景佳妮, 李凡璐, 王 茜, 宛 欣, 趙倩倩, 崔香麗
(山西醫(yī)科大學生理學系, 細胞生理學山西省重點實驗室, 太原 030001)
SR59230A對心衰大鼠心臟MicroRNAs表達的影響*
景佳妮, 李凡璐, 王 茜, 宛 欣, 趙倩倩, 崔香麗△
(山西醫(yī)科大學生理學系, 細胞生理學山西省重點實驗室, 太原 030001)
目的觀察β3腎上腺素受體(β3-AR)對心衰大鼠心臟MicroRNAs表達的影響及可能的作用機制。方法大鼠冠脈左前降支結扎造成心衰模型,假手術大鼠只穿線不結扎。造模成功大鼠再隨機分為:心衰組(CHF control group)和心衰+SR 59230A組(CHF+SR group);假手術大鼠也隨機分為假手術組(Sham group)和假手術+SR 59230A組(Sham+SR group)。Sham+SR組和CHF+SR組每天兩次腹腔注射SR(85 mmol/L,1 ml),連續(xù)注射7周。結果①miScript miRNA PCR Arrays顯示,在體阻斷β3-AR后,假手術組與心衰組有18種MicroRNAs共同表達下調(diào);經(jīng)文獻比對,與NF-κB相關的MicroRNAs有6種,分別為miR-125b-5p,miR-143-3p,miR-145-5p,miR-26a-5p,miR-30a-5p和miR-320-5p。②大鼠心臟組織切片觀察到NF-κB在心衰大鼠心肌細胞核與細胞質(zhì)中均有分布,而p53在心肌細胞質(zhì)分布較多,NF-κB和p53表達明顯高于假手術組(P<0.05)。阻斷β3-AR后,心衰組心臟NF-κB和p53表達顯著減少(P<0.05),而假手術組NF-κB和p53表達略增加(P<0.05)。③Western blot結果發(fā)現(xiàn)心衰大鼠NF-κB p65表達高于假手術組(P<0.05),給予β3-AR阻斷劑后,心衰組心臟NF-κB p65和 p53-Phospho-Serine 15表達均下降(P<0.05),而假手術組心臟阻斷β3-AR后,NF-κB、p53和 p53-Phospho-Serine 15 表達均增加(P<0.05)。結論阻斷β3腎上腺素受體有利于緩解心衰大鼠心臟的損傷;β3-AR可引起MicroRNAs表達變化且與NF-κB信號通路有關。
大鼠;心臟;β3腎上腺素受體;SR 59230A;MicroRNAs; NF-κB
慢性心力衰竭(chronic heart failure, CHF)是各種因素引起的心血管疾病發(fā)展的終末階段,是導致患者死亡最普遍的原因[1]。心血管疾病發(fā)展為慢性心力衰竭的原因有很多,交感神經(jīng)系統(tǒng)過度激活是慢性心力衰竭發(fā)生發(fā)展過程中的顯著特點[2],參與心肌纖維化,心室重構甚至心肌細胞凋亡等多種病理變化過程。β3腎上腺素受體(β3-adrenaline receptor, β3-AR)在心血管系統(tǒng)中發(fā)揮負性肌力作用[3],心衰時,β3-AR在心臟的表達水平可增加2~3倍,并在心力衰竭發(fā)生發(fā)展中起重要作用。在心衰早期,交感神經(jīng)興奮,β1-AR因過度激活而脫敏,此時心肌組織中的β3-AR激活并表達上調(diào),降低心肌收縮力,可防止心肌細胞受損,改善心臟的舒張功能,在心衰末期,β1-AR和β2-AR衰竭下調(diào),β3-AR在高濃度的兒茶酚胺類物質(zhì)的刺激下不易脫敏,其發(fā)揮的負性肌力效應破壞與正性肌力的平衡,使心功能惡化[4]。我們前期的研究發(fā)現(xiàn)激動心衰大鼠的β3-AR,大鼠心功能受抑制,心肌細胞收縮幅度,鈣瞬變和鈣敏感性降低[5]。而采用β3-AR阻斷劑SR 59230A可以緩解由心衰引起的血管功能受損,使大鼠胸主動脈MicroRNAs表達變化,其中多種MicroRNAs與NF-κB信號途徑有關[6]。在心衰發(fā)展過程中,兒茶酚胺類物質(zhì)的持續(xù)刺激,產(chǎn)生心肌炎癥反應。在炎癥反應過程中,β3-AR的激活包含多種信號通路,免疫炎性反應可能是心力衰竭發(fā)展的重要機制之一[7],但目前β3-AR在心臟的機制還不清楚,而且關于其機制的研究報道較少,本課題采用在體給予大鼠特異性β3-AR阻斷劑SR 59230A來研究β3-AR對心臟MicroRNAs表達的影響以及可能的機制,為闡明β3-AR的作用提供實驗依據(jù)。
1.1 實驗動物
100只清潔級(SPF級)SD雄性大鼠180~230 g,均由中國人民解放軍軍事醫(yī)學科學院實驗動物中心提供,許可證號:SCXK-(軍)2012-0004。實驗動物在室溫22℃~25℃,相對濕度50%~60%,12 h/12 h明暗交替的環(huán)境下分籠飼養(yǎng),飲食與飲水自由且充足,受試動物在動物觀察室內(nèi)飼養(yǎng)一周后開始實驗。
