任嬌,王小萍,王傳飛,龔平,姚檀棟
1. 中國(guó)科學(xué)院青藏高原研究所,中國(guó)科學(xué)院青藏高原環(huán)境變化與地表過(guò)程實(shí)驗(yàn)室,北京 1001012. 中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 1001013. 中國(guó)科學(xué)院大學(xué),北京100049
青藏高原納木錯(cuò)流域持久性有機(jī)污染物的多介質(zhì)遷移與歸趨模擬
任嬌1,3,王小萍1,2,*,王傳飛1,2,龔平1,2,姚檀棟1,2
1. 中國(guó)科學(xué)院青藏高原研究所,中國(guó)科學(xué)院青藏高原環(huán)境變化與地表過(guò)程實(shí)驗(yàn)室,北京 1001012. 中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 1001013. 中國(guó)科學(xué)院大學(xué),北京100049
南亞排放的持久性有機(jī)污染物(POPs)可隨大氣傳輸?shù)角嗖馗咴?,然而POPs在高原多介質(zhì)間的遷移與分配尚不清晰。本研究利用三級(jí)逸度模型對(duì)4種POPs(六六六α-HCH,滴滴涕p,p′-DDT,菲Phe和苯并芘BaP)在納木錯(cuò)流域的遷移與歸趨進(jìn)行了模擬。結(jié)果表明,大氣沉降是該區(qū)域污染物的主要輸入過(guò)程,而降解損失則是主要的輸出途徑。就最終歸趨而言,土壤是POPs在納木錯(cuò)流域的重要儲(chǔ)庫(kù),其存儲(chǔ)了大于50%的POPs。此外,湖水和沉積物分別對(duì)α-HCH和PAHs具有較強(qiáng)的存儲(chǔ)能力。靈敏度分析的結(jié)果表明,環(huán)境溫度、大氣中POPs的濃度及其理化性質(zhì)是影響POPs在環(huán)境中分布的關(guān)鍵參數(shù)。本研究明確了納木錯(cuò)流域不同POPs的遷移方向和歸趨特征,這將為青藏高原生態(tài)安全評(píng)估提供科學(xué)依據(jù)。
青藏高原;持久性有機(jī)污染物;多介質(zhì)逸度模型;遷移;歸趨
Received20 January 2017accepted13 March 2017
Abstract: Persistent organic pollutants (POPs) emitted from South Asia can be transported to the Tibetan Plateau (TP), driven by favorable atmospheric circulation; however, their transfer between different media (air, soil, water, sediment etc.) and their final fate in the TP are unclear. In the present study, a level III fugacity model was applied to simulate the exchange fluxes and concentration distributions of four POPs (α-HCH, p,p′-DDT, Phe and BaP) in Nam Co Basin. The results showed that atmospheric deposition is the main input process for POPs into this region, and degradation is the main elimination pathway. Soil is the major sink of POPs, accounting for more than 50% of their total reserves. In addition, lake water and sediment have a certain storage capacity for α-HCH and polycyclic aromatic hydrocarbons, respectively. Sensitivity analysis showed that the concentrations of POPs in the air, their physicochemical properties, and air temperature, are key parameters affecting the environmental behavior and distribution of POPs. In conclusion, the direction of transfer, the fluxes amounts, and the final fate of different POPs among different media in Nam Co were successfully quantified in the model, thus contributing to a scientific basis for ecological safety assessments within the TP region.
