尹庭赟,裴 吉,袁壽其,王文杰
?
余熱排出泵葉輪流固耦合特性分析
尹庭赟,裴 吉※,袁壽其,王文杰
(江蘇大學國家水泵及系統(tǒng)工程技術研究中心,鎮(zhèn)江 212013)
余熱排出泵長期在高溫高壓環(huán)境下運行,其結構的可靠性對整個機組的安全運行有著重要的影響。該文采用單向流固耦合方法研究了幾種常用材料及增加葉輪蓋板厚度對轉子結構動力學特性的影響,同時對比了常溫和高溫下葉輪的振動特性。結果表明,余熱排出泵高溫運行時,葉輪的第1階固有頻率為394.17 Hz,較常溫下升高了2.28%,遠高于葉輪葉片通過頻率。在各階模態(tài)振型下,1Cr13MoS葉輪固有頻率最大,ZG225-450葉輪固有頻率最小。設計工況和偏工況下葉輪的應力及變形變化趨勢基本一致,葉輪的變形隨半徑的增加而不斷增大,最大變形量出現(xiàn)在后蓋板葉輪出口處。葉輪的應力分布不均,最大應力均出現(xiàn)在葉片尾緣與后蓋板接合處。沿著前蓋板和葉片接合線,應力的峰值隨前蓋板厚度增加而減小。沿著后蓋板和葉片接合線,增加后蓋板厚度明顯減小了應力峰值。高溫和常溫應力變化趨勢基本一致,但是高溫下葉輪應力明顯高于常溫。尤其在葉輪進口處附近,高溫應力相對于常溫應力增加超過300%。該研究結果為下一步進行更加復雜的動力學分析、疲勞分析以及結構優(yōu)化提供參考。
泵;葉輪;動力學;余熱排出泵;蓋板厚度
隨著中國對核電的高度重視,國內高校和泵企業(yè)等正加緊研制開發(fā)核電用泵,實現(xiàn)核電用泵的國產化。在核電站內的泵類設備中,余熱排出泵是重要的設備之一,可保護核電站的安全運行:當反應堆進行正常停堆時,排出堆芯余熱和核主泵在一回路中產生的熱量;當發(fā)生嚴重事故時,減小核電站受損程度[1-2]。由于余熱排出泵高溫高壓運行環(huán)境的特殊性,其結構的可靠性對整個機組的安全運行有著重要的影響,因此,準確地對余熱排出泵轉子部件進行強度分析可為其結構設計及壽命延長提供依據。
近年來,流固耦合有限元分析已成為分析流體機械可靠性的重要方法。國內外不少學者嘗試采用流固耦合的方法對轉子系統(tǒng)進行振動特性分析,取得了許多有價值的成果。劉厚林等[3]分別運用單、雙向流固耦合方法對導葉式離心泵葉輪進行靜應力強度分析,指出單向耦合即可滿足葉輪靜力學分析。Kan等[4]采用單向流固耦合計算得到了水輪機轉子在多工況下應力和變形變化規(guī)律。牟介剛等[5]采用單向流固耦合方法,分析了懸臂式離心泵在不同懸臂比、不同工況下葉輪應力和變形的變化規(guī)律,并對不同懸臂比離心泵的轉子動力學特性進行研究。Schneider等[6]對多級離心泵進行了單向流固耦合計算,分析了葉輪結構設計參數和溫度對葉輪應力和變形的影響。劉厚林等[7]對比分析了無預應力下、流固耦合作用力和旋轉離心力作用下的余熱排出泵轉子的模態(tài)。劉建瑞等[8]考慮了水的附加質量對余熱排出泵轉子振動性能的影響,對轉子進行水中模態(tài)分析。Zhou等[9-10]采用雙向流固耦合計算方法,研究了考慮流固耦合作用的余熱排出泵在不同工況下內部流場及轉子應力和變形分布??紤]到余熱排出泵實際高溫高壓的運行環(huán)境,目前很少有學者考慮對葉輪蓋板進行加厚處理。同時,材料屬性對轉子動力學特性的影響研究較少,尤其是對于有特殊用途的余熱排出泵而言,合理選擇葉輪材料至關重要。
因此,本文應用單向流固耦合計算方法研究了余熱排出泵實際高溫運行環(huán)境下葉輪模態(tài)分布,詳細分析了葉輪幾種常用材料和不同蓋板厚度下葉輪變形量和應力分布,以期為研究整個系統(tǒng)的動態(tài)特性提供參考。
