姜瑢,王美娥,陳衛(wèi)平
1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 1000852. 中國(guó)科學(xué)院大學(xué),北京 100049
環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)黃瓜及小麥的毒性效應(yīng)評(píng)估
姜瑢1,2,王美娥1,*,陳衛(wèi)平1
1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 1000852. 中國(guó)科學(xué)院大學(xué),北京 100049
為探究草坪除草劑與重金屬?gòu)?fù)合污染對(duì)高等植物的生態(tài)毒性效應(yīng),以小麥與黃瓜為敏感受試植物,采用濾紙發(fā)芽試驗(yàn)法,研究了典型草坪除草劑環(huán)草隆與4種重金屬(Cu/Zn/Pb/Cd)單一及復(fù)合污染條件下,對(duì)2種植物種子萌發(fā)與幼苗生長(zhǎng)的毒性效應(yīng)并進(jìn)行評(píng)估。在此基礎(chǔ)上采用評(píng)估因子法外推環(huán)草隆在土壤中的預(yù)測(cè)無效應(yīng)濃度(PNECsoil)。結(jié)果表明,2種植物的根長(zhǎng)及小麥的芽長(zhǎng)對(duì)環(huán)草隆與重金屬非常敏感(P<0.01),且存在明顯的劑量-效應(yīng)關(guān)系。黃瓜根長(zhǎng)對(duì)環(huán)草隆最敏感,根長(zhǎng)半抑制濃度(RI50)為0.281 mg·L-1。小麥根長(zhǎng)對(duì)Cu、Pb、Cd比黃瓜根長(zhǎng)更敏感。環(huán)草隆與重金屬?gòu)?fù)合污染時(shí),黃瓜根長(zhǎng)表現(xiàn)得最為敏感,可作為敏感生物標(biāo)記物。環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)小麥及黃瓜根長(zhǎng)抑制具有協(xié)同作用,并且隨著重金屬濃度的增大,黃瓜和小麥根生長(zhǎng)對(duì)環(huán)草隆的敏感性增加。環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)小麥芽長(zhǎng)的聯(lián)合效應(yīng)主要與重金屬種類及其暴露濃度有關(guān)。以黃瓜的根伸長(zhǎng)抑制率為急性毒性終點(diǎn),利用外推法計(jì)算得環(huán)草隆在土壤中的PNECsoil為1.90 μg·kg-1,遠(yuǎn)遠(yuǎn)低于環(huán)草隆田間推薦使用量1.5~9 mg·kg-1。與重金屬?gòu)?fù)合污染時(shí),環(huán)草隆的PNECsoil明顯降低,導(dǎo)致其生態(tài)風(fēng)險(xiǎn)提高。上述研究結(jié)果能夠?yàn)椴萜撼輨┉h(huán)草隆與重金屬?gòu)?fù)合污染的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供數(shù)據(jù)支持。
環(huán)草隆;重金屬;小麥;黃瓜;根伸長(zhǎng);毒性效應(yīng);復(fù)合污染
Received13 January 2017accepted12 April 2017
Abstract: In order to reveal the joint toxicity of typical lawn herbicide siduron and heavy metals on terrestrial plants, wheat and cucumber were exposed to single and combined treatment of siduron and four heavy metals. The germination rates, biomass and the elongation of root and shoot of tested plants were detected. The predicted no effect concentration (PNECsoil) for siduron in soil was calculated using assessment factors. Results showed that siduron and heavy metals had significant single and joint effects on root elongation of both plants and shoot elongation of wheat (P<0.01). Apparent does-effect relationships were demonstrated. Cucumber was more sensitive to siduron than wheat. RI50of cucumber in root elongation was 0.281 mg·L-1. Wheat was more sensitive to Cu, Cd, Pbthan cucumber. When we combined siduron and those four heavy metals, cucumber root elongation was the most sensitive parameter, which thus could be selected as biomarker. Siduron and those four heavy metals had a synergic effects on the inhibition of wheat and cucumber root elongation. Compared to single treatment of siduron, root elongation of both plants were more sensitive to siduron with the addition of heavy metals. Joint toxicity of siduron and those four heavy metals to wheat shoot depended more on individual heavy metal and exposing concentration. PNEC of siduron in the soil (PNECsoil) derived from the acute toxicity data of cucumber root elongation inhibition using equilibrium partitioning was about 1.90 μg·kg-1, which was far below the recommended application dose of 1.5-9 mg·kg-1siduron in field. When combined with heavy metals, the PNECsoilof siduron significantly decreased, which may lead to increased ecological risk. Results presented in this study can provide basic data for ecological risk assessment of combined pollution of siduron and heavy metals.
