Zhang Xirui, He Jin, Li Hongwen, et al. Design and experiment on no-till planter in horizontal residue-throw finger-wheel type for maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 39-43. (in English with Chinese abstract)
[14] 尚書(shū)旗,劉曙光,王方艷,等. 花生生產(chǎn)機(jī)械的研究現(xiàn)狀與進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(3):143-147.
Shang Shuqi, Liu Shuguang, Wang Fangyan, et al. Current situation and development of peanut production machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(3): 143-147. (in English with Chinese abstract)
[15] 胡志超,陳有慶,王海鷗,等. 我國(guó)花生田間機(jī)械化生產(chǎn)技術(shù)路線[J]. 中國(guó)農(nóng)機(jī)化,2011(4):32-37.
Hu Zhichao, Chen Youqing, Wang Haiou, et al. Mechanization technical route for peanut production of China[J]. Chinese Agricultural Mechanization, 2011(4): 32-37. (in English with Chinese abstract)
[16] 胡志超,王海鷗,彭寶良,等. 國(guó)內(nèi)外花生收獲機(jī)械化現(xiàn)狀與發(fā)展[J]. 中國(guó)農(nóng)機(jī)化,2006(5):40-43.
Hu Zhichao, Wang Haiou, Peng Baoliang, et al. Status and development of peanut harvesting mechanization at home and abbroad[J]. Chinese Agriculyural Mechanization, 2006(5): 40-43. (in English with Chinese abstract)
[17] 胡志超,王海鷗,胡良龍. 我國(guó)花生生產(chǎn)機(jī)械化技術(shù)[J]. 農(nóng)機(jī)化研究,2010(4):240-243.
Hu Zhichao, Wang Haiou, Hu Lianglong. Technologies of peanut production mechanization in China[J]. Journal of Agricultural Mechanization Research, 2010(4): 240-243. (in English with Chinese abstract)
[18] 何志剛,汪仁,王秀娟,等. 不同玉米/花生間作模式對(duì)土壤微生物量及產(chǎn)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2013(33):233-236.
He Zhigang, Wang Ren, Wang Xiujuan, et al. The impact of intercropping on the yield and soil microorganism of different peanut and corn[J]. Chinese Agricultural Science Bulletin, 2013(33): 233-236. (in English with Chinese abstract)
[19] 夏海勇,丁照華,董希文,等. 都市近郊中低產(chǎn)田鮮食玉米/花生間作模式研究[J]. 山東農(nóng)業(yè)科學(xué),2016(6):54-57.
Xia Haiyong, Ding Zhaohua, Dong Xiwen, et al. Study on intercropping patterns of fresh corn with peanut in middle-and low-yielding fields of suburban areas[J]. Shandong Agricultural Scinences, 2016(6): 54-57. (in English with Chinese abstract)
[20] 王彥飛,曹?chē)?guó)璠. 不同間作模式對(duì)玉米及花生氮磷鉀分配的影響[J]. 貴州農(nóng)業(yè)科學(xué),2011,39(1):79-82.
Wang Yanfei, Cao Guofan. Effect of different intercropping pattern on N, P and K distribution in maize and peanut[J]. Guizhou Agricultural Sciences, 2011, 39(1): 79-82. (in English with Chinese abstract)
[21] 佚名. 山東省農(nóng)科院玉米/花生寬幅間作實(shí)現(xiàn)糧油均衡增產(chǎn)[J]. 食品工業(yè),2016(10):117-117.
[22] 方會(huì)敏,姬長(zhǎng)英,F(xiàn)arman Ali Chandio,等. 基于離散元法的旋耕過(guò)程土壤運(yùn)動(dòng)行為分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):22-28.
Fang Huimin, Ji Changying, Farman Ali Chandio, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. (in English with Chinese abstract)
[23] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院.農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[24] 車(chē)剛,張偉,萬(wàn)霖,等. 基于滅茬圓盤(pán)驅(qū)動(dòng)旋耕刀多功能耕整機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):34-40.Che Gang, Zhang Wei, Wan Lin, et al. Design and experiment of muctifunctional tillage machine with driven bent blade by stubble ploughing disk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 34-40. (in English with Chinese abstract)
[25] 趙淑紅,蔣恩臣,閆以勛,等. 小麥播種機(jī)開(kāi)溝器雙向平行四桿仿形機(jī)構(gòu)的設(shè)計(jì)及運(yùn)動(dòng)仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):26-32.