1.1 基于模態(tài)分析的靜流體整體耦合法
對于具有個自由度的系統(tǒng),其結構動力方程為
式中是系統(tǒng)的質量矩陣;是系統(tǒng)的阻尼矩陣;是系統(tǒng)的剛度矩陣;是系統(tǒng)承受的載荷,Pa;是節(jié)點的加速度矢量,m/s2;是節(jié)點的速度矢量,m/s;是節(jié)點的位移矢量,m[11]。
在靜流體中,考慮到流固耦合作用對方程做了一些假設:流體是可壓縮的,壓力波動將會引起密度變化;流體是非黏性的(即無黏性耗散)以及非旋轉的;流體沒有運動。因此,流體將被視為聲學流體,控制方程可用如下的聲波方程表示
(3)
式中是聲音在水中的傳播速度,m/s;是由聲波引起的流體壓力以及作用于流體的力,Pa;Δ是拉普拉斯算子;是流體體積模量;是時間,s;0是流體平均密度,kg/m3[11]。
在流固耦合交界面,用如下的方程描述了流體與結構的相互作用
(5)
考慮到在交界面處壓力對結構的影響,方程(1)改寫為
其中,= -表示等效耦合剛度[11]。
因此,可以耦合流體和結構方程,基于單一求解器通過整體求解方法同時求解[11],方程表達如下
在對葉輪進行模態(tài)分析時,自由振動方程系統(tǒng)視為非阻尼情況[11],方程(7)簡化如下
(8)
1.2 基于應力和變形分析的動流體分區(qū)耦合法
在分區(qū)耦合法中,有2種耦合求解流體動力學和結構響應策略:單向耦合和雙向耦合[12]。雙向耦合方法主要是針對具有強物理耦合效應的問題,即除了考慮流動對結構的影響,結構的變形或運動對流動的反作用也需要考慮[13]。在泵機械中,大多數情況下由于泵內不穩(wěn)定流引起的葉輪的變形很小,而葉輪變形和振動對流場影響可以忽略不計[10,14]。因此,本文采用單向耦合方法,如圖1所示,在每一個時間步長流體載荷通過交界面單向傳遞到結構。
2.1 計算模型
余熱排出泵過流部件包括后掠扭曲葉輪、徑向導葉和環(huán)形蝸殼3部分,其三維結構如圖2所示。余熱排出泵的主要性能和幾何參數分別為設計流量d=910 m3/h,揚程d=77 m,轉速=1 490 r/min,比轉數s=104.5,葉輪進口直徑j=270 mm,葉輪出口直徑2=511 mm,葉輪葉片數i=5,導葉進口直徑3=515 mm,導葉出口直徑4=718 mm,導葉葉片數g=7,蝸殼基圓直徑5=840 mm。為探討增加蓋板厚度對轉子結構動力學特性的影響,設計了4種不同的葉輪結構:1)原始蓋板;2)前蓋板厚度增加50%;3)后蓋板厚度增加50%;4)前后蓋板厚度均增加50%,詳細參數見表1。余熱排出泵長期在高溫高壓環(huán)境惡劣環(huán)境下運行,葉輪材料的選取至關重要。因此本文選取5種常用材料[15]如表2所示,分析了不同材料葉輪的動力學特性。
2.2 網格劃分
2.2.1 流體域網格
網格劃分是數值模擬中的重要步驟之一,網格的好壞直接影響數值模擬的準確性。對余熱排出泵計算域采用ICEM軟件進行結構化網格劃分,對壁面進行網格加密[16-17],如圖3所示。對數值模擬進行網格無關性檢查,如圖4所示,確定余熱排出泵計算域的最終網格總數為5.20×106。
表1 葉輪結構參數
表2 葉輪材料參數
2.2.2 結構域網格
為研究濕模態(tài)下葉輪的動力學特性,將葉輪完全淹沒在1.12 m×0.36 m×1.12 m的水體中[18]。如圖5所示,運用ANSYS Workbench中自帶的網格劃分軟件,對葉輪及水體部分進行網格劃分[19]。分別基于Method和Hex Dominant網格類型通過Sizing命令對葉輪和水體域進行網格劃分。經網格無關性檢查,確定最終網格節(jié)點總數為129 220,網格單元總數為49 556。