Keywords: Tibetan Plateau; persistent organic pollutants (POPs); multimedia fugacity model; transfer; fate
持久性有機(jī)污染物(POPs)因其在環(huán)境中難以降解、對(duì)生物有著高毒性而受到廣泛關(guān)注[1]。由于具有半揮發(fā)性,POPs能夠隨大氣進(jìn)行長(zhǎng)距離遷移[2-3],從而在全球范圍內(nèi)分布。即使在遠(yuǎn)離人類活動(dòng)的南極、北極和青藏高原也能監(jiān)測(cè)到POPs的蹤跡[4-6]。相比南北極,青藏高原毗鄰印度、巴基斯坦和尼泊爾等污染嚴(yán)重的南亞國(guó)家[7],因而更易受到污染源區(qū)的影響。目前,青藏高原的POPs研究已取得初步進(jìn)展,多項(xiàng)證據(jù)都表明南亞排放的有機(jī)氯農(nóng)藥(OCPs)[8-11]和多環(huán)芳烴(PAHs)[12-13]能夠在印度季風(fēng)和西風(fēng)的驅(qū)動(dòng)下傳輸至高原內(nèi)部。青藏高原的土壤[14-15]、草地[16]、冰雪[17-19]、湖水[20]、沉積物[21-22]和魚體[23-24]中都有POPs的相關(guān)報(bào)道,然而這些研究只能說(shuō)明污染物到達(dá)了青藏高原。POPs在高原各環(huán)境介質(zhì)之間是如何遷移與分配的?其最終歸趨如何?顯然,目前的研究尚無(wú)法回答這些問(wèn)題,只有將多介質(zhì)環(huán)境行為相結(jié)合才能全面認(rèn)識(shí)污染物在青藏高原的來(lái)龍去脈、辨析各環(huán)境介質(zhì)在POPs遷移與存儲(chǔ)中的作用,因此青藏高原POPs區(qū)域循環(huán)的系統(tǒng)研究亟待開展。
青藏高原平均海拔在4 000 m以上,被稱為地球“第三極”,在此特殊地理單元中,污染物的遷移與循環(huán)也必然有其獨(dú)特之處。高原環(huán)境氣候寒冷,低溫會(huì)減弱地表?yè)]發(fā),而加劇POPs的冷凝與沉降作用[25]。然而,近幾十年來(lái),青藏高原正經(jīng)歷著顯著的變暖[26],山地冰川加速消融、徑流量增加[27],這可能會(huì)促進(jìn)污染物的釋放并向下游湖泊輸送。那么,在固有的低溫環(huán)境與全球升溫的耦合作用下,POPs在由大氣-土壤-冰川-湖水-沉積物所組成的區(qū)域系統(tǒng)中經(jīng)歷著怎樣的循環(huán)過(guò)程?各介質(zhì)對(duì)POPs的存儲(chǔ)起到多大作用?這些問(wèn)題顯得尤為重要。
在污染物多介質(zhì)循環(huán)的研究中,實(shí)測(cè)難度較大,而模型的運(yùn)用能夠簡(jiǎn)化環(huán)境過(guò)程,達(dá)到全面評(píng)估污染物歸趨的目的。近年來(lái),加拿大學(xué)者M(jìn)ackay[28-29]開發(fā)的逸度模型成為研究POPs環(huán)境行為的有力工具,用逸度來(lái)描述污染物在多環(huán)境介質(zhì)中的分配、遷移和歸趨是該模型的最大優(yōu)勢(shì)。穩(wěn)態(tài)的三級(jí)逸度模型已被運(yùn)用于北京[30]、天津[31-32]、蘭州[33]等地區(qū)研究POPs的跨界面環(huán)境過(guò)程,其結(jié)果與實(shí)測(cè)吻合較好。除區(qū)域的研究外,Wania和Mackay[34]首次將逸度模型應(yīng)用于全球尺度,揭示了POPs在全球環(huán)境中的遷移規(guī)律??梢?,逸度模型的適用性廣、預(yù)測(cè)效果好。因此,本研究擬借助多介質(zhì)逸度模型,選擇大氣、土壤、冰川與湖泊共存的納木錯(cuò)流域作為研究區(qū),模擬POPs在該區(qū)域的界面交換與遷移規(guī)律,以明確其最終歸宿。一方面,這將為正確評(píng)價(jià)青藏高原在POPs全球循環(huán)中的作用提供依據(jù);另一方面,這也是確保高原地區(qū)環(huán)境安全、生態(tài)系統(tǒng)可持續(xù)發(fā)展的重要前提。
1.1 研究區(qū)概況