Keywords: siduron; heavy metal; wheat; cucumber; root elongation; toxic effect; combined pollution
隨著城市化和工業(yè)化進(jìn)程的加快,在高強(qiáng)度工業(yè)活動(dòng)、大規(guī)模的工程建設(shè)、大量廢棄物的排放和頻繁的交通運(yùn)輸?shù)榷喾N因素的綜合作用下,城市土壤遭受了劇烈影響,土壤質(zhì)量明顯退化,污染嚴(yán)重[1]。而作為城市人群集中的主要休閑娛樂活動(dòng)場(chǎng)所,草坪綠地的土壤污染問題顯得尤為關(guān)鍵,也最為敏感[2]。
重金屬污染已經(jīng)成為城市綠地土壤的重要特征之一[3-6]。前期對(duì)北京市城市土壤重金屬污染的調(diào)查研究結(jié)果表明,Cu、Zn、Pb、Cd為主要重金屬污染物[7],其中市中心公園以及建成百年的古典公園土壤中重金屬Cu與Pb最高濃度達(dá)到457.5、207.5 mg·kg-1[8-9]。天津、西安等北方較發(fā)達(dá)城市土壤也出現(xiàn)明顯的重金屬污染,其中主要污染元素也是Cu、Zn、Pb、Cd[10-11]。沈陽和長(zhǎng)春等北方工業(yè)城市表層土壤中Cu、Zn、Pb、Cd等元素的富集更為明顯,最高濃度達(dá)到437.3、1 107、377.5、11.04 mg·kg-1[12-13]。
由于國(guó)內(nèi)城市綠地的管理缺乏相應(yīng)的規(guī)范和標(biāo)準(zhǔn),近年來,隨著城市草坪綠地面積與日俱增,在養(yǎng)護(hù)過程中大量化肥農(nóng)藥的使用,對(duì)大氣、水體和土壤產(chǎn)生的農(nóng)藥面源污染問題日顯突出[14-17],卻沒有引起足夠的重視。環(huán)草隆是北方城市應(yīng)用較為廣泛的一種典型草坪除草劑,對(duì)草坪種子的萌發(fā)無不良影響,可有效地控制狗尾草、止血馬唐、毛雀麥和稗草等雜草。由于環(huán)草隆性質(zhì)相對(duì)穩(wěn)定,在水體及土壤中半衰期較長(zhǎng),而且移動(dòng)性高,易隨水遷移,尤其是雨水徑流[18],近年來環(huán)草隆在水體中時(shí)有檢出[19-20]。Whittemore等[21]在美國(guó)堪薩斯州城市住宅區(qū)低凹水坑中檢測(cè)到環(huán)草隆,Chau等[22]在越南多個(gè)城市地表水中檢測(cè)到環(huán)草隆,且濃度最高達(dá)到1 μg·L-1,Kong等[23]對(duì)天津市20個(gè)地表水樣進(jìn)行監(jiān)測(cè),發(fā)現(xiàn)20個(gè)水樣均含有環(huán)草隆,最高濃度為0.21 μg·L-1,這說明環(huán)草隆在城市綠地中的使用相當(dāng)廣泛。因此,在北方城市土壤中重金屬和除草劑復(fù)合污染普遍存在。
城市土壤(尤其草坪土壤)生態(tài)風(fēng)險(xiǎn)評(píng)估是保護(hù)和維持健康的土壤環(huán)境和生態(tài)功能的重要步驟。當(dāng)今對(duì)化學(xué)品污染的生態(tài)風(fēng)險(xiǎn)評(píng)估方法大多基于單一污染物的毒性數(shù)據(jù),然而,隨著越來越多的科學(xué)家意識(shí)到土壤復(fù)合污染的普遍性,發(fā)展復(fù)合污染生態(tài)風(fēng)險(xiǎn)評(píng)估方法逐漸引起了關(guān)注。此外,有研究表明,已經(jīng)受到了某些脅迫的生態(tài)系統(tǒng)(如旱澇、污染等)對(duì)外界不良環(huán)境的響應(yīng)明顯不同于正常生態(tài)系統(tǒng)[24]。因此,本研究選擇城市土壤中普遍存在的4種重金屬污染物(Cu/Zn/Pb/Cd)與北方草坪常用除草劑環(huán)草隆為研究污染物,研究?jī)烧邚?fù)合污染下對(duì)高等植物的生態(tài)毒性效應(yīng),旨在篩選敏感生物標(biāo)記物,并通過建立敏感生物標(biāo)記物與污染物濃度之間的劑量-效應(yīng)關(guān)系,推算預(yù)測(cè)無效應(yīng)濃度(PNEC),為城市重金屬污染土壤中除草劑施用的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供基礎(chǔ)數(shù)據(jù)。
1.1 供試材料
供試小麥品種為輪選987,黃瓜品種為中農(nóng)8號(hào),供種單位為中國(guó)農(nóng)業(yè)科學(xué)院。環(huán)草隆為48.5%可濕性粉劑,其他試劑為分析純。
1.2 試驗(yàn)設(shè)計(jì)與方法
1.2.1 預(yù)實(shí)驗(yàn)
鋪二層濾紙于直徑9 cm燒杯中,將消毒后的黃瓜和小麥種子均勻擺放于燒杯中濾紙上,每個(gè)燒杯20粒。分別向燒杯中加入5 mL不同幾何級(jí)數(shù)濃度的環(huán)草隆、Cu2+、Zn2+、Pb2+、Cd2+的污染物溶液,封口后,放在(25±1) ℃的培養(yǎng)箱中,黑暗下培養(yǎng)。當(dāng)對(duì)照根芽長(zhǎng)大于20 mm時(shí),培養(yǎng)結(jié)束,分別計(jì)算各個(gè)處理的發(fā)芽率、芽長(zhǎng)、根長(zhǎng)、幼苗鮮重及干重,發(fā)芽的標(biāo)準(zhǔn)為芽長(zhǎng)大于等于3 mm,每個(gè)處理設(shè)3個(gè)重復(fù)。
1.2.2 單效應(yīng)實(shí)驗(yàn)
根據(jù)預(yù)實(shí)驗(yàn)結(jié)果,在種子發(fā)芽和根伸長(zhǎng)抑制濃度達(dá)到抑制率20%~80%范圍內(nèi),設(shè)置不同處理濃度(見表1),在與預(yù)試驗(yàn)相同條件下,進(jìn)行種子發(fā)芽與幼苗生長(zhǎng)培養(yǎng)試驗(yàn),實(shí)驗(yàn)結(jié)束時(shí),測(cè)定各處理濃度的種子發(fā)芽率和根長(zhǎng)、芽長(zhǎng)、幼苗鮮重及干重。
1.2.3 復(fù)合污染實(shí)驗(yàn)
根據(jù)單效應(yīng)實(shí)驗(yàn)結(jié)果,環(huán)草隆的實(shí)驗(yàn)濃度分別對(duì)應(yīng)于單效應(yīng)實(shí)驗(yàn)根長(zhǎng)抑制率的0%、25%、30%、40%、50%、60%,重金屬的實(shí)驗(yàn)濃度對(duì)應(yīng)于單效應(yīng)實(shí)驗(yàn)根長(zhǎng)抑制率的0%、20%、60%,對(duì)小麥及黃瓜的復(fù)合污染試驗(yàn)處理濃度見表2。
1.3 統(tǒng)計(jì)分析
所有試驗(yàn)數(shù)據(jù)采用SPSS13.0和Excel等進(jìn)行處理,測(cè)量數(shù)據(jù)進(jìn)行單因子及雙因子方差分析,繪圖軟件為Sigma plot 18.0。
抑制率按下式計(jì)算:
抑制率=(對(duì)照-處理)/對(duì)照×100%
(1)
采用評(píng)估因子法[25],對(duì)PNEC進(jìn)行外推,即用最敏感生物的毒性數(shù)據(jù)除以適當(dāng)?shù)脑u(píng)價(jià)因子(AF)即得到PNEC(見公式2)。本實(shí)驗(yàn)用PNEC評(píng)價(jià)環(huán)草隆與重金屬溶液對(duì)黃瓜及小麥的生態(tài)毒理效應(yīng)。由于環(huán)境中有機(jī)污染物在土壤與水相之間存在平衡作用,考慮到污染物在土壤中的生物有效性,因此通過平衡分配方法(equilibrium partitioning method, EPM)[26],可以將土壤中污染物的濃度轉(zhuǎn)化為孔隙水中的濃度,那么污染物在孔隙水中的濃度即可采用水體的PNEC值進(jìn)行生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)。土壤中環(huán)草隆的無效應(yīng)濃度(PNECsoil)可以按照公式(3)進(jìn)行推導(dǎo)。
表1 環(huán)草隆與重金屬對(duì)黃瓜和小麥單效應(yīng)試驗(yàn)處理濃度Table 1 Single treatment concentration of siduron and heavy metals to wheat and cucumber
表2 環(huán)草隆與重金屬對(duì)黃瓜和小麥復(fù)合污染試驗(yàn)處理濃度Table 2 Experiment design and combined treatment concentration of siduron and heavy metals to wheat and cucumber
注:WT為小麥復(fù)合污染實(shí)驗(yàn)處理,CT為黃瓜復(fù)合污染實(shí)驗(yàn)處理。
Note: WT means the treatment of combined pollution of wheat, CT means the treatment of combined pollution of cucumber.