2.3 邊界條件
采用整體耦合法對葉輪進行模態(tài)分析時,為了獲得更高的求解精度,用Fluid220和221高階單元作為水體域單元,默認使用Solid186和187作為結構域單元。由于水體域單元不支持完全積分法,所以本文對水體域積分控制使用縮減積分法,而對流固耦合面的固體域積分控制使用完全積分法??紤]到濕模態(tài)分析時,構成結構動力學有限元方程的質量矩陣是非對稱的,因此在求解中需選用非對稱模態(tài)算法[20]。
假設流體在泵內部是不可壓縮三維湍流流動,滿足連續(xù)方程和動量方程,采用SST湍流模型求解雷諾時均方程[21-24]。采用分區(qū)耦合法對葉輪進行應力和變形量分析時,先對流體域進行了三維定常和非定常數值模擬:在定常計算過程中,邊界條件設置為總壓進口和質量流量出口,動靜域之間交界面采用Frozen rotor,計算域壁面采用無滑移網格函數[25-26],采用高階求解精度,收斂殘差RMS設置為10-5,計算迭代步數最大500;在非定常數值計算過程中,以定常計算結果作為初始值,邊界條件設置不變,而動靜域之間交界面改成Transient frozen rotor[27]。計算周期為6圈,葉輪旋轉1度為1個時間步長,即5.747 13×10-5s。以非定常計算最后一步的計算結果作為初值對葉輪進行了6圈單向流固耦合計算:時間步長設置和非定常計算一致;流體場和固體場葉輪葉片、前后蓋板設置為流固耦合交界面(fluid-structure interface);有限元時間積分采用采用Hilber-Hughes- Taylor(HTT)離散方法,使用瑞利阻尼(Rayleigh damping)系數來定義結構瞬態(tài)阻尼效應[28]。如圖1所示,設置葉輪后蓋板的孔面為Fixed Support支撐面。本文分別模擬了設計工況下25 ℃常溫水以及180 ℃高溫水余熱排出泵內部流動以對比實際運行環(huán)境下葉輪的動力學特性。
2.4 試驗驗證
為了驗證數值模擬的準確性,對余熱排出泵按比例縮小30%的模型泵進行了外特性試驗驗證。試驗在江蘇大學流體機械質量技術檢驗中心的開式試驗臺上進行,試驗現(xiàn)場如圖6所示。采用上海自儀九儀表有限公司生產的型號規(guī)格為LWGY-200A渦輪流量計進行測量流量,量程為0~1.6 MPa,精確度為0.5級;采用上海威爾泰儀器儀表有限公司生產的WT200智能壓力變送器測量進出口壓力,進出口處壓力變送器的測量量程分別為?0.1~0.1 MPa和0~1.6 MPa,測量精度均為0.1級。如圖7所示,根據相似換算原理[29-30],得到了真實尺寸泵的試驗和數值模擬性能曲線。由圖7可知,試驗揚程和效率略高于計算值,預測揚程的最大偏差為6.78%,預測效率的最大偏差為9%。但是試驗結果趨勢一致,計算模型較準確地預測了余熱排出泵的外特性,數值計算結果較為可信。
3.1 模態(tài)分析
為了了解葉輪模態(tài)振型情況,首先對原始蓋板的合金結構鋼葉輪的計算結果提取分析。如圖8所示,葉輪第1、2階振型相似,都是在葉輪某2個對稱位置的變形量最大,即葉輪是擺動變形。第3、4階模態(tài)振型相似,都是葉輪沿著軸向的扭動變形。第5階和第6階模態(tài)振型相似,都是扭曲變形,可以看到2條明顯的節(jié)徑,且分布角度不同。第7、8、9、10階振型為葉輪前后蓋板沿著軸向的扭曲變形。通過對其他幾種形式的葉輪前10階模態(tài)振型分析發(fā)現(xiàn),葉輪振型基本相同,但是固有頻率有一定差別。