納木錯(cuò)(30°30′~30°56′N,90°16′~91°03′E, 見圖1)位于青藏高原中部、念青唐古拉山北麓,湖面海拔4 718 m,面積2 015 km2[35]。大氣降水和冰川融水是納木錯(cuò)主要的補(bǔ)給來(lái)源。近幾十年來(lái),受氣溫升高和流域內(nèi)冰川加速消融的影響,納木錯(cuò)湖呈擴(kuò)張趨勢(shì)[36]。該地區(qū)年均氣溫為0°C,平均風(fēng)速4 m·s-1,年降雨量約400 mm左右,植被覆蓋以高寒草甸和高寒草原為主[36-37]。位于湖泊東南角的中國(guó)科學(xué)院納木錯(cuò)多圈層綜合觀測(cè)站(簡(jiǎn)稱納木錯(cuò)站,圖1)是開展POPs多介質(zhì)研究的重要保障。
圖1 納木錯(cuò)及采樣點(diǎn)的位置Fig. 1 Location of Nam Co Lake and sampling sites
1.2 模型框架
本研究以Mackay[29]的三級(jí)逸度模型為基礎(chǔ),結(jié)合納木錯(cuò)流域的具體環(huán)境構(gòu)建適合高原的穩(wěn)態(tài)多介質(zhì)模型。選取以納木錯(cuò)湖為中心,面積為10 680 km2的流域范圍作為研究區(qū)[38]。將環(huán)境系統(tǒng)分為4個(gè)主相:依次為大氣(1)、水(2)、土壤(3)和沉積物(4)。其中,各主相中又存在著氣、顆粒物、水和生物等子相(見表1)。
模擬的主要環(huán)境過(guò)程包括POPs在大氣、土壤、湖水和沉積物各介質(zhì)之間的界面交換過(guò)程。遷移通量為逸度(f, Pa)與相間遷移系數(shù)D值(mol·h-1·Pa-1)的乘積。為考察冰川融水對(duì)污染物輸入的貢獻(xiàn),本研究將徑流作為向湖泊輸入的一個(gè)過(guò)程融入到模型中。由于缺乏上風(fēng)向大氣污染物輸入的準(zhǔn)確數(shù)據(jù),本文直接使用當(dāng)?shù)卮髿庵袑?shí)測(cè)POPs濃度和徑流向湖泊輸入的POPs通量作為驅(qū)動(dòng)數(shù)據(jù)。依據(jù)穩(wěn)態(tài)假設(shè),各環(huán)境相的質(zhì)量平衡方程可表達(dá)為:
水:T02t+(D12d+D12r+D12p+D12w)×f1
+D32×f3+D42×f4=(DR2+D21+D24+D2f)×f2
土壤:(D13d+D13r+D13p+D13w)×f1
=(DR3+D31+D32)×f3
沉積物:D24×f2=(DR4+D42+D4B)×f4式中,T02t為污染物通過(guò)徑流向湖泊輸入的速率(mol·h-l);Dij為相間遷移速率,下標(biāo)d, r, p, w分別表示氣態(tài)交換、雨水溶解、顆粒態(tài)干沉降和顆粒態(tài)濕沉降;DRi為污染物在環(huán)境相i中的降解速率;D2f為魚對(duì)污染物的富集速率;D4B為污染物向深層沉積物的掩埋速率。各D值的具體計(jì)算方法參照文獻(xiàn)[29, 39]。
1.3 參數(shù)識(shí)別
基于納木錯(cuò)大氣POPs的觀測(cè)[40],本研究共選取4種化合物進(jìn)行模擬:六六六(α-HCH)和滴滴涕(p,p′-DDT)為OCPs的代表,主要來(lái)源于長(zhǎng)距離傳輸;菲(Phe)是大氣中含量最高的PAHs[40],而苯并芘(BaP)的毒性較強(qiáng)且最受關(guān)注,因此將它們分別作為小分子和大分子PAH的代表。通過(guò)實(shí)測(cè)和文獻(xiàn)調(diào)研,共需收集2套數(shù)據(jù),分別用于模型輸入和模型驗(yàn)證。輸入數(shù)據(jù)包括流域環(huán)境參數(shù)(表1)、介質(zhì)遷移參數(shù)[29]、化合物理化性質(zhì)(表2)和模型驅(qū)動(dòng)數(shù)據(jù)(表2)。表1中各環(huán)境相的面積、深度、各子相的體積分?jǐn)?shù)和有機(jī)碳含量均為實(shí)測(cè)數(shù)據(jù)。表2中化合物的理化參數(shù)都經(jīng)過(guò)了溫度校正(T=273.15 K),大氣濃度來(lái)自于納木錯(cuò)站的觀測(cè)結(jié)果[40],徑流輸送量由河水中實(shí)測(cè)POPs的濃度與徑流量[38]相乘所得。用于模型驗(yàn)證的數(shù)據(jù)為各介質(zhì)中POPs的實(shí)測(cè)濃度值,它們是模擬結(jié)果準(zhǔn)確性評(píng)價(jià)和參數(shù)優(yōu)化的依據(jù)。為使實(shí)測(cè)數(shù)據(jù)具有較好的空間代表性,本研究環(huán)納木錯(cuò)湖采集了15個(gè)湖水、12個(gè)沉積物和20個(gè)土壤樣品(圖1)。樣品的前處理與實(shí)驗(yàn)室分析方法詳見文獻(xiàn)[15, 40-41]。表3列出了各介質(zhì)中POPs的實(shí)測(cè)濃度數(shù)據(jù)。