(2)
式中:EC50選擇根長(zhǎng)半抑制濃度;
(3)
式中:Ksoil-water為環(huán)草隆在土壤和水中分配系數(shù)(m3·m-3),RHOsoil為土壤容重(kg·m-3);
×RHOsolid
(4)
式中:FCwater為田間持水量(%),F(xiàn)solid soil為土壤中固體顆粒的含量(%),Kpsoil為環(huán)草隆在土壤中固-水分配系數(shù)(L·kg-1),RHOsoild為土壤密度(kg·m-3);
Kpsoil=Koc×foc
(5)
式中:Koc為環(huán)草隆在土壤中的有機(jī)碳分配系數(shù),foc為土壤有機(jī)碳含量(%)。
根據(jù)文獻(xiàn)中數(shù)據(jù),環(huán)草隆在土壤中的有機(jī)碳分配系數(shù)(Koc)一般為330~420[27-28],取平均值375,北京市公園綠地土壤偏砂,容重約為1.39 g·cm-3,田間持水量約為35%,有機(jī)碳含量平均約為1.4%[29-31],土壤密度統(tǒng)一為2.65 g·cm-3。
2.1 環(huán)草隆與重金屬單一、復(fù)合污染對(duì)黃瓜和小麥種子萌發(fā)及幼苗生長(zhǎng)影響的方差分析
環(huán)草隆和重金屬單一、復(fù)合污染對(duì)黃瓜和小麥種子發(fā)芽及幼苗生長(zhǎng)的抑制效應(yīng)的方差分析發(fā)現(xiàn)(見表3),在本試驗(yàn)濃度范圍內(nèi)(黃瓜0.1~1 mg·L-1;小麥0~70 mg·L-1),環(huán)草隆對(duì)黃瓜和小麥種子萌發(fā)及幼苗生物量無明顯影響(P>0.05),但是顯著抑制了幼苗根長(zhǎng)及芽長(zhǎng)(P<0.01)。重金屬Cu和Pb對(duì)黃瓜的發(fā)芽率、根和芽伸長(zhǎng)的效應(yīng)均為顯著(P<0.01),而重金屬Zn和Cd對(duì)黃瓜的發(fā)芽率和幼苗生物量沒有顯著效應(yīng),對(duì)根和芽伸長(zhǎng)有顯著的效應(yīng)(P<0.01)。對(duì)小麥的試驗(yàn)結(jié)果表明,只有Pb對(duì)小麥發(fā)芽率和幼苗干重有顯著的效應(yīng)(P<0.01);其他3種重金屬對(duì)發(fā)芽率及幼苗生物量的效應(yīng)不顯著;與對(duì)黃瓜發(fā)芽試驗(yàn)類似,4種重金屬對(duì)小麥的根長(zhǎng)和芽長(zhǎng)都表現(xiàn)為顯著的效應(yīng)(P<0.01)。
環(huán)草隆與4種重金屬?gòu)?fù)合污染的聯(lián)合效應(yīng)的分析結(jié)果表明,除了環(huán)草隆與Cu復(fù)合污染對(duì)黃瓜的發(fā)芽率有顯著效應(yīng)以外(P<0.01),環(huán)草隆與其他重金屬?gòu)?fù)合污染對(duì)黃瓜與小麥種子發(fā)芽率及幼苗干重的聯(lián)合效應(yīng)均不顯著(P>0.05),而對(duì)根長(zhǎng)和芽長(zhǎng)的聯(lián)合效應(yīng)顯著(P<0.01) (表3)。
以上結(jié)果表明,環(huán)草隆與重金屬單一及復(fù)合污染脅迫對(duì)2種受試植物根長(zhǎng)、芽長(zhǎng)都有顯著的影響,并且對(duì)黃瓜和小麥幼苗生長(zhǎng)的效應(yīng)較種子發(fā)芽更明顯,這是因?yàn)榉N子發(fā)芽過程除了受外界污染物含量及有效性的影響外,主要還受胚內(nèi)養(yǎng)分供應(yīng)的影響[32]。
2.2 環(huán)草隆處理濃度與小麥及黃瓜幼苗生長(zhǎng)的劑量-效應(yīng)關(guān)系
如圖1所示,小麥根長(zhǎng)和芽長(zhǎng)抑制率與環(huán)草隆濃度成顯著線性正相關(guān),回歸方程分別為RIsid=0.671X+19.8(P<0.01),SIsid=0.793X-4.71(P<0.01),根據(jù)回歸方程計(jì)算得到,環(huán)草隆對(duì)小麥根長(zhǎng)、芽長(zhǎng)的半抑制濃度分別為45.0和69.0 mg·L-1,小麥根長(zhǎng)比芽長(zhǎng)對(duì)環(huán)草隆脅迫更為敏感。
表3 環(huán)草隆與重金屬單一、復(fù)合污染對(duì)黃瓜和小麥種子萌發(fā)及幼苗生長(zhǎng)情況的方差分析Table 3 Variance analysis of single and joint effect of siduron and heavy metals to cucumber and wheat seed germination and seedling growth
注:**P<0.01,*P<0.05表示不同處理濃度間有顯著差異。
Note:**, * stand for significant differences in different concertration treatments at P=0.01 and 0.05 level respectively.