表3列出了不同材料、蓋板厚度和溫度下葉輪前10階固有頻率。由表3可知,改變葉輪蓋板厚度對前6階固有頻率的影響可以忽略。從第7階開始,葉輪后蓋板的厚度對固有頻率有很大影響,增加后蓋板厚度可以提高葉輪的固有頻率。5種材料的葉輪固有頻率變化規(guī)律趨于一致。在常溫各階模態(tài)振型下,1Cr13MoS(B_3)葉輪固有頻率最大,ZG225-450(B_2)葉輪固有頻率最小。以合金結構鋼(B_0)原始蓋板葉輪為例,余熱排出泵在高溫運行時,葉輪的第1階固有頻率為394.17 Hz,較常溫下升高了2.28%,遠高于高于葉輪葉片通過頻率,在安全運行范圍內。
3.2 應力和變形分析
如圖9、10所示分別為葉輪在3種工況下變形及應力分布,其中對變形量和應力進行了無量綱處理[7],從圖中可以看出在設計工況和偏工況下葉輪的應力及變形變化趨勢基本一致。葉輪的變形隨半徑的增大而不斷增大,最大總變形出現(xiàn)在后蓋板葉輪出口處。葉輪的應力分布不均,最大應力均出現(xiàn)在葉片尾緣與后蓋板接合處。
為了詳細分析葉輪關鍵部位的應力變化,如圖11定義了前后蓋板和葉片接合處的4條路徑,這4條路徑在葉輪表面從進口前緣延伸到出口尾緣。
圖12為不同工況下葉輪4條路徑應力分布圖。從圖12中可以看出3種工況下4條路徑應力變化趨勢基本一致:在前后蓋板與葉片壓力面接合處,路徑中間附近出現(xiàn)應力峰值,在前緣附近可以明顯的看出大流量工況下應力大,小流量工況下應力?。辉谇昂笊w板與葉片吸力面接合處,最大應力均出現(xiàn)在尾緣處。其中,葉片吸力面與蓋板接合處的應力峰值遠高于與壓力面接合處的應力峰值。
余熱排出泵的實際運行環(huán)境對葉輪材料的選擇提出了苛刻的要求,如圖13所示為設計工況下5種葉輪材料的4條路徑應力分布圖。從圖13中可以看出5種材料的4條路徑應力變化趨勢基本一致,但是在前緣附近合金結構鋼(B_0)的應力明顯高于其他4種材料。
如圖14所示為設計工況下4種葉輪蓋板厚度對應的4條路徑應力分布圖。從圖14b和14d中可以看出,沿著前蓋板和葉片接合線,應力的峰值隨前蓋板厚度增加而減小。從圖14a和14c中可以看出,沿著后蓋板和葉片接合線,增加后蓋板厚度明顯減小了應力峰值。
圖15所示對比分析了設計工況下原始模型葉輪在常溫和高溫下4條路徑應力。由圖15可知,兩種溫度下四條路徑應力變化趨勢基本一致,但是高溫下葉輪應力明顯高于常溫。尤其在葉輪進口處附近,高溫應力相對于常溫應力增加超過300%。在前蓋板和葉片壓力面接合處,常溫時應力峰值在路徑中間附近,而高溫時峰值在尾緣。其余3種路徑峰值位置沒有改變。
本文應用單向流固耦合計算方法分析了余熱排出泵實際高溫運行環(huán)境下葉輪動力學特性,并定量研究了葉輪不同結構設計參數和不同材料下的變形量和應力,結論如下:
1)余熱排出泵高溫運行時,葉輪的第1階固有頻率為394.17 Hz,較常溫下升高了2.28%,遠高于葉輪葉片通過頻率。在各階模態(tài)振型下,1Cr13MoS的葉輪固有頻率最大,ZG225-450葉輪固有頻率最小。改變葉輪蓋板厚度對前6階固有頻率影響可以忽略。但是從第7階開始,增加后蓋板厚度可以提高葉輪的固有頻率。
2)設計工況和偏工況下葉輪的應力及變形變化趨勢基本一致。葉輪的變形隨半徑的增大而不斷增大,最大總變形出現(xiàn)在后蓋板葉輪出口處。葉輪的應力分布不均,最大應力均出現(xiàn)在葉片與后蓋板接合的進口處。其中,沿著前蓋板和葉片接合線,應力的峰值隨前蓋板厚度增加而減小。沿著后蓋板和葉片接合線,增加后蓋板厚度明顯減小了應力峰值。
3)高溫和常溫應力變化趨勢基本一致,但是高溫下葉輪應力明顯高于常溫。尤其在葉輪進口處附近,高溫應力相對于常溫應力增加超過300%。在前蓋板和葉片壓力面接合處,常溫時應力峰值在路徑中間附近,而高溫時峰值在尾緣。其余3種路徑峰值位置沒有改變。后文將在本文基礎上深入分析高溫高壓條件下泵的轉子動力學特性及葉輪使用壽命評估。