1.2 試劑
SR 59230A(3-(2-Ethylphenoxy)-1-[[(1S)-1,2,3,4-tetrahydronaphth-1-yl]amino]-(2S)-2-propanol oxalate salt),DMSO 均購于美國sigma公司,濃縮型DAB試劑盒,SABC免疫組化染色試劑盒購于上海博士德生物有限公司,miRNeasyMini 試劑盒,miScriptⅡ RT 試劑盒與miScript SYBRGreen PCR 試劑盒購于德國凱杰生物工程有限公司,其他試劑均購自上海生工生物工程有限公司。
1.3 大鼠心衰模型的建立與分組
將100只SD大鼠(180~230 g)隨機分為假手術組(40只)和手術組(60只),采用結扎心臟冠脈左前降支的方法[8],術前記錄正常心電圖,術中實時檢測心電圖變化,術后四周做超聲心動檢測,測定左心室舒張末期內(nèi)徑(left ventricular end-diastolic dimension, LVEDD),左心室舒張末期容積(left ventricle end-systolic volume, LVEDV),射血分數(shù)(ejection fraction, EF)和左心室短軸縮短率(%FS),建立心衰模型;然后將手術成功的心衰組大鼠隨機分兩組:CHF control組和CHF+SR 59230A組,假手術組也隨機分兩組:Sham control組和Sham+SR 59230A組。在相同的條件下,SR組大鼠腹腔注射含SR 59230A 85 mmol/L 的生理鹽水,control組大鼠腹腔注射等量的生理鹽水,每天2次,連續(xù)7周后[9],各組大鼠隨機選取6只斷頭處死,迅速摘取心臟,留取心臟左室組織分別用于免疫組化,Western blot和熒光定量PCR實驗。
1.4 HE染色
將固定于福爾馬林溶液中的心肌組織進行脫水、透明、包埋,然后經(jīng)過石蠟切片后,進行蘇木素、伊紅染色,其后常規(guī)脫水、透明、封片,待風干后進行組織形態(tài)學觀察。
1.5 MicroRNAs array 分析
取各組大鼠心臟左室前壁組織于RNA Later中保存,其后每組分別取100 mg心肌組織充分勻漿,應用miScriptⅡRT 和miRNeasyMini試劑盒提取心肌總RNA,再進行反轉錄生成cDNA,然后應用miScript SYBR Green PCR試劑盒,將反轉錄產(chǎn)生的MicroRNAs的特異性cDNA移入96孔板miScript miRNA PCR Arrays,在CFX96 Real-time PCR儀中進行程序反應,條件為95℃預熱15 min, 94℃變性15 s, 55℃退火30 s,然后70℃延伸30 s,如此進行40個循環(huán)。根據(jù)2(ΔΔCt)法計算每個基因各組MicroRNAs相對于Sham control組表達的變化倍數(shù)。
1.6 免疫組織化學法
分別取各組大鼠左室前壁穿線下或結扎線下心肌組織,浸入福爾馬林溶液中固定,其后進行石蠟包埋,切片厚度5 μm,再脫蠟,抗原修復,封閉,孵育單克隆小鼠抗兔NF-κB p65一抗(購自美國Cell Signaling公司, 1∶800)和p53一抗(購自武漢三鷹生物公司,1∶1 000),SABC二抗試劑盒以及DAB顯色劑顯色后,鏡下觀察NF-κB p65和p53的分布以及表達。按人工定性和半定量評分方法判定,選取鏡下所有視野心肌細胞著色范圍和著色強度分別進行評分,著色范圍,估算陽性細胞百分比:0(0%);1(0~10%);2(10%~50%);3(51%~80%);4(>80%)。著色強度,陽性細胞的著色程度:0(陰性);1(弱陽性);2(中等陽性);3(強陽性),將兩者乘積作為評分分數(shù)(IRS)評分結果范圍在0 到 12之間[10]。
1.7Westernblot檢測NF-κB,p53和p53-Phospho-Serine15表達
取各組大鼠心肌組織約300 mg用Rap裂解液充分裂解,使用考馬斯亮藍試劑盒(Bio-Rad Protein assay)操作檢測蛋白濃度,其后于100℃的金屬浴煮沸使蛋白變性,進行SDS-PAGE(十二烷基硫酸鈉-聚丙烯酰胺)凝膠電泳,電泳后將蛋白轉到PVDF膜上,用5%脫脂牛奶封閉,再分別孵育一抗抗β-actin(購自武漢三鷹生物公司,1∶1 000),抗NF-κB p65,抗p53和抗p53-Phospho-Serine-15抗體,4℃過夜,次日用TBS-T液洗膜3次,室溫孵育山羊抗兔二抗(全式金生物公司,1∶2 000)1 h后置于ChemiDocTM MP Imaging 系統(tǒng)顯影成像。