黃瓜芽長(zhǎng)抑制率與環(huán)草隆濃度之間沒有顯著的劑量-效應(yīng)關(guān)系(P>0.05),而黃瓜根長(zhǎng)抑制率與環(huán)草隆濃度表現(xiàn)為顯著的對(duì)數(shù)相關(guān)關(guān)系(圖2),回歸方程為RIsid=21.6lnX+77.4(P<0.01),環(huán)草隆對(duì)黃瓜根長(zhǎng)的半抑制濃度為0.281 mg·L-1。
以上結(jié)果表明,黃瓜根長(zhǎng)抑制率對(duì)環(huán)草隆的敏感性較高,是小麥幼苗芽長(zhǎng)及根長(zhǎng)的150倍以上。這是因?yàn)榄h(huán)草隆本身針對(duì)多數(shù)一年生闊葉雜草,尤其是對(duì)小粒種子的闊葉雜草效果卓著,黃瓜屬于雙子葉植物而且種子細(xì)小,因此黃瓜根長(zhǎng)對(duì)環(huán)草隆非常敏感。
圖1 環(huán)草隆對(duì)小麥幼苗生長(zhǎng)的影響Fig. 1 Effect of siduron on the root and shoot elongation of wheat
圖2 環(huán)草隆對(duì)黃瓜幼苗生長(zhǎng)的影響Fig. 2 Effect of siduron on the root and shoot elongation of cucumber
根據(jù)美國(guó)EPA關(guān)于環(huán)草隆的登記資料中的數(shù)據(jù),環(huán)草隆對(duì)雙子葉植物大豆和單子葉植物洋蔥的無可見有害作用水平(NOAEL)分別為0.143 mg·kg-1和1.13 mg·kg-1[33],與本研究結(jié)果相似。環(huán)草隆屬于苯脲類除草劑,Song等[34]的研究表明,綠麥隆對(duì)小麥幼苗的生長(zhǎng)有明顯抑制作用,在5~25 mg·L-1濃度范圍內(nèi),幼苗根長(zhǎng)、芽長(zhǎng)及鮮重受到明顯抑制,而且根部受到抑制作用更明顯;Yin等[35]研究了異丙隆對(duì)小麥的毒性效應(yīng),結(jié)果表明在3.5~20 mg·kg-1濃度下,異丙隆對(duì)小麥的根長(zhǎng)也產(chǎn)生明顯抑制作用。
2.3 重金屬處理濃度與黃瓜及小麥幼苗生長(zhǎng)的劑量-效應(yīng)關(guān)系
根據(jù)方差分析結(jié)果(表3),對(duì)重金屬Cu和Pb處理濃度與黃瓜的發(fā)芽率、根長(zhǎng)、芽長(zhǎng)、及其幼苗干物質(zhì)量,以及Zn和Cd處理濃度與黃瓜根長(zhǎng)芽長(zhǎng)進(jìn)行了劑量-效應(yīng)分析;同時(shí)對(duì)重金屬Cu、Zn、Cd與小麥根長(zhǎng)、芽長(zhǎng)以及Pb與小麥發(fā)芽率、根長(zhǎng)、芽長(zhǎng)以及幼苗干物質(zhì)進(jìn)行了劑量-效應(yīng)關(guān)系分析。結(jié)果表明,只有黃瓜根長(zhǎng)及小麥根長(zhǎng)和芽長(zhǎng)與重金屬濃度之間有顯著的劑量-效應(yīng)關(guān)系。重金屬Zn處理濃度與小麥根長(zhǎng)及芽長(zhǎng)抑制率呈顯著的線性正相關(guān)關(guān)系(P<0.01),其余重金屬處理濃度與2種植物根伸長(zhǎng)抑制率和小麥芽伸長(zhǎng)抑制率呈顯著的對(duì)數(shù)正相關(guān)(P <0.01),回歸方程見表4。
如表4所示,從半抑制效應(yīng)濃度EC50可以看出,除Zn外,Cu、Pb、Cd 3種重金屬對(duì)小麥根伸長(zhǎng)的半抑制濃度(RI50)都小于芽伸長(zhǎng)的半抑制濃度(SI50),因此小麥根長(zhǎng)比芽長(zhǎng)對(duì)重金屬脅迫更為敏感。與小麥相比,Zn對(duì)黃瓜根長(zhǎng)的半抑制濃度(89.0 mg·L-1)明顯低于小麥根長(zhǎng)半抑制濃度(382 mg·L-1),說明黃瓜根長(zhǎng)對(duì)Zn的敏感性比小麥高;而Cu、Pb、Cd 3種重金屬對(duì)小麥根伸長(zhǎng)的半抑制濃度都小于黃瓜的根長(zhǎng)半抑制濃度,說明小麥根長(zhǎng)對(duì)Cu、Pb、Cd的敏感性比黃瓜更高。
因此,Zn的敏感生物標(biāo)記物是黃瓜根長(zhǎng),而Cu、Pb、Cd的敏感生物標(biāo)記物是小麥根長(zhǎng)。大部分研究結(jié)果表明重金屬污染脅迫對(duì)種子萌發(fā)影響較小,但對(duì)植物根伸長(zhǎng)抑制效應(yīng)顯著,與本實(shí)驗(yàn)研究結(jié)果一致[36-38]。
2.4 環(huán)草隆-重金屬?gòu)?fù)合處理與小麥幼苗生長(zhǎng)的劑量-效應(yīng)關(guān)系
在環(huán)草隆與Cu、Zn、Pb、Cd這4種不同濃度重金屬?gòu)?fù)合污染條件下,根據(jù)方差分析結(jié)果(表3),對(duì)環(huán)草隆處理濃度與小麥的根長(zhǎng)、芽長(zhǎng)進(jìn)行了劑量-效應(yīng)分析。結(jié)果表明當(dāng)重金屬濃度一定時(shí),小麥根長(zhǎng)、芽長(zhǎng)抑制率與環(huán)草隆濃度之間存在顯著的劑量-效應(yīng)關(guān)系(P<0.01)。如圖2所示,當(dāng)重金屬濃度一定時(shí),隨著環(huán)草隆濃度升高,小麥根長(zhǎng)抑制率增大,呈顯著的線性正相關(guān)關(guān)系,回歸方程及半抑制效應(yīng)濃度見表5。
圖3 環(huán)草隆-重金屬?gòu)?fù)合處理對(duì)小麥根長(zhǎng)的聯(lián)合毒性Fig. 3 Joint toxicity effect of siduron and heavy metals on the root elongation of wheat
注:P<0.01表示可決系數(shù)顯著水平為0.01,下同。
Note: P<0.01 stands for markedly positive relationships at P= 0.01 level, the same below.