Zhao Shuhong, Jiang Enchen, Yan Yixun, et al. Design and motion simulation of opener with bidirectional parallelogram linkage profiling mechanism on wheat seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 26-32. (in English with Chinese abstract)
[26] 蔣金琳,龔麗農(nóng),王明福. 免耕播種機(jī)單體工作性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(5):64-66.
Jiang Jinlin, Gong Linong, Wang Mingfu. Study on the working performance of the no-tillage planter unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 64-66. (in Chinese with English abstract)
[27] 胡鴻烈,孫福輝. 單體仿形壓輪式播種單組的設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1996,27(增刊1):53-57. Hu Honglie, Sun Fuhui. Study on designing and testing of the drill unit with individual profiling press wheel[J]. Transactions of the Chinese Society for Agricultural Machinery, 1996, 27(Supp.1): 53-57. (in Chinese with English abstract)
Design and test of corn-peanut intercropping seeding-fertilizing machine
Geng Duanyang1, He Ke1,Yin Xiang1, Li Yuhuan1, Jiang Meng1, Xie Chunji1, Xu Haigang2
(1.,,255000,; 2.,,252000,)
In China, corn is one of the most important grain crop and fodder crop, in the meantime peanut is one of the most crucial cash crop. Both crops are widely planted in areas such as North China Plain. After a series of statistical analysis research, many agricultural experts and university scholars founded that the corn which is a typical fibrous root system crop needs large amounts of nitrogen rather than phosphorus and potassium and peanut which is a typical straight root system crop needs large amounts of phosphorus and potassium rather than nitrogen. When the two crops are planted in the same field, corn and peanut can produce complementary effect of microelement. Because of the complementary effect, both the yield and quality of corn and peanut will be also obviously improved. According to agronomy experts’ research report, when corn is planted in three rows and peanuts are planted in four rows, the corn and peanut will achieve the best growth status. Under this circumstances, corn-peanut intercropping system is proposed. Corn-peanut intercropping system which will effectively control and relieve the competition of corn and peanut can realize the high production of both crops. But due to the disconnection of agricultural machinery and agronomy technology, the corn-peanut intercropping technology is always at manual work stage or independent seeding stage and meanwhile there is no machine that can simultaneously sow two seeds. At the present stage, corn seeder and peanut seeder are relatively perfect, however, the corn-peanut intercropping seeder is still in blank. So the corn-peanut intercropping seeder which can relieve manual work attracts some experts and scholars to study. According to above practical problems, a simple and efficient corn-peanut intercropping seeder was designed which could simultaneously sow both corn and peanut seed. It might realize rotary tillage, ridge construction, fertilizer mixing with soil, soil covering and compacting when the machine was working. The laws between the main structural parameters and working parameters were studied, and the main parameters influenced the seeding performance were determined by the orthogonal test, including the spindle rotary speed, the depth of the rotary and the upper parallelogram linkage length. The rotary tillage device and the minimum structure of parallelogram linkage were studied, and the relevant theory was established. Experimental results showed the optimal condition was that: the spindle rotary speed 260 r/min、the depth of the rotary 15 cm、the length of parallelogram linkage is 24 cm. The corresponding performance indexes are as following: the qualified rate of sowing depth is 91.1% for peanut and 90.1% for maize ,which could completely meet the requirement of the designation. The research provides a reference for further improving quality and optimizing the parameter for corn-peanut intercropping seeder device and the machine provides a choice for those farmers who use corn-peanut intercropping system.
seeding; agricultural machinery; experiments; corn-peanut intercropping; orthogonal test
10.11975/j.issn.1002-6819.2017.17.005
S222.3
A
1002-6819(2017)-17-0034-08
2016-11-22
2017-08-17
山東省科技計(jì)劃項(xiàng)目支持(2014GNC112004);省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)項(xiàng)目(NGJJ201502)
耿端陽(yáng),陜西澄城人,教授,博士生導(dǎo)師,主要從事新型農(nóng)業(yè)機(jī)械裝備開(kāi)發(fā)研究。淄博 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,255000。Email:dygxt@sdut.edu.cn
農(nóng)業(yè)工程學(xué)報(bào)2017年17期