1.8 統(tǒng)計學處理
2.1 超聲心動檢測確定造模成功
超聲心動測定假手術組(Sham)和心衰組(CHF)大鼠LVIDS及LVIDD、EF, 并計算FS值, 結果顯示CHF組大鼠心功能較Sham組明顯下降。而與Sham組比較, CHF組LVIDS及LVIDD明顯增大(P<0.05),LVEF及FS則明顯降低(P<0.01, 圖1,表1)。
GroupLVEDD(mm)LVEDV(mm)EF(%)FS(%)Sham5.19±0.242.94±0.0580.00±3.2743.00±3.27CHF6.51±0.71*5.04±0.69*56.80±7.95**25.80±4.66**
Sham: Sham operation group; CHF: Chronic heart failure group; LVEDD: Left ventricular end-diastolic dimension; LVEDV: Left ventricle end-systolic volume; EF: Ejection fraction; FS: Fractional shortening
*P<0.05,**P<0.01vssham group
2.2 SR 59230A對大鼠心肌形態(tài)學的影響
HE染色觀察各組心肌組織病理學改變,在假手術組,心肌組織完好,未見損傷,心肌細胞排列整齊,核染色清晰;而在心衰組,心肌組織大面積皺縮,心肌纖維腫脹,斷裂,間質(zhì)水腫,此外,心肌細胞排列紊亂,松散,經(jīng)SR 59230A在體處理后,心衰組大鼠心肌細胞排列紊亂減輕,心肌纖維斷裂減輕,炎性細胞減少(圖2,見彩圖頁Ⅱ)。
Fig.1Echocardiograms of rat hearts after 4 weeks of surgery
CHF: Chronic heart failure
2.3SR59230A對大鼠心臟MicroRNAs表達的影響
本實驗結果顯示大鼠在體給予SR 59230A后,Sham control組與CHF control組有18種共同表達下調(diào)的MicroRNAs(表2),即這18種MicroRNAs與β3受體的功能有關。其中miR-125b-5p(P<0.01,Sham+SR υs Sham),miR-143-3p(P<0.01,Sham+SR υs Sham;P<0.05, CHF+SR υs CHF),miR-145-5p(P<0.01,Sham+SR υs Sham;P<0.05,CHF+SR υs CHF),miR-26a-5p(P<0.05,Sham+SR υs Sham),miR-30a-5p(P<0.01,Sham+SR υs Sham)和miR-320-5p(P<0.05,CHF+SR υs CHF)與NF-κB信號通路有關。
Tab. 2 miRNAs related to β3-AR
β3-AR: β3 adrenaline receptor; NF-κB: Nuclear factor-kappa B; CHF: Chronic heart failure
*P<0.05,**P<0.01vssham group;#P<0.05vsCHF group
2.4SR59230A對大鼠心臟NF-κBp65和p53表達的影響
2.4.1 免疫組化 鏡下可見心衰組大鼠心臟NF-κB p65在胞核與胞質(zhì)均有表達,在假手術組未見明顯表達;大鼠心臟p53在胞質(zhì)表達多于胞核。免疫組化評分結果顯示,CHF control組NF-κB表達較Sham control組增加(P<0.05),在體給予SR 59230A后,Sham control組NF-κB p65,p53表達增加(P<0.05),而CHF control組NF-κB p65,p53表達下降(P<0.05,P<0.01,圖3、圖4均見彩圖頁Ⅲ)。
2.4.2 Western blot 手術組NF-κB p65表達明顯高于假手術組(P<0.05),p53 和 p53-Phospho-Serine 15 蛋白表達在手術組高于假手術組,但結果沒有統(tǒng)計學差異。在體給予SR 59230A后,手術組大鼠心臟NF-κB p65和p53-Phospho-Serine 15蛋白表達下降(P<0.05,P<0.01),但仍高于假手術組(P<0.05),而p53蛋白在兩組比較中沒有顯著性差異,假手術組大鼠在體給予SR 59230A后,NF-κB p65,p53和p53-Phospho-Serine 15蛋白表達均顯著增加(P<0.05,圖5)。