根據(jù)表5可以看出,與單一環(huán)草隆污染相比,環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)小麥根長(zhǎng)的半抑制效應(yīng)濃度明顯降低,對(duì)小麥根長(zhǎng)抑制具有一定協(xié)同作用。隨著Cd濃度的增大,半抑制效應(yīng)濃度降低,協(xié)同作用增強(qiáng)。在與高濃度的Cu(20 mg·L-1)、Zn(450 mg·L-1)、Pb(300 mg·L-1)復(fù)合污染時(shí),所有環(huán)草隆處理濃度下,小麥根長(zhǎng)的抑制率都大于50%,說明隨著重金屬濃度的升高,小麥根長(zhǎng)對(duì)環(huán)草隆更加敏感。
如圖4所示,當(dāng)重金屬濃度一定時(shí),小麥芽長(zhǎng)抑制率與環(huán)草隆濃度呈顯著線性回歸關(guān)系,回歸方程及計(jì)算得到的半抑制濃度見表6。根據(jù)表6可以看出4種重金屬與環(huán)草隆復(fù)合污染對(duì)小麥芽長(zhǎng)的半抑制效應(yīng)濃度均大于根長(zhǎng)的半抑制效應(yīng)濃度,因此,環(huán)草隆與重金屬?gòu)?fù)合污染條件下,小麥的根長(zhǎng)相對(duì)比芽長(zhǎng)更敏感。與單一環(huán)草隆污染相比,Cu和環(huán)草隆復(fù)合污染對(duì)小麥芽長(zhǎng)的半抑制濃度都升高,表現(xiàn)為拮抗作用;Zn和環(huán)草隆復(fù)合污染時(shí),對(duì)小麥的芽長(zhǎng)半抑制濃度都降低,具有明顯的協(xié)同作用;高濃度的Cd(25 mg·L-1)和Pb(300 mg·L-1)與環(huán)草隆復(fù)合污染時(shí),小麥芽長(zhǎng)半抑制濃度降低,表現(xiàn)為協(xié)同作用,而低濃度的Cd(10 mg·L-1)和Pb(60 mg·L-1)與環(huán)草隆復(fù)合污染時(shí),小麥芽長(zhǎng)半抑制濃度升高,表現(xiàn)出拮抗作用,這可能是因?yàn)榄h(huán)草隆與Cu及低濃度的Cd和Pb發(fā)生絡(luò)合作用,在短時(shí)間內(nèi)會(huì)阻止污染物進(jìn)一步進(jìn)入植物體內(nèi),由此產(chǎn)生拮抗作用。
2.5 環(huán)草隆-重金屬?gòu)?fù)合處理與黃瓜幼苗生長(zhǎng)的劑量-效應(yīng)關(guān)系
與小麥的發(fā)芽實(shí)驗(yàn)類似,分析了在環(huán)草隆與Cu、Zn、Pb、Cd 4種不同濃度重金屬?gòu)?fù)合污染條件下,環(huán)草隆處理濃度與黃瓜的根長(zhǎng)、芽長(zhǎng)的劑量-效應(yīng)關(guān)系。結(jié)果表明當(dāng)重金屬濃度一定時(shí),黃瓜芽長(zhǎng)與環(huán)草隆濃度之間沒有明顯的劑量-效應(yīng)關(guān)系,黃瓜根長(zhǎng)抑制率與環(huán)草隆濃度呈顯著的對(duì)數(shù)正相關(guān)(圖5),回歸方程及半抑制效應(yīng)濃度見表7。
根據(jù)表7,環(huán)草隆與重金屬?gòu)?fù)合污染時(shí),對(duì)黃瓜根長(zhǎng)的半抑制效應(yīng)濃度也明顯降低,說明環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)黃瓜根長(zhǎng)抑制也具有一定協(xié)同作用,并且隨著Zn、Pb濃度的增大,半抑制效應(yīng)濃度降低,協(xié)同作用增強(qiáng)。而在與高濃度的Cd (40 mg·L-1)、Cu (40 mg·L-1)復(fù)合污染時(shí),在所有環(huán)草隆處理濃度下,黃瓜根長(zhǎng)的抑制率都大于50%,黃瓜根長(zhǎng)對(duì)環(huán)草隆的敏感性增加。
比較黃瓜與小麥的根長(zhǎng)半抑制濃度(表5和7),發(fā)現(xiàn)環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)黃瓜及小麥根長(zhǎng)抑制均表現(xiàn)出協(xié)同作用,但黃瓜根長(zhǎng)對(duì)環(huán)草隆與重金屬?gòu)?fù)合污染的脅迫比小麥更加敏感,而且隨著重金屬濃度的增加,黃瓜和小麥根生長(zhǎng)對(duì)環(huán)草隆的敏感性都增加;環(huán)草隆與重金屬?gòu)?fù)合污染的對(duì)小麥芽長(zhǎng)生長(zhǎng)聯(lián)合效應(yīng)主要與重金屬種類及其暴露濃度有直接關(guān)系,這與其他學(xué)者獲得的有機(jī)物與重金屬?gòu)?fù)合污染對(duì)植物生態(tài)毒性效應(yīng)的研究結(jié)果相似[39-40]。符博敏等[41]的研究也表明恩諾沙星與Cu復(fù)合污染對(duì)小白菜和西紅柿根和芽伸長(zhǎng)表現(xiàn)出明顯的協(xié)同作用,金彩霞等[42]研究磺胺嘧啶與重金屬銅復(fù)合污染對(duì)小白菜和西紅柿根和芽伸長(zhǎng)的聯(lián)合作用與暴露濃度有直接關(guān)系。
表5 不同重金屬處理下小麥幼苗根長(zhǎng)抑制率(RI)與環(huán)草隆濃度(X)的相關(guān)性Table 5 Relationships between inhibition rate of wheat root elongation (RI) and concentration of added siduron (X)
注:—表示當(dāng)前重金屬濃度下,在任何環(huán)草隆濃度下根長(zhǎng)抑制率大于50%。
Note: - denotes that when the added concentration of copper, zinc, lead were 20, 450, 300 mg·L-1respectively, the inhibition rate of root elongation was always higher than 50% at any concentration of siduron.