[1] Wang Wenjie, Pei Ji, Yuan Shouqi, et al. Application of different surrogate models on the optimization of centrifugal pump[J]. Journal of Mechanical Science and Technology, 2016, 30(2): 567-574.
[2] 王文杰,袁壽其,裴吉,等. 余熱排出泵葉輪與導葉匹配的水力性能研究[J]. 華中科技大學學報:自然科學版,2015,43(7):39-43.
Wang Wenjie, Yuan Shouqi, Pei Ji, et al. Hydraulic performance study on matching of impeller and diffuser of residual heat removal pump[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2015, 43(7): 39-43. (in Chinese with English abstract)
[3] 劉厚林,徐歡,吳賢芳,等. 基于流固耦合的導葉式離心泵強度分析[J]. 振動與沖擊,2013,32(12):27-30.
Liu Houlin, Xu Huan, Wu Xianfang, et al. Strength analysis of a diffuser pump based on fluid-structure interaction[J]. Journal of Vibration & Shock, 2013, 32(12): 27-30. (in Chinese with English abstract)
[4] Kan Kan, Zheng Yuan, Zhang Xin, et al. Numerical study on unidirectional fluid-solid coupling of Francis turbine runner[J]. Advances in Mechanical Engineering, 2015, 7(3): 1-14.
[5] 牟介剛,陳瑩,谷云慶,等. 懸臂式離心泵流固耦合特性研究[J]. 哈爾濱工程大學學報,2016,37(8):1111-1117.
Mou Jiegang, Chen Ying, Gu yunqing, et al. Research on fluid-structure interaction characteristics of cantilever centrifugal pump[J]. Journal of Harbin Engineering University, 2016, 37(8): 1111-1117. (in Chinese with English abstract)
[6] Schneider A, Will B C, B?hle M. Numerical evaluation of deformation and stress in impellers of multistage pumps by means of fluid structure interaction[C]//ASME 2013 Fluids Engineering Division Summer Meeting (FEDSM2013), 2013.