Fig.5Expressions of NF-κB p65,p53 and p53-Phospho-Serine 15 by Western blot in left ventricle(n=6)
A: Western blot of NF-κB p65,p53 and p53-Phospho-Serine 15; B: Expression level of NF-κB p65; C: Expression level of p53; D: Expression level of p53-Phospho-Serine
*P<0.05vssham group;#P<0.05,##P<0.01vsCHF group
本實驗通過對大鼠心臟MicroRNAs表達的觀察以及炎癥相關蛋白的檢測,證明在體阻斷β3-AR,有助于緩解心衰大鼠的心肌損傷,其機制與NF-κB信號通路有關。β3的基因最早發(fā)現(xiàn)于人類脂肪組織,其后發(fā)現(xiàn)β3-AR在機體其它組織中均有分布,且β3-AR激活在心臟中發(fā)揮負性肌力作用[3]。心衰時,β3-AR在心臟表達上調(diào),這種上調(diào)對心臟到底是代償性保護作用還是損傷作用還有爭議,而阻斷β3-AR有利于緩解心衰大鼠的心功能下降[9]。因此本實驗通過在體給予β3-AR阻斷劑研究其在心臟的作用及其可能機制。心衰時交感神經(jīng)系統(tǒng)持續(xù)激活產(chǎn)生的兒茶酚胺類物質(zhì)以及炎性分子的作用會促進心臟在疾病狀態(tài)下氧化應激產(chǎn)物的增加[11],而炎癥是心血管疾病發(fā)病的主要因素[12]。NF-κB是一種介導細胞凋亡的多效型的轉錄因子,在心臟缺血再灌注損傷與心衰等病理過程中可調(diào)控促炎性細胞因子的釋放,引起心肌肥大,誘導心肌凋亡、纖維化、引起心室重構,阻礙心臟行使正常的收縮功能,促進心力衰竭的發(fā)生發(fā)展。有報道顯示NF-κB在p53介導的細胞死亡中有重要作用,抑制NF-κB的活性將減少p53介導的細胞凋亡[13]。但β3-AR在衰竭心臟中的作用與NF-κB和p53的關系并不清楚。
MicroRNAs作為生物進程中重要的調(diào)節(jié)因子,參與心血管疾病的過程[14]。研究發(fā)現(xiàn)評估與心衰有關的MicroRNAs表達,檢測胎兒期基因重組可以為心衰治療提供線索[15]。在應答β腎上腺素系統(tǒng)調(diào)節(jié)中,伴隨有miR-133b 和miR-92下調(diào)以及miR-100和miR-195上調(diào)[16]。心肌損傷后多種MicroRNAs的表達發(fā)生改變,包括miR-1-3p、miR-133b-3p、miR-208a-3p、miR-499-5p、miR-21-5p、miR-423-5p和miR-320-3p等。本實驗在阻斷β3-AR的前提下對大鼠心臟與炎癥有關的84種MicroRNAs進行篩查,結果發(fā)現(xiàn)在體阻斷β3-AR后,在假手術組與心衰組有18種MicroRNAs共同表達下調(diào),其中miR-125b-5p[17],miR-143-3p[18],miR-145a-5p[19],miR-26a-5p[20],miR-30a-5p[21]and miR-320-5p都與NF-κB信號通路有關,提示β3-AR對心臟MicroRNA的調(diào)節(jié)作用與NF-κB信號通路有相關性。
通過免疫組織化學法檢測NF-κB p65和p53在各組心肌組織的分布,發(fā)現(xiàn)心衰時NF-κB p65在心肌細胞核與胞質(zhì)均有表達,而p53在胞質(zhì)表達多于胞核;在體阻斷β3-AR后,心衰組NF-κB p65和p53表達下降,而假手術組兩種蛋白表達增加(圖3,4)。Western blot結果發(fā)現(xiàn)心衰組大鼠NF-κB p65,p53和p53-Phospho-Serine 15蛋白表達均增加,而在體給予SR 59230A后,心衰組大鼠3種蛋白均有下調(diào)的趨勢,假手術組3種蛋白表達上調(diào)(圖5),提示在體阻斷β3-AR緩解心衰大鼠心肌損傷與NF-κB p65和p53表達變化有關,可能是通過NF-κB途徑實現(xiàn)的。
綜上所述,本研究證明在體阻斷β3-AR,可影響心臟MicroRNAs的表達,有利于緩解心衰的發(fā)展和心肌損傷,其作用可能與NF-κB信號通路有關。本研究為β3-AR在心衰中的作用機制提供實驗依據(jù)。
[1] Lange P. Chronic heart failure [J].AustFamPhysician, 2011, 40(6): 362.