2.6 環(huán)草隆與重金屬單一、復(fù)合污染在土壤中對(duì)高等植物的毒性濃度PNEC
通過比較黃瓜和小麥發(fā)芽和幼苗生長(zhǎng)的毒性數(shù)據(jù)可知,對(duì)環(huán)草隆較為敏感的生物標(biāo)記物為黃瓜根長(zhǎng)抑制率,EC50值為0.281 mg·L-1。由此為毒性終點(diǎn)進(jìn)行推導(dǎo),利用外推法計(jì)算得環(huán)草隆在土壤中對(duì)高等植物的PNEC,結(jié)果見表8。環(huán)草隆對(duì)高等植物的PNECsoil為1.90 μg·kg-1,遠(yuǎn)遠(yuǎn)低于環(huán)草隆的普通推薦使用量1.5~9 mg·kg-1,尤其是在高爾夫球場(chǎng)成坪草坪上環(huán)草隆的使用量高達(dá)32.3 mg·kg-1,且每年噴施次數(shù)多達(dá)6次[33]。環(huán)草隆對(duì)高等植物黃瓜存在較大的急性毒性風(fēng)險(xiǎn)。由于環(huán)草隆使用時(shí),在土壤中移動(dòng)性較高,易隨水遷移,因此可能會(huì)對(duì)城市周邊農(nóng)田帶來一定的生態(tài)風(fēng)險(xiǎn),不容忽視。
圖4 環(huán)草隆-重金屬?gòu)?fù)合處理對(duì)小麥芽長(zhǎng)的聯(lián)合毒性Fig. 4 Joint toxicity effect of siduron and heavy metals on the shoot elongation of wheat
表6 不同重金屬處理下小麥幼苗芽長(zhǎng)抑制率(SI)與環(huán)草隆濃度(X)的相關(guān)性Table 6 Relationships between inhibition rate of wheat shoot elongation (SI) and concentration of added siduron (X)
圖5 環(huán)草隆-重金屬?gòu)?fù)合處理對(duì)黃瓜根長(zhǎng)的聯(lián)合毒性Fig. 5 Joint toxicity effect of siduron and heavy metals on the root elongation of cucumber
表7 不同重金屬濃度下黃瓜幼苗根長(zhǎng)抑制率(RI)與環(huán)草隆濃度(X)的相關(guān)性Table 7 Relationships between inhibition rate of cucumber root elongation (RI) and concentration of added siduron (X)
注:—表示當(dāng)前重金屬濃度下,在任何環(huán)草隆濃度下根長(zhǎng)抑制率大于50%。
Note: - denotes that when the added concentration of cadmium, copper were 40, 20 mg·L-1respectively, the inhibition rate of root elongation was always higher than 50% at any concentration of siduron.
表8 推導(dǎo)環(huán)草隆預(yù)測(cè)無效應(yīng)濃度的急性毒性數(shù)據(jù)Table 8 Acute toxicity date used to estimate PNEC of siduron
與重金屬Cu(6 mg·L-1)、Zn(40 mg·L-1)、Pb(90 mg·L-1)、Cd(10 mg·L-1)復(fù)合污染下,環(huán)草隆在土壤中的PNECsoil值分別降低25.3%、17.8%、30.6%和37.8%,環(huán)草隆在土壤中的安全閾值降低,污染可能導(dǎo)致的風(fēng)險(xiǎn)將大大提高。而與更高濃的Cu(20 mg·L-1)、Zn(120 mg·L-1)、Pb(300 mg·L-1)、Cd(40 mg·L-1)復(fù)合污染下,由于環(huán)草隆的EC50值接近0或者不存在,無法計(jì)算在土壤中的PNEC值。
綜上所述:
本文采用濾紙發(fā)芽試驗(yàn)法研究了典型草坪除草劑環(huán)草隆與4種重金屬單一及復(fù)合污染對(duì)小麥和黃瓜種子萌發(fā)及幼苗生長(zhǎng)的毒性效應(yīng),篩選敏感的生物標(biāo)記物,建立劑量-效應(yīng)關(guān)系,并在此基礎(chǔ)上外推環(huán)草隆在土壤中的預(yù)測(cè)無效應(yīng)濃度(PNEC),為環(huán)草隆的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供數(shù)據(jù)支持。
(1)2種植物根長(zhǎng)及小麥芽長(zhǎng)對(duì)環(huán)草隆與重金屬非常敏感,且存在明顯的劑量-效應(yīng)關(guān)系,其中黃瓜根長(zhǎng)對(duì)環(huán)草隆最敏感,RI50為0.281 mg·L-1,可以作為環(huán)草隆對(duì)高等植物生態(tài)毒性效應(yīng)評(píng)價(jià)的敏感生物標(biāo)記物。4種重金屬中,除Zn外,小麥根長(zhǎng)對(duì)Cu、Pb、Cd比黃瓜根長(zhǎng)相對(duì)更敏感,但環(huán)草隆與4種重金屬?gòu)?fù)合污染時(shí),黃瓜根長(zhǎng)表現(xiàn)得更加敏感。
(2)4種重金屬與環(huán)草隆復(fù)合污染對(duì)小麥和黃瓜的根長(zhǎng)抑制表現(xiàn)出協(xié)同作用,而且隨著重金屬濃度的增加,黃瓜和小麥根生長(zhǎng)對(duì)環(huán)草隆的敏感性都增加。環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)小麥芽長(zhǎng)生長(zhǎng)聯(lián)合效應(yīng)主要與重金屬種類及其暴露濃度有直接關(guān)系。
(3)以黃瓜的根伸長(zhǎng)的急性毒性為毒性終點(diǎn),利用外推法計(jì)算得環(huán)草隆在土壤中的PNEC為1.90 μg·kg-1,遠(yuǎn)遠(yuǎn)低于環(huán)草隆的田間推薦使用量,說明環(huán)草隆對(duì)高等植物黃瓜存在較大的急性毒性風(fēng)險(xiǎn),而且與重金屬?gòu)?fù)合污染時(shí),環(huán)草隆的PNECsoil值明顯降低,可能導(dǎo)致的生態(tài)風(fēng)險(xiǎn)將大大提高,因此環(huán)草隆與重金屬?gòu)?fù)合污染的毒性效應(yīng)更應(yīng)該引起關(guān)注。
[1] 張甘霖, 趙玉國(guó), 楊金玲, 等. 城市土壤環(huán)境問題及其研究進(jìn)展[J]. 土壤學(xué)報(bào), 2007, 44(5): 925-933
Zhang G L, Zhao Y G, Yang J L, et al. Urban soil environment issues and research progresses [J]. Acta Pedologica Sinica, 2007, 44(5): 925-933 (in Chinese)
[2] Ajmone-Marsan F, Biasioli M. Trace elements in soils of urban areas [J]. Water, Air, & Soil Pollution, 2010, 213(1-4): 121-143
[3] Lu Y, Gong Z, Zhang G, et al. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China [J]. Geoderma, 2003, 115(1): 101-111
[4] Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchemical Journal, 2010, 94(2): 99-107