[7] 劉厚林,徐歡,王凱,等. 基于流固耦合的余熱排出泵轉
子模態(tài)分析[J]. 流體機械,2012(6):28-32.
Liu Houlin, Xu Huan, Wang Kai, et al. Modal analysis for rotor of residual heat removal pump based on fluid-structure interaction[J]. Fluid Machinery, 2012(6): 28-32. (in Chinese with English abstract)
[8] 劉建瑞,陳斌,張金鳳,等. 余熱排出泵水中模態(tài)分析[J]. 排灌機械工程學報,2015,33(4):290-295.
Liu Jianrui, Chen Bin, Zhang Jinfeng, et al. Mode analysis for rotor of residual heat removal pump in water[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2015, 33(4): 290-295. (in Chinese with English abstract)
[9] Zhou Banglun, Yuan Jianping, Fu Yanxia, et al. Investigation of dynamic stress of rotor in residual heat removal pumps based on fluid-structure interaction[J]. Advances in Mechanical Engineering, 2016, 8(9): 1-12.
[10] Zhou Banglun, Yuan Jianping, Lu Jiaxing, et al. Numerical investigation of residual heat removal pumps based on fluid-structure interaction in 1000 MW nuclear power plants[C]//International Symposium on Fluid Machinery and Fluid Engineering. IET, 2014.
[11] Wu Yulin, Li Shengcai, Liu Shuhong, et al. Vibration of Hydraulic Machinery[M]. Germany: Springer Netherlands, 2015.
[12] Piperno S, Farhat C. Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II: Energy transfer analysis and three-dimensional applications[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24): 3147-3170.
[13] Pei Ji, Benra F K, Dohmen H J. Application of different strategies of partitioned fluid-structure interaction simulation for a single-blade pump impeller[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2012, 226(4): 297-308.
[14] Yuan Shouqi, Pei Ji, Yuan Jianping. Numerical investigation on fluid structure interaction considering rotor deformation for a centrifugal pump[J]. Chinese Journal of Mechanical Engineering, 2011, 24(4): 539-545.
[15] Deng Xin, Yuan Shouqi, Yuan Jianping, et al. Antiseismic response research of horizontal residual heat removal pump in different seismic spectrum input directions[J]. Journal of Vibroengineering, 2014, 16(3): 1306-1317.
[16] 洪鋒,袁建平,周幫倫. 余熱排出泵葉輪內空化流動特性的數值分析[J]. 排灌機械工程學報,2016,34(3):185-190.
Hong Feng, Yuan Jianping, Zhou Banglun. Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2016, 34(3): 185-190. (in Chinese with English abstract)
[17] 袁建平,朱鈺雯,周幫倫,等. 余熱排出泵內部壓力脈動特性分析[J]. 排灌機械工程學報,2015,33(6):475-480.
Yuan Jianping, Zhu Yuwen, Zhou Banglun, et al. Pressure fluctuation in residual heat removal pumps[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2015, 33(6): 475-480. (in Chinese with English abstract)
[18] 施衛(wèi)東,郭艷磊,張德勝,等. 大型潛水軸流泵轉子部件濕模態(tài)數值模擬[J]. 農業(yè)工程學報,2013,29(24):72-78.
Shi Weidong, Guo Yanlei, Zhang Desheng, et al. Numerical simulation on modal of large submersible axial-flow pump rotor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 72-78. (in Chinese with English abstract)
[19] 梁權偉,王正偉,方源. 考慮流固耦合的混流式水輪機轉輪模態(tài)分析[J]. 水力發(fā)電學報,2004,23(3):116-120.