[2] Rengo G, Pagano G, Vitale DF,etal. Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure[J].EurJNuclMedMolImaging, 2016, 43(13): 2392-2400.
[3] Balligand JL. Beta3-adrenoreceptors in cardiovasular diseases: new roles for an “old" receptor[J].CurrDrugDeliv, 2013, 10(1): 64-66.
[4] Moniotte S, Kobzik L, Feron O,etal. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium[J].Circulation, 2001, 103(12): 1649-1655.
[5] 楊 嵐, 李海清, 李曉鵬, 等. β3腎上腺素能受體通過降低鈣敏感性介導正常和心衰大鼠心臟的負性肌力作用[J]. 中國心血管病研究, 2015, 13(7): 671-672.
[6] 趙倩倩, 景佳妮, 李海清, 等. β3-AR阻斷劑 SR 59230A對大鼠胸主動脈張力及microRNA表達的影響[J]. 中國應用生理學雜志, 2017, 33(1): 6-10.
[7] Mamamtavrishvili ND, Kvirkveliia AA, Abashidze RI,etal. Role of immune inflammatory activity in chronic heart failure progress[J].GeorgianMedNews, 2008(160-161): 30-34.
[8] Gao E, Lei YH, Shang X,etal. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse [J].CircRes, 2010, 107(12): 1445-1453.
[9] Gan RT, Li WM, Xiu CH,etal. Chronic blocking of beta 3-adrenoceptor ameliorates cardiac function in rat model of heart failure [J].ChinMedJ(Engl), 2007, 120(24): 2250-2255.
[10]Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue[J].Pathologe, 1987, 8(3): 138-140.
[11]Rubattu S, Mennuni S, Testa M,etal. Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress[J].IntJMolSci, 2013, 14(11): 23011-23032.
[12]Maier HJ, Schips TG, Wietelmann A,etal. Cardiomyocyte-specific IkappaB kinase (IKK)/NF-kappaB activation induces reversible inflammatory cardiomyopathy and heart failure [J].ProcNatlAcadSciUSA, 2012, 109(29): 11794-11799.
[13]Ryan KM, Ernst MK, Rice NR,etal. Role of NF-kappaB in p53-mediated programmed cell death [J].Nature, 2000, 404(6780): 892-897.
[14]De Rosa S, Curcio A, Indolfi C. Emerging role of microRNAs in cardiovascular diseases [J].CircJ, 2014, 78(3): 567-575.
[15]Dirkx E, Gladka MM, Philippen LE,etal. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure[J].NatCellBiol, 2013, 15(11): 1282-1293.
[16]Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functional correlates [J].JMolCellCardiol, 2008, 45(2): 185-192.