[5] Luo X S, Ding J, Xu B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils [J]. Science of the Total Environment, 2012, 424: 88-96
[6] Cheng H, Li M, Zhao C, et al. Overview of trace metals in the urban soil of 31 metropolises in China [J]. Journal of Geochemical Exploration, 2014, 139: 31-52
[7] Wang M, Markert B, Chen W, et al. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China [J]. Environmental Monitoring and Assessment, 2012, 184(10): 5889-5897
[8] Chen T B, Zheng Y M, Lei M, et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China [J]. Chemosphere, 2005, 60(4): 542-551
[9] Xia X, Chen X, Liu R, et al. Heavy metals in urban soils with various types of land use in Beijing, China [J]. Journal of Hazardous Materials, 2011, 186(2): 2043-2050
[10] 劉申, 劉鳳枝, 李曉華, 等. 天津公園土壤重金屬污染評(píng)價(jià)及其空間分析[J]. 生態(tài)環(huán)境學(xué)報(bào), 2010, 19(5): 1097-1102
Liu S, Liu F Z, Li X H, et al. Pollution assessment and spatial analysis on soil heavy metals of park in Tianjin [J]. Ecology and Environmental Sciences, 2010, 19(5): 1097-1102 (in Chinese)
[11] 黃靜. 西安市公園土壤的重金屬含量水平及理化性質(zhì)研究[D]. 西安: 陜西師范大學(xué), 2009: 37-41
[12〗 Sun Y, Zhou Q, Xie X, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China [J]. Journal of Hazardous Materials, 2010, 174(1): 455-462
[13] Yang Z, Lu W, Long Y, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China [J]. Journal of Geochemical Exploration, 2011, 108(1): 27-38
[14] 高飛, 車少臣. 城市綠地化學(xué)農(nóng)藥面源污染控制與無公害城市綠地建設(shè)[J]. 北京園林, 2009(3): 41-43
[15] Wang W, Li X H, Wang X F, et al. Levels and chiral signatures of organochlorine pesticides in urban soils of Yinchuan, China [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(4): 505-509
[16] Zhang W J, Jiang F B, Ou J F. Global pesticide consumption and pollution: With China as a focus [J]. Proceedings of the International Academy of Ecology and Environmental Sciences, 2011, 1(2): 125-144
[17] Yang L, Xia X, Hu L. Distribution and health risk assessment of HCHs in urban soils of Beijing, China [J]. Environmental Monitoring and Assessment, 2012, 184(4): 2377-238
[18] Smith K P. Water-quality conditions, and constituent loads and yields in the Cambridge drinking-water source area, Massachusetts, Water Years 2005-07 [R]. Cambridge, Massachusetts: U.S. Geological Survey, Water Department, 2013
[19] Smith K P. Hydrologic, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, Water Year 2006 [R]. Cambridge, Massachusetts: U.S. Geological Survey, Water Department, 2008
[20] Smith K P. Hydrologic, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, Water Year 2007-08[R]. Cambridge, Massachusetts: U.S. Geological Survey, Water Department, 2011
[21] Whittemore D O, McGregor K M, Marotz G A. Effects of variations in recharge on groundwater quality [J]. Journal of Hydrology, 1989, 106(1-2): 131-145
[22] Chau H T C, Kadokami K, Duong H T, et al. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam [J]. Environmental Science and Pollution Research, 2015: 1-10. DOI: 10.1007/s11356-015-5060-z
[23] Kong L, Kadokami K, Wang S, et al. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China [J]. Chemosphere, 2015, 122: 125-130
[24] Marigómez I, Garmendia L, Soto M, et al. Marine ecosystem health status assessment through integrative biomarker indices: A comparative study after the Prestige oil spill “Mussel Watch” [J]. Ecotoxicology, 2013, 22(3): 486-505
[25] OECD. Manual for investigation of HPV chemicals. Chapter 4. Initial assessment of data [R/OL]. (2012-12-01) [2017-01-13]. http://www.oecd.org/chemicalsafety/risk-assessment/chapter4initialtialassessmentofdata.htm.