Liang Quanwei, Wang Zhengwei, Fang Yuan. Modal analysis of Francis turbine with considering FSI[J]. Journal of Hydroelectrical Engineering, 2004, 23(3): 116-120. (in Chinese with English abstract)
[20] 李兵. ANSYS Workbench設計、仿真與優(yōu)化[M]. 北京:清華大學出版社,2011.
[21] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[22] 任蕓,劉厚林,舒敏驊,等. 湍流模型在離心泵偏工況性能預測中的適用性分析[J]. 流體機械,2012,40(10):18-22.
Ren Yun, Liu Houlin, Shu Minhua, et al. Analysis of applicability of turbulence models in performance prediction for centrifugal pumps at the off-design conditions[J]. Fluid Machinery, 2012, 40(10): 18-22. (in Chinese with English abstract)
[23] 楊興標,李紅,陳超. 湍流模型對離心泵揚程預測準確性的影響[J]. 排灌機械工程學報,2015,33(8):656-660.
Yang Xingbiao, Li Hong, Chen Chao. Influence of turbulence models on head prediction accuracy for centrifugal pumps[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2015, 33(8): 656-660. (in Chinese with English abstract)
[24] 王福軍. 流體機械旋轉湍流計算模型研究進展[J]. 農業(yè)機械學報,2016,47(2):1-14.
Wang Fujun. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 1-14. (in Chinese with English abstract)
[25] 朱相源,江偉,李國君,等. 導葉式離心泵內部流動特性數值模擬[J]. 農業(yè)機械學報,2016,47(6):34-41.
Zhu Xiangyuan, Jiang Wei, Li Guojun, et al. Numerical analysis of hydraulic performance in centrifugal pump with vane diffuser[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 34-41. (in Chinese with English abstract)
[26] 孟根其其格,譚磊,曹樹良,等. 離心泵蝸殼內非定常流動特性的數值模擬及分析[J]. 機械工程學報,2015,51(22):183-190.
Meng Genqiqige, Tan Lei, Cao Shuliang, et al. Numerical simulation and analysis of unsteady flow characteristics in centrifugal pump volute[J]. Journal of Mechanical Engineering. 2015, 51(22): 183-190. (in Chinese with English abstract)
[27] 王秀禮,盧永剛,袁壽其,等. 基于流固耦合的核主泵汽蝕動力特性研究[J]. 哈爾濱工程大學學報,2015,36(2):213-217.
Wang Xiuli, Lu Yonggang, Yuan Shouqi, et al. Dynamic characteristics analysis of the reactor coolant pump variation based on fluid-structure coupling[J]. Journal of Harbin Engineering University, 2015, 36(2): 213-217. (in Chinese with English abstract)
[28] 裴吉,袁壽其. 離心泵非定常流動特性及流固耦合機理[M]. 北京:機械工業(yè)出版社,2014.
[29] 關醒凡. 現(xiàn)代泵理論與設計[M]. 北京:中國宇航出版社,2011.
[30] 袁壽其,施衛(wèi)東,劉厚林,等. 泵理論與技術[M]. 北京:中國宇航出版社,2014.