1.4 求解與驗(yàn)證
基于上述模型框架和參數(shù)收集,利用Matlab編程即可求解得到POPs在土壤、湖水和沉積物3個(gè)主環(huán)境相中的模擬濃度,將其與實(shí)測(cè)數(shù)據(jù)進(jìn)行比較,以驗(yàn)證模型的準(zhǔn)確性。為考察輸入?yún)?shù)對(duì)模型結(jié)果的影響,分別進(jìn)行靈敏度和不確定性分析。靈敏度分析旨在檢驗(yàn)單一參數(shù)變化對(duì)模擬結(jié)果的影響,其做法為分別對(duì)各輸入?yún)?shù)作±10%的變動(dòng),計(jì)算輸出結(jié)果Y的相對(duì)變化,常用靈敏度因子S表示[39]:
S=
通過(guò)比較S的大小可明確對(duì)模型結(jié)果影響較大的關(guān)鍵參數(shù)。在此基礎(chǔ)上,選取S>0.5的高靈敏度參數(shù)進(jìn)行不確定性分析,即利用蒙特卡洛方法考察多參數(shù)同時(shí)變化對(duì)模擬結(jié)果的影響[30]。假設(shè)輸入?yún)?shù)均符合對(duì)數(shù)正態(tài)分布,根據(jù)其均值和標(biāo)準(zhǔn)差產(chǎn)生隨機(jī)數(shù),運(yùn)行10 000次,可得模擬濃度的波動(dòng)范圍和變異系數(shù)(CV)。
2.1 模型驗(yàn)證
經(jīng)過(guò)模擬計(jì)算,獲得了4種POPs在各子相中的模擬濃度,如圖2所示。為驗(yàn)證模型的準(zhǔn)確性,對(duì)模擬結(jié)果與實(shí)測(cè)值進(jìn)行了比較,發(fā)現(xiàn)各化合物在各子相的模擬與實(shí)測(cè)濃度都吻合較好,差異小于3倍(圖2)。這表明本研究構(gòu)建的多介質(zhì)逸度模型能夠較為準(zhǔn)確地反映當(dāng)?shù)氐奈廴厩闆r,適用于納木錯(cuò)地區(qū)POPs的遷移與歸趨模擬。
2.2 多介質(zhì)遷移與最終歸趨
基于模擬濃度可進(jìn)一步計(jì)算得到污染物在介質(zhì)間的遷移通量和各介質(zhì)中的儲(chǔ)量,其結(jié)果如圖3所示。從交換方向上看,α-HCH, p,p′-DDT, Phe和BaP都呈現(xiàn)出大氣向土壤、大氣向湖水、湖水向沉積物的凈沉降,這表明納木錯(cuò)的土壤和湖泊是大氣中污染物的匯。其中,以大氣向土壤的遷移通量最大,4種化合物的氣-土交換通量分別為1.1×10-4, 2.0×10-4, 2.0×10-1和3.9×10-3kg·h-1(圖3)。就湖水-沉積物界面而言,α-HCH和p,p′-DDT的沉降和釋放通量相差較小,而Phe和BaP向沉積物的積累通量遠(yuǎn)大于釋放通量(圖3),這可能會(huì)導(dǎo)致PAHs更多地存儲(chǔ)于湖泊沉積物中。除介質(zhì)間遷移外,降解損失為各介質(zhì)中污染物的主要輸出途徑(圖3)。
表2 化合物的理化性質(zhì)與模型驅(qū)動(dòng)參數(shù)Table 2 Physicochemical properties and input data of the simulated chemicals
表3 POPs在納木錯(cuò)各介質(zhì)中的實(shí)測(cè)濃度Table 3 Measured concentrations of POPs in the multimedia environment of Nam Co
注:C22、C23、C2f、C33和C43分別表示污染物在湖水、湖水中懸浮顆粒物、魚體、土壤和沉積物中的濃度。ww為濕重;dw為干重。
Note: C22, C23, C2f, C33and C43are the concentrations in lake water, suspended particles, fish, soil and sediment, respectively. ww: wet weight; dw: dry weight.