[26] European Chemicals Agency (ECHA). Guidance on the implementation of REACH. Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health [R]. Helsinki, Finland: ECHA, 2008
[27] Tomlin C D S. ed. Siduron (1982-49-6) [M]// The e-Pesticide Manual. 13thEdition Version 3.1 (2004-05). Surrey UK, British Crop Protection Council, 2004
[28] US EPA. Estimation Program Interface (EPI) Suite, Ver, 4.0, Jan, 2009. [CP/OL]. (2009-01-01) [2017-01-13]. http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm
[29] 劉艷. 北京市崇文區(qū)綠地表層土壤質(zhì)量研究與評(píng)價(jià)[D]. 北京: 中國(guó)林業(yè)科學(xué)研究院, 2009: 30-54
[30] 田宇, 張娟. 北京市屬公園土壤肥力現(xiàn)狀評(píng)價(jià)[J]. 環(huán)境科學(xué)與技術(shù), 2014, 37(s1): 436-439
Tian Y, Zhang J. Assessments of soil fertility status of several urban park in Beijing [J]. Environmental Science & Technology, 2014, 37(s1): 436-439 (in Chinese)
[31] 羅上華, 毛齊正, 馬克明, 等. 北京城市綠地表層土壤碳氮分布特征[J]. 生態(tài)學(xué)報(bào), 2014, 34(20): 6011-6019
Luo S H, Mao Q Z, Ma K M, et al. Spatial distribution of soil carbon and nitrogen in urban greenspace of Beijing [J]. Acta Ecologica Sinica, 2014, 34(20): 6011-6019 (in Chinese)
[32] Cheng Y, Zhou Q. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum) [J]. Journal of Environmental Sciences, 2002, 14(1): 136-140
[33] US EPA. Reregistration eligibility decision (RED) for siduron [R/OL]. (2008-05-22) [2017-01-13]. https://archive.epa.gov/pesticides/reregistration/web/pdf/siduron_red.pdf
[34] Song Y F, Xu H X, Ren L P, et al. Inhibition and eco-toxicity of heavy metals pollution on vegetable growth in soils [J]. Journal of Agro-Environment Science, 2003, 22(1): 13-15
[35] Yin X L, Jiang L, Song N H, et al. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon [J]. Journal of Agricultural and Food Chemistry, 2008, 56(12): 4825-4831
[36] Munzuroglu O, Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus [J]. Archives of Environmental Contamination and Toxicology, 2002, 43(2): 203-213
[37] Wang M, Zhou Q. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum [J]. Ecotoxicology and Environmental Safety, 2005, 60(2): 169-175
[39] 王美娥. 豆磺隆-重金屬生態(tài)毒理聯(lián)合效應(yīng)及分子診斷[D]. 北京: 中國(guó)科學(xué)院研究生院, 2006: 61-63
Wang M E. Joint ecotoxicological effects of chlorimuron-ethy and heavy metals and their molecular diagnosis [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006: 61-63 (in Chinese)
[40] 金彩霞, 劉軍軍, 鮑林林, 等. 磺胺間甲氧嘧啶-鎘復(fù)合污染對(duì)作物種子發(fā)芽的影響[J]. 中國(guó)環(huán)境科學(xué), 2010, 30(6): 839-844
Jin C X, Liu J J, Bao L L, et al. Joint toxicity of sulfamonomethoxine and Cd on seed germination and root elongation of crops in soil [J]. China Environmental Science, 2010, 30(6): 839-844 (in Chinese)
[41] 符博敏, 岳林, 馮丹, 等. 恩諾沙星與Cu復(fù)合污染對(duì)白菜和西紅柿根及芽伸長(zhǎng)的抑制作用[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(5): 157-163
Fu B M, Yue L, Feng D, et al. Inhibitory effect of combined pollution of enrofloxacin and Cu on root and shoot elongation of cabbage and tomato [J]. Asian Journal of Ecotoxicology, 2015, 10(5): 157-163 (in Chinese)
[42] 金彩霞, 司曉薇, 毛蕾, 等. 銅-磺胺嘧啶復(fù)合脅迫對(duì)蔬菜種子發(fā)芽的急性毒性效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(5): 164-171
Jin C X, Si X W, Mao L, et al. Acute toxic effect of Cu-sulfadiazine combined stress on the germination of vegetable seeds [J]. Asian Journal of Ecotoxicology, 2015, 10(5): 164-171 (in Chinese)
◆
JointToxicityAssessmentofSiduronandHeavyMetalsonCucumberandWheatSeedGerminationandSeedlingGrowth
Jiang Rong1,2, Wang Meie1,*, Chen Weiping1
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China2. University of China Academy of Sciences, Beijing 100049, China
10.7524/AJE.1673-5897.20170113003
2017-01-13錄用日期2017-04-12
1673-5897(2017)3-544-12
X171.5
A
王美娥(1975-),女,博士,副研究員,長(zhǎng)期以來從事土壤重金屬、農(nóng)藥單一復(fù)合污染過程與生態(tài)效應(yīng)研究,已發(fā)表SCI論文20余篇。
國(guó)家自然科學(xué)基金面上項(xiàng)目(41271503)
姜瑢(1989-),女,博士研究生,研究方向?yàn)橥寥牢廴旧鷳B(tài)風(fēng)險(xiǎn)評(píng)價(jià),E-mail: jrong15@163.com
*通訊作者(Corresponding author), E-mail: mewang@rcees.ac.cn
姜瑢, 王美娥, 陳衛(wèi)平. 環(huán)草隆與重金屬?gòu)?fù)合污染對(duì)黃瓜及小麥的毒性效應(yīng)評(píng)估[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 544-555
Jiang R, Wang M E, Chen W P. Joint toxicity assessment of siduron and heavy metals on cucumber and wheat seed germination and seedling growth [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 544-555 (in Chinese)