Analysis of fluid-structure interaction characteristics for impeller of residual heat removal pump
Yin Tingyun, Pei Ji※, Yuan Shouqi, Wang Wenjie
(,,212013,)
In recent years, nuclear power has drawn increased attention because of its high efficiency and low pollution. Thus, a rising number of nuclear power stations are being constructed. The safety of nuclear station operations is mainly guaranteed by the residual heat removal system. Residual heat removal pumps (RHRP) are operated when the nuclear main pump stops working and the nuclear station needs to be maintained. The RHRP works in a complex environment, and its work status directly affects the performance of the entire plant. To ensure the reliability of the RHRP, the vibration characteristics of the rotor were analyzed using fluid-structure interaction theory. Stress and deformation analysis by partitioned solution for an impeller in a moving fluid was performed, and modal analysis of the impeller by monolithic solution was conducted in still fluid. For the partitioned method, there are two strategies for coupled solutions of dynamic fluid and structure interaction, one-way coupling and two-way coupling. Two-way coupling is typically used for large structural deformations. One-way coupling is suitable for the small structural deformation cases. In pump machinery, the impeller vibration caused by unsteady flow results in small deformations. Additionally, the feedback of the impeller motion onto the flow is small and therefore, can be neglected for most cases. Consequently, one-way coupling has been chosen, in which dynamic forces are transferred to the structure through the interface in a single direction at every time step. To understand the influence of the impeller shroud thickness on the resulting vibration characteristics, three impeller modifications were investigated and compared to the initial geometry under different flow rates. Moreover, five commonly used materials for an impeller were also evaluated. The three-dimensional turbulent flow was modeled utilizing a SST-turbulence model, and the numerical results were verified by the experimental data. The results showed that due to local structural differences between the pumps used in the numerical calculation model and the test measurement, as well as other effects, such as mesh quality, it was inevitable that there would be differences between the numerical calculation and the test measurements. However, the overall external characteristics of the numerical simulation were generally consistent with the performance of the test measurements, indicating that the flow-field calculation model can accurately predict its performance. By comparing with impellers adapted from four other materials and different shroud thicknesses, the vibration modes of the impellers were basically same for each order; however, the natural frequencies differed to some extent. The first order frequency of original impeller rotor was 394.17 Hz at hot condition and increased by 2.28% compared with cold condition, which was higher than blade passing frequency. Natural frequency of 1Cr13MoS was the highest among employed materials for each order mode, while ZG225-450 was the lowest. At design and off-design flow rates, the stress and displacement fields were similar. The displacement grew from the hub to the outer diameter, and each blade passage had a local maximum on the rear shroud. Moreover, the higher equivalent stress values can be observed in the junction between blade and shroud. Under three operating points, the peak values of stresses occurred in the middle of the junction between shroud and blade pressure side. Decreasing the head caused a significant reduction at the beginning of the blade passage. The stresses along defined paths were almost independent of the front shroud thickness, but peak values could be significantly reduced with a thicker rear shroud. The trendy of stress distribution between hot and cold condition was basically same. However, stress of hot condition was higher than cold one. Especially nearby the leading edge of the impeller, stress of hot condition increased more than 300%, compared to cold one. The results provide a theoretical basis for improving system performance and further study for more complicated dynamic analysis and fatigue analysis.
pumps; impellers; kinetics; residual heat removal pump; shroud thickness
10.11975/j.issn.1002-6819.2017.09.010
TH38
A
1002-6819(2017)-09-0076-08
2016-10-27
2017-04-05
國家科技支撐計劃項目(2014BAB08B01);國家自然科學基金青年基金(51409123);江蘇省自然科學基金青年基金(BK20140554);江蘇大學“青年骨干教師培養(yǎng)工程”
尹庭赟,男,博士生,主要從事水力機械空化空蝕機理研究。鎮(zhèn)江 江蘇大學國家水泵及系統(tǒng)工程技術研究中心,212013。 Email:tingyun_YIN@ujs.edu.cn
裴 吉,男,博士,副教授,主要從事離心泵非定常流動特性及流固耦合機理。鎮(zhèn)江 江蘇大學國家水泵及系統(tǒng)工程技術研究中心,212013。Email:jpei@ujs.edu.cn
尹庭赟,裴 吉,袁壽其,王文杰. 余熱排出泵葉輪流固耦合特性分析[J]. 農業(yè)工程學報,2017,33(9):76-83. doi:10.11975/j.issn.1002-6819.2017.09.010 http://www.tcsae.org
Yin Tingyun, Pei Ji, Yuan Shouqi, Wang Wenjie. Analysis of fluid-structure interaction characteristics for impeller of residual heat removal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 76-83. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.010 http://www.tcsae.org