圖2 模擬濃度與實(shí)測(cè)濃度的比較Fig. 2 Comparison between the predicted and measured concentrations
近年來(lái),多項(xiàng)研究都指出冰川消融已成為一種重要的“二次源”在向高山湖泊輸入POPs[42-43],然而支持這一觀點(diǎn)的實(shí)測(cè)數(shù)據(jù)較為缺乏。青藏高原在20世紀(jì)以來(lái)氣候快速變暖,升溫率是全球同期平均值的2倍,達(dá)到每10年0.3~0.4°C[44]。這導(dǎo)致高原冰川快速消融,促進(jìn)了徑流量的增加,并可能引起污染物的釋放。為探明冰川消融對(duì)POPs輸出和循環(huán)的影響,本研究將冰川融水徑流作為向湖泊輸入的一個(gè)過(guò)程融入多介質(zhì)模擬中。其結(jié)果顯示,對(duì)于4種目標(biāo)化合物,徑流輸入的貢獻(xiàn)都很小,即使對(duì)于水溶性較好的α-HCH,也僅有3%是來(lái)自于徑流輸入。這說(shuō)明大氣沉降仍是湖泊中污染物的主要貢獻(xiàn)者(圖3)。這與Nellier等[45]在歐洲阿爾卑斯山冰川補(bǔ)給湖的研究結(jié)果一致。
由于來(lái)源和理化性質(zhì)的差異,4種模擬化合物在納木錯(cuò)流域的儲(chǔ)量和最終歸趨表現(xiàn)出不同規(guī)律。α-HCH和p,p′-DDT的總儲(chǔ)量分別為3.5 kg和28.4 kg,它們主要來(lái)源于大氣的長(zhǎng)距離傳輸[40]。相比之下,由于PAHs存在本地源的貢獻(xiàn)[46],Phe和BaP在納木錯(cuò)環(huán)境中的儲(chǔ)量比OCPs高2~3個(gè)數(shù)量級(jí),分別為8.2 t和3.9 t。這表明PAHs是當(dāng)?shù)刂饕奈廴疚?。就最終歸趨而言,湖水是α-HCH的歸宿之一,可占其總量的46%(圖3),這與α-HCH具有較好的水溶性有關(guān)。而疏水性強(qiáng)的p,p′-DDT不易在湖水中分配,大于88%的DDT都最終歸趨于土壤(圖3)。這說(shuō)明DDT類化合物對(duì)青藏高原的陸地生態(tài)系統(tǒng)影響更大。同樣地,土壤也是PAHs類化合物的主要?dú)w宿,分別占Phe和BaP總儲(chǔ)量的49%和63%(圖3)。此外,PAHs在湖泊沉積物中也有一定的積累(約占35%,圖3),沉積物是其第二大儲(chǔ)庫(kù),這可能對(duì)水生生態(tài)系統(tǒng)存在潛在風(fēng)險(xiǎn)。
2.3 靈敏度分析
靈敏度分析能夠反映模型輸出結(jié)果對(duì)參數(shù)變化的敏感程度,其結(jié)果對(duì)于模型優(yōu)化有著重要的指導(dǎo)意義。表4以S>0.5為標(biāo)準(zhǔn),列出了本研究中對(duì)模擬結(jié)果影響較大的高靈敏度參數(shù)。結(jié)果顯示,大氣中污染物的濃度(C11和C13)對(duì)所有化合物都有較大影響,S值接近于1,表現(xiàn)出大氣沉降對(duì)該地區(qū)污染物輸入的決定性作用。環(huán)境溫度(T)的S值為負(fù),且絕對(duì)值最大,這表明隨著溫度的降低,環(huán)境中POPs的濃度增加,該結(jié)果與POPs的冷捕集效應(yīng)一致[47]。由此可知,青藏高原溫度較低的地區(qū)必然富集了更多的污染物,而溫度的升高會(huì)使青藏高原“匯”的作用減弱。同時(shí),溫度的高靈敏度也證實(shí)了模擬中化合物理化性質(zhì)參數(shù)進(jìn)行溫度校正的必要性。
如表4所示,化合物的亨利常數(shù)(H)、過(guò)冷飽和蒸汽壓(PL)和正辛醇-水分配系數(shù)(Kow)對(duì)模擬結(jié)果也有很大影響,部分S的絕對(duì)值遠(yuǎn)大于1。對(duì)介質(zhì)遷移類參數(shù)而言,僅氣-水界面遷移系數(shù)(K12)、干沉降速率(Kp)、降水速率(Kw)和濕沉降清除效率(Sr)的靈敏度系數(shù)較高。此外,還有部分參數(shù)的靈敏度具有專一性,即只對(duì)某一相的濃度有影響。例如,顆粒物中的有機(jī)碳含量(O23)僅對(duì)湖水懸浮顆粒物中POPs濃度有較大影響;土壤中降解速率(t3)和土壤相的厚度(h3)對(duì)土壤相濃度有較大影響;而沉積物中降解速率(t4)、沉積物的有機(jī)碳含量(O43)和水中顆粒物的沉降速率(KS)都只對(duì)沉積物相濃度有影響。
可見,大氣中的濃度、環(huán)境溫度和化合物的性質(zhì)是影響POPs在環(huán)境中分布的關(guān)鍵因素,這些參數(shù)的準(zhǔn)確性是模擬結(jié)果可靠性的保證。
2.4 不確定性分析
模擬濃度的變異系數(shù)CV值越大,則表明其不確定性越大。圖4為本研究模型的不確定性分析結(jié)果,湖水和土壤中污染物濃度的CV值為100%左右,不確定較??;而沉積物的不確定性最大,CV為130%以上。這與影響沉積物濃度的參數(shù)較多、不確定性較大有關(guān)。與其他研究相比,本研究中模型的不確定性與北京地區(qū)的研究結(jié)果相當(dāng)(CV<150%)[30],而遠(yuǎn)小于蘭州地區(qū)多介質(zhì)模擬的誤差(CV達(dá)400%)[33]。這也證實(shí)了本研究中多介質(zhì)模型的準(zhǔn)確性。
圖3 各環(huán)境介質(zhì)中污染物的儲(chǔ)量和介質(zhì)間的遷移通量Fig. 3 Mass balance diagram showing the transfer fluxes and reserves in different media of Nam Co Basin
表4 參數(shù)靈敏度分析Table 4 Sensitivity analysis of the parameters in the model
注: 表示參數(shù)的靈敏度因子小于0.5。
Note: means the sensitivity coefficient (S) is lower than 0.5.