[17]Eigsti RL, Sudan B, Wilson ME,etal. Regulation of activation-associated microRNA accumulation rates during monocyte-to-macrophage differentiation [J].JBiolChem, 2014, 289(41): 28433-28447.
[18]Liu Q, Du GQ, Zhu ZT,etal. Identification of apoptosis-related microRNAs and their target genes in myocardial infarction post-transplantation with skeletal myoblasts [J].JTranslMed, 2015, 13: 270.
[19]Dong G, Fan H, Yang Y,etal. 17beta-Estradiol enhances the activation of IFN-alpha signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKKepsilon [J].BiochimBiophysActa, 2015, 1852(8): 1585-1598.
[20]Rasheed Z, Al-Shobaili HA, Rasheed N,etal. MicroRNA-26a-5p regulates the expression of inducible nitric oxide synthaseviaactivation of NF-kappaB pathway in human osteoarthritis chondrocytes [J].ArchBiochemBiophys, 2016, 594: 61-67.
[21]Marques FZ, Vizi D, Khammy O,etal. The transcardiac gradient of cardio-microRNAs in the failing heart [J].EurJHeartFail, 2016, 18(8): 1000-1008.
SR59230AontheexpressionofMicroRNAsinmyocardiumofheartfailurerats
JING Jia-ni, LI Fan-lu, WANG Xi, WAN Xin, ZHAO Qian-qian, CUI Xiang-li△
(Department of Physiology, Cell Physiology Key laboratory of Shanxi Province, Shanxi Medical University,Taiyuan, Shanxi 030001, China)
Objective: To investigate the effects of β3-adrenoceptors(β3-AR) inhibitor SR 59230A on MicroRNAs expression in rat myocardium with chronic heart failure and the related mechanisms.MethodsOne hundred male SD rats were randomly divided into sham operated group(40)and chronic heart failure(CHF)group(60). Coronary artery ligation was used to induce CHF. Then the rats in CHF group were further randomly divided into CHF control group and CHF+SR 59230A group (CHF+SR). Rats in the sham group were divided into sham control group and sham+SR 59230A group (Sham+SR). The rats in Sham+SR group and CHF+SR group were treated with 1 ml SR 59230A(85 mmoL/L in 0.9% saline)twice a day for seven weeks by intraperitoneal injection, while the rats in control groups were injected with the same amount of saline for seven weeks separately. miScript miRNA PCR Arrays were used to determine the expression profile of MicroRNAs. Immunohistochemistry was used to evaluate the distribution of the related proteins in the heart tissue sections. Western blot was used to detect the expressions of nuclear factor-kappaB(NF-κB),p53 and p53-Phospho-Serine 15 in the heart.Results①Afterinvivoblockade of β3-AR by SR 59230A, there were 18MicroRNAs down-regulated in sham control group and CHF control group. Within them, 6 MicroRNAs were related to NF-κB signaling pathway, they were miR-125b-5p,miR-143-3p,miR-145-5p,miR-26a-5p,miR-30a-5p and miR-320-5p. ②Slides from the heart tissue showed that NF-κB was distributed both in nucleus and cytoplasm, while p53 in cytoplasm was more than that in nucleus in heart tissue sections. The expressions of NF-κB and p53 were higher in the CHF control group than those in the sham control group(P<0.05), but were lower in CHF+SR group than those in CHF control group(P<0.05),while they were elevated in Sham+SR group compared to the sham control group(P<0.05). ③ Compared with the sham control group, the protein expression of NF-κB p65 was increased significantly in the CHF control group (P<0.05). After treated with SR59230Ainvivo,the protein expressions of NF-κB and p53-Phospho-Serine 15 were decreased significantly in CHF rats(P<0.05),while the protein expressions of NF-κB, p53 and p53-Phospho-Serine 15 proteins were increased in the sham rats (P<0.05).ConclusionBlocking of β3-AR improved the damaged heart in CHF rats; β3-AR caused the change of MicroRNAs expression, and it related to NF-κB signal pathway.
rats; hearts; β3-adrenoceptors; SR 59230A; MicroRNAs; NF-κB
R3
A
1000-6834(2017)05-456-05
10.12047/j.cjap.5561.2017.109
△
Tel: 0351-4135329; E-mail: cuixlcxl@sina.com