圖4 模型模擬濃度的變異系數(shù)Fig. 4 The coefficient of variation (CV) of POPs concentrations in sub-phases
綜上所述,多介質(zhì)環(huán)境逸度模型被成功應(yīng)用于青藏高原納木錯(cuò)流域,4種典型POPs在該流域大氣-土壤-湖泊-沉積物系統(tǒng)中的遷移和歸趨得以量化。研究結(jié)果顯示,大氣沉降是該地區(qū)污染物向土壤和湖泊輸入的主要過(guò)程,土壤和沉積物是POPs的最終歸宿。明確不同POPs的環(huán)境歸趨也為今后的研究指明了一定方向。首先,應(yīng)當(dāng)著重關(guān)注DDT沿土壤-草地-陸生生物的傳遞與風(fēng)險(xiǎn)評(píng)價(jià)。其次,青藏高原水生生物中PAHs類化合物的研究相對(duì)缺乏,其含量、富集規(guī)律和健康風(fēng)險(xiǎn)都有待研究。作為對(duì)POPs在青藏高原歸趨模擬的初步探索,本研究證實(shí)了逸度模型在高原的適用性,未來(lái)應(yīng)在此基礎(chǔ)上開展更加全面和深入的模擬研究。一方面,應(yīng)當(dāng)考慮環(huán)境和遷移過(guò)程的季節(jié)性差異,著重提高模型的時(shí)空分辨率;另一方面,利用四級(jí)逸度模型的長(zhǎng)期預(yù)測(cè)優(yōu)勢(shì),開展未來(lái)氣候變化情景下污染物在青藏高原的遷移與歸趨變化具有重要意義。
[1] 余剛, 周隆超, 黃俊, 等. 持久性有機(jī)污染物和《斯德哥爾摩公約》履約[J]. 環(huán)境保護(hù), 2010, 23: 13-15
Yu G, Zhou L C, Huang J, et al. Persistent organic pollutants and Stockholm Convention[J]. Environmental Protection, 2010, 23: 13-15 (in Chinese)
[2] Beyer A, Mackay D, Matthies M, et al. Assessing long-range transport potential of persistent organic pollutants [J]. Environmental Science & Technology, 2000, 34(4): 699-703
[3] Wang R, Tao S, Wang B, et al. Sources and pathways of polycyclic aromatic hydrocarbons transported to Alert, the Canadian High Arctic [J]. Environmental Science & Technology, 2010, 44(3): 1017-1022
[4] MacDonald R W, Barrie L A, Bidleman T F, et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways [J]. Science of the Total Environment, 2000, 254(2-3): 93-234
[5] Kallenborn R, Breivik K, Eckhardt S, et al. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica [J]. Atmospheric Chemistry and Physics, 2013, 13(14): 6983-6992
[6] Wang X P, Gong P, Yao T D, et al. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau [J]. Environmental Science & Technology, 2010, 44(8): 2988-2993
[7] Ali U, Syed J H, Malik R N, et al. Organochlorine pesticides (OCPs) in South Asian region: A review [J]. Science of the Total Environment, 2014, 476: 705-717
[8] Sheng J J, Wang X P, Gong P, et al. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study [J]. Environmental Science & Technology, 2013, 47(7): 3199-3208
[9] Gong P, Wang X P, Sheng J J, et al. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: Role of the monsoon system [J]. Atmospheric Environment, 2010, 44(21-22): 2518-2523
[10] Gong P, Wang X P, Xue Y G, et al. Influence of atmospheric circulation on the long-range transport of organochlorine pesticides to the western Tibetan Plateau [J]. Atmospheric Research, 2015, 166: 157-164
[11] Wang X P, Ren J, Gong P, et al. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: A 5-year air monitoring study [J]. Atmospheric Chemistry and Physics, 2016, 16(11): 6901-6911
[12] Wang X P, Gong P, Sheng J J, et al. Long-range atmospheric transport of particulate polycyclic aromatic hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau [J]. Atmospheric Environment, 2015, 115: 124-131
[13] Ma W L, Qi H, Baidron S, et al. Implications for long-range atmospheric transport of polycyclic aromatic hydrocarbons in Lhasa, China [J]. Environmental Science and Pollution Research, 2013, 20(8): 5525-5533
[14] Tao S, Wang W T, Liu W X, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan Plateau [J]. Journal of Environmental Monitoring, 2011, 13(1): 175-181
[15] Wang X P, Sheng J J, Gong P, et al. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air-soil exchange and implications for global cycling [J]. Environmental Pollution, 2012, 170: 145-151
[16] Wang C F, Wang X P, Yuan X H, et al. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau [J]. Environmental Pollution, 2015, 201: 50-57
[17] Wang X P, Halsall C, Codling G, et al. Accumulation of perfluoroalkyl compounds in Tibetan mountain snow: Temporal patterns from 1980 to 2010 [J]. Environmental Science & Technology, 2014, 48(1): 173-181
[18] Wang X P, Gong P, Zhang Q G, et al. Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records [J]. Environmental Pollution, 2010, 158(2): 375-380
[19] Kang J H, Sungdeuk C, Hyokeun P, et al. Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas [J]. Science of the Total Environment, 2009, 408(1): 57-63
[20] 張偉玲, 張干, 祁士華, 等. 西藏錯(cuò)鄂湖和羊卓雍湖水體及沉積物中有機(jī)氯農(nóng)藥的初步研究[J]. 地球化學(xué), 2003, 32(4): 363-367
Zhang W L, Zhang G, Qi S H, et al. A preliminary study of organochlorinepesticides in water and sediments from two Tibetan Lakes[J]. Geochimica, 2003, 32(4): 363-367 (in Chinese)
[21] Cheng H, Lin T, Zhang G, et al. DDTs and HCHs in sediment cores from the Tibetan Plateau [J]. Chemosphere, 2014, 94: 183-189
[22] Yang R Q, Xie T, Li A, et al. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau [J]. Environmental Pollution, 2016, 214: 1-7
[23] Shi Y L, Pan Y Y, Yang R Q, et al. Occurrence of perfluorinated compounds in fish from Qinghai-Tibetan Plateau [J]. Environment International, 2010, 36(1): 46-50
[24] Yang R Q, Wang Y W, Li A, et al. Organochlorine pesticides and PCBs in fish from lakes of the Tibetan Plateau and the implications [J]. Environmental Pollution, 2010, 158(6): 2310-2316
[25] Daly G L,Wania F. Organic contaminants in mountains [J]. Environmental Science & Technology, 2005, 39(2): 385-398
[26] Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades [J]. International Journal of Climatology, 2000, 20(14): 1729-1742
[27] Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. Global and Planetary Change, 2014, 112: 79-91
[28] Mackay D. Finding fugacity feasible [J]. Environmental Science & Technology, 1979, 13(10): 1218-1223
[29] Mackay D. Multimedia Environmental Models: The Fugacity Approach [M]. Second edition. Boca Raton, FL:Lewis Publishers, 2001: 1-183
[30] 曹紅英, 梁濤, 陶澍. 北京地區(qū)有機(jī)氯農(nóng)藥的跨界面遷移與歸趨[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2004, 12(3): 249-258
Cao H Y, Liang T, Tao S. Simulating the transfer flux and fate of organochlorine pesticide in Beijing [J]. Journal of Basic Science and Engineering, 2004, 12(3): 249-258 (in Chinese)
[31] Tao S, Cao H Y, Liu W, et al. Fate modeling of phenanthrene with regional variation in Tianjin, China [J]. Environmental Science & Technology, 2003, 37(11): 2453-2459
[32] 曹紅英, 龔鐘明, 曹軍, 等. 估算天津環(huán)境中γ-HCH歸宿的逸度模型[J]. 環(huán)境科學(xué), 2003, 24(2): 77-81
Cao H Y, Gong Z M, Cao J, et al. Evaluating the fate of γ-HCH using fugacity model in Tianjin environment [J]. Environmental Science, 2003, 24(2): 77-81 (in Chinese)
[33] 高宏, 董繼元, 吳軍年. 蘭州地區(qū)HCHs的跨界面遷移與歸趨[J]. 中國(guó)環(huán)境科學(xué), 2008, 28(5): 407-411
Gao H, Dong J Y, Wu J N. Transfer and fate of HCHs in Lanzhou region [J]. China Environmental Science, 2008, 28(5): 407-411 (in Chinese)
[34] Wania F, Mackay D. A global distribution model for persistent organic-chemicals [J]. Science of the Total Environment, 1995, 160-161: 211-232
[35] 王君波, 朱立平, 鞠建廷, 等. 西藏納木錯(cuò)水深分布及現(xiàn)代湖沼學(xué)特征初步分析[J]. 湖泊科學(xué), 2009, 21(1): 128-134
Wang J B, Zhu L P, Ju J T, et al. Bathymetric survey and modern limnological parameters of Nam Co, central Tibet [J].Journal of Lake Sciences, 2009, 21(1): 128-134(in Chinese)
[36] 朱立平, 謝曼平, 吳艷紅. 西藏納木錯(cuò)1971~2004年湖泊面積變化及其原因的定量分析[J]. 科學(xué)通報(bào), 2010, 55(18): 1789-1798
Zhu L P, Xie M P, Wu Y H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. [J]. Chinese Science Bulletin, 2010, 55(18): 1789-1798(in Chinese)
[37] 游慶龍, 康世昌, 李潮流, 等. 青藏高原納木錯(cuò)氣象要素變化特征[J]. 氣象, 2007, 33(3): 54-60
You Q L, Kang S C, Li C L, et al. Variation features of meteorological elements at Namco station, Tibetan Plateau [J]. Meteorological Monthly, 2007, 33(3): 54-60 (in Chinese)
[38] Zhou S Q, Kang S C, Chen F, et al. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau [J]. Journal of Hydrology, 2013, 491: 89-99
[39] Xu F L, Qin N, Zhu Y, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China [J]. Ecological Modelling, 2013, 252: 246-257
[40] Ren J, Wang X P, Wang C F, et al. Atmospheric processes of organic pollutants over a remote lake of the central Tibetan Plateau: Implications for regional cycling [J]. Atmospheric Chemistry and Physics, 2017, 17: 1401-1415
[41] Ren J, Wang X P, Wang C F, et al. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms [J]. Environmental Pollution, 2017, 220: 636-643
[42] Bogdal C, Schmid P, Zennegg M, et al. Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants [J]. Environmental Science & Technology, 2009, 43(21): 8173-8177
[43] Schmid P, Bogdal C, Blüthgen N, et al. The missing piece: Sediment records in remote mountain lakes confirm glaciers being secondary sources of persistent organic pollutants [J]. Environmental Science & Technology, 2010, 45(1): 203-208
[44] 陳德亮, 徐柏青, 姚檀棟, 等. 青藏高原環(huán)境變化科學(xué)評(píng)估:過(guò)去、現(xiàn)在與未來(lái)[J]. 科學(xué)通報(bào), 2015, 60(32): 3025-3035
Chen D L, Xu B Q, Yao T D, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035(in Chinese)
[45] Nellier Y M, Perga M E, Cottin N, et al. Mass budget in two high altitude lakes reveals their role as atmospheric PCB sinks [J]. Science of the Total Environment, 2015, 511: 203-213
[46] Li C L, Kang S C, Chen P F, et al. Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China [J]. Environmental Science and Pollution Research, 2012, 19(5): 1620-1628
[47] Scheringer M, Wegmann F, Fenner K, et al. Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model [J]. Environmental Science & Technology, 2000, 34(9): 1842-1850
◆
MultimediaFateModelingofPersistentOrganicPollutantsinNamCoBasin,TibetanPlateau
Ren Jiao1,3, Wang Xiaoping1,2,*, Wang Chuanfei1,2, Gong Ping1,2, Yao Tandong1,2
1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China3. University of Chinese Academy of Sciences, Beijing 100049, China
10.7524/AJE.1673-5897.20170120002
2017-01-20錄用日期2017-03-13
1673-5897(2017)3-170-10
X171.5
A
王小萍(1976-),女,博士,研究員,主要研究方向?yàn)榍嗖馗咴h(huán)境污染與變化。
國(guó)家自然科學(xué)基金項(xiàng)目(41222010, 41671480);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(CAS2011067)
任嬌(1990-),女,博士研究生,研究方向?yàn)榍嗖馗咴h(huán)境污染,E-mail: renjiao@itpcas.ac.cn
*通訊作者(Corresponding author), E-mail: wangxp@itpcas.ac.cn
任嬌, 王小萍, 王傳飛, 等. 青藏高原納木錯(cuò)流域持久性有機(jī)污染物的多介質(zhì)遷移與歸趨模擬[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 170-179
Ren J, Wang X P, Wang C F, et al. Multimedia fate modeling of persistent organic pollutants in Nam Co Basin, Tibetan Plateau [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 170-179 (in Chinese)